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Abstract

Background: We present the results of EGASP, a community experiment to assess the state-of-
the-art in genome annotation within the ENCODE regions, which span 1% of the human genome
sequence. The experiment had two major goals: the assessment of the accuracy of computational
methods to predict protein coding genes; and the overall assessment of the completeness of the
current human genome annotations as represented in the ENCODE regions. For the
computational prediction assessment, eighteen groups contributed gene predictions. We
evaluated these submissions against each other based on a ‘reference set’ of annotations
generated as part of the GENCODE project. These annotations were not available to the
prediction groups prior to the submission deadline, so that their predictions were blind and an
external advisory committee could perform a fair assessment.

Results: The best methods had at least one gene transcript correctly predicted for close to 70%
of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into account
alternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotide
level, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programs
relying on mRNA and protein sequences were the most accurate in reproducing the manually
curated annotations. Experimental validation shows that only a very small percentage (3.2%) of
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Background
During the first decade of the 21st century the sequencing of

whole genomes has become a routine biological practice. The

list of chordates with assembled genome sequences now

numbers nearly two dozen, while the total number of

sequenced bacteria, archea, and eukaryota is approaching

2,000. The genome sequence is said to be an organism’s

blueprint: the set of instructions dictating its biological

traits. In higher eukaryotic organisms, however, these traits

are apparently encoded by only a small fraction of the

genome sequence that is functional (possibly less than 5% in

the case of the human genome). The genes are a major

component of this functional sequence. While there is

growing evidence for many functional non-protein coding

RNA genes, such as miRNAs and snoRNAs, the largest and

best studied subset of the human genes comprise the protein

coding genes, genes specifying the amino acid sequence of

the proteins. Thus, locating the genes in a newly sequenced

genome is a first, essential step toward understanding how

the organism translates its genome sequence into biological

function. This paper focuses on the identification of protein

coding genes, if not otherwise noted.

Maybe to the surprise of many, five years after the first drafts

of the human genome sequence became available [1,2], and

nearly three years after the announcement of the completion

of the sequencing [3], a complete set of protein coding genes

encoded in the human genome does not exist. One reason for

the lack of a complete gene set is that an appropriately

rigorous standard has been set for the human genome: every

gene, exactly correct. And as shown in this paper, only very

few of the human genes seem to be missing from the

computational predictions, but the exact genomic structure of

these genes is estimated to be correct for only 50% of the

predicted genes. In other words, only very few protein coding

genes appear to have been totally missed today. Nevertheless,

getting the entire genomic structure of a protein coding gene

right is still a very difficult task, compounded by the large

amount of alternative splicing characterizing human genes.

Our assessment here tries to quantify the status of these

differences in the current human genome annotations and

computational prediction programs.

Automatic genome annotation methods
To date, accurate automatic annotation of the human genome

(and of other genomes with significant cDNA libraries)

strongly relies on an elaborate mapping of these known gene

sequences onto the genome sequence. This method of

genome annotation requires high quality and a nearly

complete set of cDNA sequences. Datasets trying to achieve

this goal, but are still works in progress, are the RefSeq

database [4] and those currently being produced by the

Mammalian Gene Collection (MGC) [5]. As the MGC project

- and similar efforts to deepen the coverage of the fraction of

the human genome being transcribed - continues, cDNA

mapping based gene identification methods are becoming

increasingly accurate. While few organisms will have the rich

cDNA libraries that are currently being developed for the

human genome, the availability of protein sequence data

from evolutionarily close relatives has been effectively used

in addition to cDNA data for automatic gene prediction

across many of the currently sequenced mammals. The most

commonly used annotation pipelines are the ENSEMBL

pipeline [6], the UCSC genome browser’s [7] Known Genes

(KG II) pipeline, and the Gnomon pipeline at the NCBI [8].

It remains unclear, however, what fraction of the low and

specifically expressed transcripts and of alternatively spliced

isoforms can be effectively recovered from cDNA libraries.

Additionally, orthologous proteins from other species may

not align genes that are rapidly evolving. For these reasons,

current cDNA and protein-based methods are likely to

provide an incomplete picture of the protein coding gene

content of the human genome. These methods will be less

accurate for genomes with fewer expressed sequences and

comparative options.

For automatic annotation of genomes without deep

expressed sequence libraries, any available cDNA or

expressed sequence tag (EST) based annotation is often

complemented by dual (or multiple) genome comparative

predictions. These predictions are obtained by means of

the analysis of the patterns of sequence conservation

between genome sequences of evolutionarily related

organisms. As examples, programs such SGP2 [9], SLAM

[10,11] and TWINSCAN [12,13] have contributed efficiently

to the annotation of a number of vertebrate genomes,

including mouse [14], rat [15], and chicken [16]. This type

of comparative-based automatic gene prediction can

produce highly accurate gene sets when the sequence of

related species is available, but few ESTs have been

sequenced, such as the case with the fungus Cryptococcus

neoformans [17].
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the selected 221 computationally predicted exons outside of the existing annotation could be
verified.

Conclusions: This is the first such experiment in human DNA, and we have followed the
standards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe the
results presented here contribute to the value of ongoing large-scale annotation projects and should
guide further experimental methods when being scaled up to the entire human genome sequence.



Occasionally, the so-called single genome ab initio

predictors - programs that use statistical sequence patterns,

such as the coding reading frame, codon usage or splice site

consensus sequences, for gene identification - are also used

to complement cDNA and comparative based methods.

When no genome exists at the appropriate phylogenetic

distance, and the cDNA or EST coverage of the transcrip-

tome is shallow, single genome ab initio predictions play an

important role in genome annotation, such as those

obtained, for example, by the programs GENSCAN [18] and

GENEID [19] in the initial annotation of the genome of the

fish Tetraodon nigroviridis [20].

In summary, despite substantial progress in the past decade

and the existence of highly accurate gene sets in a number of

organisms, current gene identification methods are, as yet,

not able to produce a complete catalogue of the set of protein

coding genes in higher eukaryotic genomes (see [21] for a

recent review).

Assessing the accuracy of automatic genome
annotation
Over the past quarter century, a large number of automated

gene prediction algorithms have been introduced, which can

be loosely grouped based on the general strategies described

above. These methods vary widely in the details of their

implementation and in the number and location of predicted

protein coding genes. Thus, the issue of evaluating the

accuracy of the predictive methods has been recurrent within

the field of computational gene prediction. The early work of

Burset and Guigó [22], and the subsequent analysis of Bajic

[23], Baldi et al. [24], Guigó et al. [25] , Rogic et al. [26] and

others, provide a framework - a set of metrics and a protocol -

to consistently evaluate gene prediction methods. Essentially,

a set of well-annotated sequences are used as a test set. The

gene prediction programs are run on these sequences, and

the predictions obtained are compared with the annotations.

A number of measures are computed to evaluate how well the

predictions reproduce the annotation. Typically, predictions

are evaluated at nucleotide, exon and gene levels. At all three

levels, two basic measures are computed: sensitivity, the

proportion of annotated features (nucleotide, exon, gene)

that have been predicted; and specificity, the proportion of

predicted features that is annotated. One problem with this

approach is that, until recently, very few large genomic

sequences were well annotated and only the coordinates of

the coding exons within a gene could be considered. More-

over, because methods did not exist to predict alternative

splicing, the test sets used to evaluate computational gene

predictions consisted of a few hundred short sequences

encoding single genes from which alternatively spliced

isoforms had been removed. This led to an oversimplification

of the problem and, in turn, to an overestimation of the real

accuracy of the programs [25]. Furthermore, many programs

were developed in-house and were, therefore, not accessible

for independent evaluation.

To address the problem of independent, objective assess-

ment of the state-of-the-art in automated tools and tech-

niques for annotating large contiguous genomic DNA

regions and eventually complete genomes, a first Genome

Annotation Assessment Project (GASP1) was organized in

1999 [27]. In many ways, GASP1 was set up similarly to

CASP (Critical Assessment of Techniques for Protein

Structure Prediction) [28]. In short, at GASP1, a genomic

region in Drosophila melanogaster, including auxiliary

training data, was provided to the community and gene

finding experts were invited to send the annotation files they

had generated to the organizers before a fixed deadline.

Then, a set of standards were developed to evaluate submis-

sions against the later published annotations [29], which

had been withheld until after the submission stage. Next, the

evaluation results were assessed by an independent advisory

team and publicly presented at a workshop at the Intelligent

Systems in Molecular Biology (ISMB) 1999 meeting. This

community experiment was then published as a collection of

methods and evaluation papers in Genome Research [27].

The ENCODE Genome Annotation Assessment
Project
Inspired by GASP1, and within the context of the

ENCyclopedia Of DNA Elements (ENCODE) project, we

organized the ENCODE GASP (EGASP) community experi-

ment, which followed closely the model of its predecessor,

GASP1 [27]. The ENCODE project was launched two years

ago by the National Human Genome Research Institute

(NHGRI) with the aim of identifying all functional elements

in the genome sequence through the collaborative effort of

computational and laboratory-based scientists [30]. The

pilot phase of the project is focused on a selected 30 Mb of

sequence within 44 selected regions (Table 1) across the

human genome, which represents approximately 1% of the

genome sequence.

Within the ENCODE project, the GENCODE consortium

[31] was set up. This group, in collaboration with the

HAVANA team [32] at the Sanger Institute, has produced a

high quality annotation of the gene content of the ENCODE

regions through a combined manual, computational and

experimental strategy [33]. The EGASP experiment was

organized with the main goal of evaluating how well auto-

matic methods are able to reproduce this annotation

produced by GENCODE. A second goal of EGASP was to

assess the completeness of the GENCODE annotation and,

in this regard, EGASP was designed such that, in a follow-up

step, a number of computational gene predictions not

included in GENCODE were tested experimentally.

In what follows, we first describe the organization and

structure of the EGASP experiment. We then present the

results of the evaluation of the submitted predictions against

the GENCODE annotation, and finally we present the results

of the experimental verification of the novel predictions.
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The EGASP experiment
Data: the benchmark sequence of 44 selected ENCODE regions
Description of the sequence
The 44 ENCODE regions represent 30 Mb (approximately

1%) of the human genome [30]. Approximately half of the

sequence corresponds to a set of 14 manually selected

regions including well-studied genes and for which a

significant amount of prior comparative sequence data was

available. The remaining 30 genomic regions were chosen

based on a stratified random sampling based on two

measures: gene density (from previous annotations) and

non-exonic conservation with the mouse genome sequence.

Briefly, each portion of the human genome sequence was

classified as high, medium, or low if it fell in the top 20%, the

middle 30%, or the bottom 50%, respectively, of the above

two measures. Several 500 kb sequences were chosen from

each of the nine classifications created by this stratification

procedure.

Table 1 lists the 44 selected sequences within the ENCODE

region and classifies them based on random/manual

selection, previously known gene density and non-exonic

conservation to the mouse genome. It also describes the size

differences between the sequences. Information about the

criteria used to select the regions and their characteristics

can be found on the ENCODE website [34]. The sequences of

the ENCODE regions (as well as multiple functional

annotations) can be downloaded from the UCSC ENCODE

browser [35].

We defined the sequences used for the EGASP experimental

evaluation by taking advantage of the prior work of the

HAVANA team [32], which had previously comprehensively

annotated and released annotation for several human

chromosomes [36-42]. Updated annotation for the 13

ENCODE regions on these chromosomes was released in

January 2005 as a ‘training’ set for the EGASP experiment.

The manual annotation of the other 31 ENCODE regions was

held back from release until after the automated gene

predictions had been received. The 31 EGASP test regions

represent a total of 21.6 million base-pairs (bp) of sequence.

Further information is available at the GENCODE website

[31].

The reference gene set: the GENCODE annotations
The ENCODE regions had been subjected to an exhaustive

annotation strategy prior to EGASP by the HAVANA team.

In short, the annotators initially build coding transcripts

manually based on alignments of known mRNA, EST and

protein sequences to the human genome. The initial gene

map delineated in this way was then experimentally refined

through reverse transcription (RT)-PCR and rapid amplifi-

cation of cDNA ends (RACE), which essentially confirmed the

existence of the mRNA sequences of the hypothesized genes.

Finally, the initial annotation was refined by the annotators

based on these experimental results. While the initial

annotation by the HAVANA team is augmented by some

experimentally verified ab initio and dual-genome gene

predictions without a priori transcript sequence support,

these constitute a marginal fraction of the entire GENCODE

annotation set. The strategy is described in detail elsewhere in

this issue [33]. We used this final annotation as the reference

set for EGASP, and refer to it as the GENCODE annotation.

The protein coding GENCODE annotation for all 44

ENCODE regions consists of 2,471 total transcripts repre-

senting 434 unique protein coding gene loci. There are 1,097

coding transcripts that code for 993 unique proteins. The
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Table 1

The 44 selected sequences within the ENCODE region

Random picks
Mouse homology

Sequence Manual Gene 
set picks Low Medium High density

Training ENm006 ENr132 ENr231 ENr333 High

ENr232 ENr334

ENm004 - ENr222 ENr323 Medium

ENr223 ENr324

- ENr111 - - Low

ENr114

Test ENm002 ENr131 ENr233 ENr331 High

ENm005 ENr133 ENr332

ENm007

ENm008

ENm009

ENm010

ENm011

ENm001 ENr121 ENr221 ENr321 Medium

ENm003 ENr122 ENr322

ENm012 ENr123

ENm013

ENm014

- ENr112 ENr211 ENr311 Low

ENr113 ENr212 ENr312

ENr213 ENr313

ENCODE sequences were assigned to either the training or the test set
based on annotation data availability (see the section ‘The EGASP
experiment’). For the performance evaluation, only the test set sequences
were used. The numeric code for the randomly picked sequence names
correspond to the non-exonic conservation with the mouse genome, the
density of previously identified genes, and the sequence number,
respectively; numbers vary from 1 (low), to 3 (high). Manually selected
sequences range in size from 500 kbp to 2 Mbp, while random regions are
500 kbp. The selection and stratification criteria for all the sequences is
described at the ENCODE project web site [34].



annotation identifies 5.7 total transcripts per locus, with an

average of 2.52 coding transcripts. Of the 434 coding loci,

393 contain multi-exon transcripts. In line with earlier

estimates [43], 86% of the multi-exon loci exhibit alternative

splicing in either the coding or non-coding transcripts. Sixty

percent of multi-exon loci have alternative coding

transcripts. See [33] in this issue for additional details.

Incomplete annotation
The GENCODE annotation includes incomplete genes and

transcripts. These are caused both by the truncation of some

features at the end of the ENCODE regions and by transcript

annotations that may be incomplete due to lack of evidence.

In the rare case that an exon crossed an ENCODE region

boundary, the exon was truncated at the ENCODE region

boundary in both the annotations and the predictions to

ensure that the nucleotide level evaluation statistics were

computed correctly (see Materials and methods).

EGASP: a community experiment
To determine an automatic method’s ability to reproduce the

GENCODE annotation, we organized EGASP in the follow-

ing way: In January 2005, the GENCODE annotation for 13

of the 44 ENCODE regions (the ‘training regions’ defined

above) was publicly released. With the release of this

annotation, EGASP was officially announced: gene and other

DNA feature prediction groups world-wide were asked to

submit genome annotations on the remaining 31 ENCODE

regions, for which the GENCODE annotations would not be

released until the deadline for submission expired. Partici-

pating groups had access to the annotation of the 13 training

regions, as well as to the sequences and all additional

publicly available data for all 44 ENCODE regions. No other

pre-defined and pre-selected auxiliary data, such as cDNA

databases, EST sequences or other genome alignments, were

given to the submitters. However, many of the 31 test

regions had been previously and extensively annotated by

other groups. For example, ENm001, the greater cystic

fibrosis transmembrane receptor (CFTR) region, has been

extensively studied [44].

Participants were asked to submit their genome annotations

on the 31 ENCODE test regions, using whatever methods and

data were available to them. To be able to better compare

different DNA feature prediction methods, we predefined the

following prediction categories and asked the submitters to

indicate in which category they were submitting: methods

using any type of available information; single-genome ab

initio methods; EST-, mRNA-, and protein-based methods;

dual- or multiple-genome based methods; methods predic-

ting unusual genes (non-canonical splicing, short intron-less

genes, and so on); and exon-only predictions.

Finally, we allowed an extra category (category 7) for methods

predicting other annotation features, including pseudogenes

and promoters. Bajic et al. [45] have conducted a compre-

hensive evaluation of the promoter predictions and see

Zheng and Gerstein [46] for a paper on pseudogenes.

A web server (Figure 1) [47] was set up to collect all the

submissions and each group was able to submit predictions

for more than one category. The submitted predictions, as

well as the GENCODE annotations for the test sequence set,

were kept confidential until the submission deadline on 15

April 2005. The format for submissions was the Gene

Transfer Format (GTF) [48]. An advisory committee (Table 2)

was formed to oversee the submission and evaluation

processes and provide advice for the evaluation.

By the submission deadline on 15 April 2005, 18 groups had

submitted 30 prediction sets (Table 3). All the submitted

predictions together with the annotations are available

through the GencodeDB Genome Browser (Figure 2) [49], as

well as through the UCSC Genome Browser (‘EGASP’

tracks). They can also be downloaded from the ftp server as

plain text GTF files [50].
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Figure 1
A screenshot of the EGASP submission server [47]. The server was user-
authenticated in order to keep the submitted predictions in private
before the EGASP workshop. Initially, there were eight suggested
submission categories. However, after the workshop, category 5 was not
used at all and removed. Promoter and pseudogene predictions from
category 8 were then kept as a new category 7, which is not analyzed in
this paper (see [45] instead).



Predictions were compared with the reference set

GENCODE annotations and assessed by members of the

advisory and organizing committees (Table 2), all selected as

independent experts in this field. The results of this

assessment were presented at a workshop that took place at

the Wellcome Trust Genome Campus in Hinxton, UK, on 6

and 7 May 2005. The advisory and organizing committees

met on 4 May for a pre-evaluation of the predictions, and to

determine a number of summary statistics. Each of the

submitting groups was invited to present their methods and

submissions at the workshop with a focus on what went right

and what went wrong. In total, 16 groups were represented

at the workshop. The final prediction evaluation results from

the workshop are discussed in the next section.

Results
The evaluation of the predictions against the annotation
The protocol to evaluate the predictions
The main goal of the EGASP experiment was to evaluate the

ability of automatic methods of genome annotation to repro-

duce the manual and experimental annotation of the

ENCODE regions described above. By this standard, a

perfect prediction strategy would produce annotation com-

pletely consistent with the GENCODE annotation.

For the purposes of evaluating the submitted predictions, we

considered only the results for the 31 test ENCODE regions,

which were the ‘blinded’ regions for which no GENCODE

annotations were available during the submission phase.

Potential biases introduced by this restriction will be

addressed below. The statistics reported are computed

globally for the test region, which means that the total

number of prediction successes and failures for all 31 regions

are compared directly to the total number of annotated

exons, transcripts and genes for all 31 regions.

We evaluated each set of submitted predictions at four

distinct levels: nucleotide accuracy, exon accuracy, trans-

cript accuracy, and gene accuracy. At the earlier GASP1

workshop, transcript accuracy levels were not assessed due

to the limited transcript information and the lower levels of

alternatively spliced transcripts in Drosophila melanogaster

[27]. For this study we also made a distinction between the

statistics calculated for the coding portions of the mRNA

S2.6 Genome Biology 2006, Volume 7, Supplement 1, Article S2 Guigó et al. http://genomebiology.com/2006/7/S1/S2

Genome Biology 2006, 7(Suppl 1):S2

Table 2

EGASP organizing and advisory committees

Organizers Advisory board

Jennifer Ashurst (Wellcome Trust Sanger Institute) Michael Ashburner (Cambridge University)

Ewan Birney (European Bionformatics Institute) Vladimir B Bajic (Institute for Infocomm Research)

Peter Good (National Human Genome Research Institute) Tom Gingeras (Affymetrix, Inc.)

Roderic Guigó (Institut Municipal d’Investigació Mèdica) Suzanna Lewis (Berkeley)

Tim Hubbard (Wellcome Trust Sanger Institute) Martin Reese (Omicia, Inc.)

Figure 2
The GencodeDB Genome Browser. A screenshot of the GencodeDB
Genome Browser [49], displaying the annotation features on 100 Kbp
from the ENm001 region (chr7: 116,074,892-116,174,891). The
annotations along with the predicted genes by each submitted method
were made publicly available together with further experimental evidence,
such as TARs/transfrags.
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Table 3

Summary of programs used to determine predictions submitted for each EGASP category

Submission category Program Affiliation Reference

1 (AUGUSTUS-any) AUGUSTUS Georg-August-Universität, Göttingen [58]

2 (AUGUSTUS-abinit)

3 (AUGUSTUS-EST)

4 (AUGUSTUS-dual)

1 FGENESH++ Softberry Inc. [56]

1 JIGSAW The Institute for Genomic Research (TIGR) [59]

1 (PAIRAGON-any) PAIRAGON and NSCAN_EST Washington University, Saint Louis (WUSTL) [57]

3 (PAIRAGON+NSCAN_EST)

2 GENEMARK.hmm Georgia Institute of Technology [60]

2 GENEZILLA TIGR [81]

3 ACEVIEW National Center for Biotechnology Information (NCBI) [52]

3 ENSEMBL The Wellcome Trust Sanger Institute (WTSI) and [64]
European Bioinformatics Institute (EBI)

3 EXOGEAN Ecole Normale Superieure, Paris [62]

3 EXONHUNTER University of Waterloo [63]

4 ACESCAN* Salk Institute [82]

4 DOGFISH-C WTSI [67]

4 NSCAN WUSTL [57]

4 SAGA University of California at Berkeley [66]

4 MARS WUSTL - EBI [65]

5 GENEID-U12 Institut Municipal d’Investigació –

5 SGP2-U12 Mèdica, Barcelona

6 ASPIC† Università degli Studi di Milano [83]

6 (AUGUSTUS-exon) AUGUSTUS Georg-August-Universität, Göttingen [58]

6 CSTMINER‡ Università degli Studi di Milano [84]

6 DOGFISH-C-E§ WTSI [67]

6 SPIDA EBI [85]

6 UNCOVER§ Duke University [86]

1 CCDSGene UCSC tracks [7] [55]

1 KNOWNGene [54]

1 REFSEQ (REFGene) [4]

2 GENEID [19]

2 GENSCAN [18]

3 ACEMBLY [52]

3 ECGene [53]

3 ENSEMBL (ENSGene) [6]

3 MGCGene [5]

4 SGP2 [9]

4 TWINSCAN [12,13]

- CODING 20050607 GENCODE annotation [33]

- GENES 20050607

A complete listing of the number of features for each sequence obtained by each method is available at the Supplementary material web page [51]. *The
ACESCAN group submitted results only for the training set and, therefore, has not been evaluated. †ASPIC only provided results for the training regions
and, therefore, has not been evaluated. Moreover, ASPIC submitted only intron annotations and should be considered in category 6. ‡CSTMINER
predicts coding regions but does not provide strand information. §DOGFISH-C-E and UNCOVER predict only novel exons; this makes it difficult to
compare these methods with the others in the same category.



transcripts (coding sequence (CDS) evaluations) and the

mRNA transcripts as a whole (mRNA evaluations).

For each of the four levels, we calculated the sensitivity and

specificity of the predictions as defined below. In some

cases, we have also computed other standard measures

previously used in the gene finding literature (see [22-27]).

Many additional measures of accuracy have been computed

on the EGASP predictions, and they are available through

the Supplementary Material web page [51].

Non-EGASP entries
To compare the EGASP results to existing community stan-

dards, we also evaluated the performance of 11 gene annota-

tion tracks published in the UCSC Browser [7] just before the

start of the EGASP workshop. These tracks included two

single genome ab initio prediction methods (GENSCAN [18]

and GENEID [19]) and two dual-genome prediction methods

(TWINSCAN [12,13] and SGP2 [9]). We also considered four

methods we classified as using expressed sequence (ENSGENE

[6], ACEMBLY [52], MGCGENES [5], and ECGENE [53])

and three we classified as using any information (UCSC

‘KNOWN’ genes [54], REFSEQ genes [4], and CCDSGENES

[55]).

Measures used for evaluating predictions: definitions
Nucleotide level accuracy is a comparison of the annotated

nucleotides with the predicted nucleotides. Individual

nucleotides appearing in more than one transcript in either

the annotation or the predictions are considered only once

for the nucleotide level statistics (Figure 3a). Nucleotide

predictions must be on the same strand as the annotations to

be counted as correct. At the nucleotide level, sensitivity (Sn)

is the proportion of annotated nucleotides (as being coding

or part of an mRNA molecule) that is correctly predicted,

and specificity (Sp) the proportion of predicted nucleotides

(as being coding or part of an mRNA molecule) that is so

annotated. As a summary measure, we have computed either

the simple average of these two measures, or the correlation

coefficient between the annotated and the predicted

nucleotides (see [22-27]).

The exon level accuracy is calculated with the requirement

that an exon in the prediction must have identical start and

end coordinates as an exon in the annotation to be counted

correct. Only the unique exons in each set are considered

(see Figure 3b for a graphical example of how unique exons

are collected from both the annotation and prediction sets;

also see [22-27] for more details on these definitions). At the
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Figure 3
Gene Feature Projection for evaluation. The process of projecting genic features into unique nucleotide and exon coordinates in order to compute the
accuracy values (see text for details).

EVALUATION AT NUCLEOTIDE LEVEL EVALUATION AT EXON LEVEL(a) (b)

ANNOTATION SET PREDICTION SET TRUE POSITIVES FALSE POSITIVES FALSE NEGATIVES



exon level, sensitivity is computed as the proportion of

annotated exons correctly predicted, and specificity as the

proportion of predicted exons that is annotated. As a

summary measure, we have computed the average of these

two measures. In addition, we have computed ‘missing

exons’ (MEs), the proportion of annotated exons totally

missed by the predictions (that is, there is no overlap by a

predicted exon by at least 1 bp), and ‘wrong exons’ (WEs),

the proportion of predicted exons not overlapping annotated

exons by at least 1 bp. A subset of predicted exons falling in

regions annotated as intergenic have been tested experi-

mentally (see the section ‘The experimental test of unanno-

tated predictions’ below for details). Nucleotide and exon

level accuracy are calculated for the CDS evaluation and for

the mRNA evaluation. Comparison of the results of these

evaluation strategies highlights the differences for those

programs that attempt to predict untranslated regions

(UTRs) of genes.

The transcript and gene level accuracy measures are more

stringent. We consider a transcript accurately predicted for

the CDS evaluation if the beginning and end of translation

are correctly annotated and each of the 5’ and 3’ splice sites

for the coding exons are correct. Similarly, for the mRNA

evaluation, a transcript is counted correct if all of the exons

from the start of transcription to the end of transcription are

correctly predicted. Thus, at the transcript level, sensitivity

is the proportion of annotated transcripts that is correctly

predicted, and specificity is the proportion of predicted

transcripts that is correct. A gene is counted correct if at

least one transcript in the locus is correct as defined above,

and sensitivity and specificity are defined accordingly. Using

these definitions, transcript accuracy is the most stringent

measure for both the CDS evaluation and for the mRNA

evaluation (Figure 4).

The accuracy of the prediction methods must be considered

in the context of the annotation, which contains a significant

fraction of incomplete transcripts. In the case of an

incomplete transcript, we made the distinction that if a

prediction is completely consistent with the annotation, it

will be counted correct. For example, if the annotation

contains an incomplete transcript with three exons and a

prediction method includes a transcript with these exons

plus an additional exon, we consider the prediction to be

completely consistent with the annotation and count it as a

correct prediction. For the CDS evaluation, if the annotation

contains a complete coding transcript, it must be predicted

correctly and no additional exons are allowed (Figure 4).

Global results and trends
The evaluation statistics discussed above for the CDS

evaluation are provided in Tables 4 and 5 and for the mRNA

evaluation in Table 6, which only lists methods that predict

full mRNA transcripts. Figures 5-8 display the results for the

CDS evaluation at the nucleotide, exon, transcript and gene

levels. Values are given for programs in categories 1 to 4 (see

previous section and Table 3), which constitute the bulk of

the submitted predictions. The accuracies of the programs in

other categories are often not strictly comparable and,

therefore, not shown in these figures. They are, however,

given in the Supplementary material [51]. The top panel in

Figures 5-8 is a dotplot of sensitivity versus specificity,

where each dot represents the performance of one program.

The bottom panel includes a boxplot for each program

displaying the average of sensitivity and specificity (that is,

(Sn + Sp)/2) for the given program on each of 27 test

sequences (see Materials and methods). Four test sequences

(ENr112, ENr113, ENr311, ENr313) were removed from the

original set of 31 because they did not contain any annotated

protein coding genes and, therefore, sensitivity and

specificity could not be computed for them. The dotplot

intends to capture the global balance between sensitivity and

specificity for each program, while the boxplots provide the

dispersion of the accuracy of each program predictions

across test sequences. At similar average accuracies,

programs providing more consistent predictions across

sequences may be preferable since their behavior can be

better anticipated.

No annotation strategy produced perfect predictions, but

several clear trends emerged from the evaluations and are

summarized here.
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Figure 4
Gene transcript evaluation. Computing sensitivity and specificity at
transcript level: (a) complete transcript annotation; (b) incomplete
transcript annotation. Transcripts marked with an asterisk are considered
‘consistent with the annotation’ and will be scored as correct.
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Table 4

CDS assessment: summary of accuracy measures for CDS features at the nucleotide and exon levels

Nucleotide Exon

NSn NSp N CC ESn ESp ME WE

Category 1

AUGUSTUS-any 94.42% 82.43% 0.88 74.67% 76.76% 8.25% 16.29%

FGENESH++ 91.09% 76.89% 0.83 75.18% 69.31% 9.73% 24.64%

JIGSAW 94.56% 92.19% 0.93 80.61% 89.33% 6.22% 7.78%

PAIRAGON-any 87.77% 92.78% 0.90 76.85% 88.91% 11.18% 6.82%

Category 2

AUGUSTUS-abinit 78.65% 75.29% 0.76 52.39% 62.93% 29.09% 24.82%

GENEMARK.hmm-A 78.43% 37.97% 0.53 50.58% 29.01% 27.86% 63.27%

GENEMARK.hmm-B 76.09% 62.94% 0.69 48.15% 47.25% 31.77% 40.68%

GENEZILLA 87.56% 50.93% 0.66 62.08% 50.25% 19.14% 41.93%

Category 3

ACEVIEW 90.94% 79.14% 0.84 85.75% 56.98% 4.38% 16.69%

AUGUSTUS-EST 92.62% 83.45% 0.88 74.10% 77.40% 9.01% 15.61%

ENSEMBL 90.18% 92.02% 0.91 77.53% 82.65% 9.99% 9.22%

EXOGEAN 84.18% 94.33% 0.89 79.34% 83.45% 9.88% 5.06%

EXONHUNTER 90.46% 59.67% 0.73 64.44% 41.77% 14.29% 50.94%

PAIRAGON+NSCAN_EST 87.56% 92.77% 0.90 76.63% 88.95% 11.51% 6.85%

Category 4

AUGUSTUS-dual 88.86% 80.15% 0.84 63.06% 69.14% 16.82% 19.60%

DOGFISH 64.81% 88.24% 0.74 53.11% 77.34% 32.67% 11.70%

MARS 84.25% 74.13% 0.78 65.56% 61.65% 20.26% 26.10%

NSCAN 85.38% 89.02% 0.87 67.66% 82.05% 17.11% 10.93%

SAGA 52.54% 81.39% 0.65 38.82% 50.73% 40.48% 27.85%

UCSC Tracks

ACEMBLY 96.43% 58.47% 0.74 84.66% 38.32% 2.71% 28.55%

CCDSgene 56.87% 99.52% 0.75 51.95% 97.75% 40.38% 0.27%

ECgene 96.36% 47.30% 0.66 86.22% 35.08% 2.64% 45.92%

ENSgene 91.39% 91.92% 0.92 77.71% 82.39% 9.80% 9.21%

GENEID 76.77% 76.48% 0.76 53.84% 61.08% 27.86% 27.26%

GENSCAN 84.17% 60.60% 0.71 58.65% 46.37% 19.50% 42.91%

KNOWNgene 89.10% 93.61% 0.91 78.11% 82.28% 10.27% 4.30%

MGCgene 44.06% 97.56% 0.65 42.95% 93.61% 49.28% 2.68%

REFgene 85.34% 98.50% 0.92 73.23% 94.67% 15.38% 1.22%

SGPgene 82.81% 82.20% 0.82 60.56% 65.16% 19.36% 22.85%

TWINSCAN 78.16% 84.59% 0.81 58.43% 73.11% 24.64% 16.30%

CC, correlation coefficient.
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Table 5

CDS assessment at the transcript and gene levels

Transcript Gene

TSn TSp GSn GSp Ratio CDS/UTR

Category 1

AUGUSTUS-any 22.65% 35.59% 47.97% 35.59% 100.00%

FGENESH++ 36.21% 41.61% 69.93% 42.09% 78.25%

JIGSAW 34.05% 65.95% 72.64% 65.95% 100.00%

PAIRAGON-any 39.29% 60.34% 69.59% 61.32% 62.92%

Category 2

AUGUSTUS-abinit 11.09% 17.22% 24.32% 17.22% 100.00%

GENEMARK.hmm-A 6.93% 3.24% 15.20% 3.24% 100.00%

GENEMARK.hmm-B 7.70% 7.91% 16.89% 7.91% 100.00%

GENEZILLA 9.09% 8.84% 19.59% 8.84% 100.00%

Category 3

ACEVIEW 44.68% 19.31% 63.51% 48.65% 49.15%

AUGUSTUS-EST 22.50% 37.01% 47.64% 37.01% 100.00%

ENSEMBL 39.75% 54.64% 71.62% 67.32% 65.77%

EXOGEAN 42.53% 52.44% 63.18% 80.82% 59.60%

EXONHUNTER 10.48% 6.33% 21.96% 6.33% 100.00%

PAIRAGON+NSCAN_EST 39.29% 60.64% 69.59% 61.71% 62.89%

Category 4

AUGUSTUS-dual 12.33% 18.64% 26.01% 18.64% 100.00%

DOGFISH 5.08% 14.61% 10.81% 14.61% 100.00%

MARS 15.87% 15.11% 33.45% 24.94% 100.00%

NSCAN 16.95% 36.71% 35.47% 36.71% 79.80%

SAGA 2.16% 3.44% 4.39% 3.44% 100.00%

UCSC Tracks

ACEMBLY 33.90% 7.96% 54.39% 21.24% 48.56%

CCDSgene 28.97% 85.58% 55.41% 89.39% 100.00%

ECgene 56.86% 8.84% 79.05% 12.42% 46.11%

ENSgene 40.52% 54.09% 73.99% 68.30% 65.62%

GENEID 4.78% 8.78% 10.47% 8.78% 100.00%

GENSCAN 7.40% 10.13% 15.54% 10.13% 100.00%

KNOWNgene 43.45% 46.93% 77.03% 72.79% 60.03%

MGCgene 23.73% 78.24% 49.32% 82.56% 63.43%

REFgene 41.91% 75.21% 77.03% 82.76% 61.82%

SGPgene 8.17% 12.59% 17.57% 12.59% 100.00%

TWINSCAN 10.63% 20.25% 22.30% 20.25% 100.00%

The ratio CDS/UTR was obtained by summing up all the coding exons’ lengths and dividing by the sum of all the exons’ lengths. The ratio CDS/UTR for
the annotations is 36.78%.



The prediction methods that used expressed sequence infor-

mation (category 3) and those that used any information

(category 1 prediction methods often used expressed sequence

information) were generally the most accurate for all

measures.

The three best category 4 dual-genome methods (NSCAN,

MARS, and AUGUSTUS-dual) were more accurate than the

category 2 single genome ab initio prediction methods.

At the nucleotide level, JIGSAW and ENSEMBL both

achieved greater than 90% for both sensitivity and specificity

for the CDS evaluation, while several other methods scored

greater than 80% for both sensitivity and specificity on the

same measure, including the NSCAN and AUGUSTUS dual-

genome methods (Figure 5). For the mRNA evaluation,

ACEVIEW reached 88% sensitivity at 79% specificity, while

ENSEMBL and EXOGEAN were more specific with 95% and

94%, respectively, but at much lower sensitivities of 61% and

60%, respectively.

At the exon level, the most accurate predictor of coding

exons was JIGSAW with greater than 80% sensitivity while

maintaining nearly 90% specificity. ACEVIEW was the most

sensitive prediction method for all exons (coding and non-

coding) with greater than 85% (CDS) and 64% (mRNA) exon

sensitivity while still being reasonably specific (Figure 6).

At the transcript level, no prediction method correctly

identified greater than 45% of the coding transcripts exactly

(see sensitivity in Figure 7).

At the gene level, using the measure of averaged sensitivity

and specificity, the most accurate gene level predictions in

the CDS evaluation were produced by EXOGEAN followed

by JIGSAW and ENSEMBL. JIGSAW and ENSEMBL were

the only two methods with greater than 70% gene level

sensitivity. Of the two, JIGSAW was slightly more sensitive,

while ENSEMBL was slightly more specific. EXOGEAN’s

specificity was higher than 80%, which is more than 13%

higher than any other program (Figure 8; Table 5).

Relatively few prediction methods are able to predict

multiple transcripts per gene locus. These include four

expressed sequence methods from category 3

(PAIRAGON+NSCAN_EST, EXOGEAN, ACEVIEW, and

ENSEMBL), FGENESH++ and PAIRAGON-any from

category 1, and MARS from category 4.
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Table 6 

mRNA assessment: summary of accuracy measures of mRNA features at the nucleotide and exon levels

Nucleotide Exon

NSn NSp N CC ESn ESp ME WE

Category 1

FGENESH++ 48.87% 81.16% 0.62 35.84% 58.41% 19.20% 22.84%

PAIRAGON-any 56.31% 89.36% 0.70 41.23% 74.93% 15.83% 7.95%

Category 3

ACEVIEW 88.08% 79.47% 0.83 64.16% 61.18% 3.60% 10.41%

ENSEMBL 61.61% 95.26% 0.76 41.61% 73.41% 12.84% 7.09%

EXOGEAN 60.58% 94.73% 0.75 48.87% 76.29% 10.38% 4.16%

PAIRAGON+NSCAN_EST 56.22% 89.35% 0.70 41.11% 74.98% 16.06% 7.98%

Category 4

NSCAN 39.55% 78.69% 0.55 32.41% 65.25% 26.10% 14.69%

UCSC Tracks

ACEMBLY 91.94% 53.98% 0.70 65.51% 44.28% 2.15% 18.26%

ECgene 93.00% 38.68% 0.59 58.17% 34.83% 1.81% 34.31%

ENSgene 62.43% 95.27% 0.77 41.71% 72.65% 12.62% 7.10%

KNOWNgene 65.74% 91.82% 0.77 43.84% 74.57% 13.58% 2.74%

MGCgene 29.17% 96.73% 0.53 21.21% 74.10% 47.16% 2.22%

REFgene 57.51% 97.07% 0.74 38.35% 83.51% 19.28% 0.91%

Only programs that submitted 5’ or 3’ UTR exon annotations besides the CDS parts of exons are shown. CC, correlation coefficient.
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Figure 5
Gene Prediction Accuracy at the nucleotide level: Sensitivity versus specificity. Top panel: dotplot for sensitivity versus specificity at the nucleotide level
for CDS evaluation. Each dot represents the overall value for each program on the 31 test sequences. Bottom panel: boxplots of the average sensitivity
and specificity ((Sn + Sp)/2) for each program. Each dot corresponds to the average in each of the test sequences for which a GENCODE annotation
existed (27 out of 31 sequences).
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Figure 6
Gene Prediction Accuracy at the exon level: Sensitivity versus specificity. Top panel: dotplot for sensitivity versus specificity at the exon level for CDS
evaluation. Each dot represents the overall value for each program on the 31 test sequences. Bottom panel: boxplots of the average sensitivity and
specificity for each program. Each dot corresponds to the average in each of the test sequences for which GENCODE annotation existed.
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Figure 7
Gene Prediction Accuracy at the transcript level: Sensitivity versus specificity. Top panel: dotplot for sensitivity versus specificity at the transcript level
for CDS evaluation. Each dot represents the overall value for each program on the 31 test sequences. Bottom panel: boxplots of the average sensitivity
and specificity for each program. Each dot corresponds to the average in each of the test sequences for which GENCODE annotation existed.
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Figure 8
Gene Prediction Accuracy at the gene level: Sensitivity versus specificity. Top panel: dotplot for sensitivity versus specificity at the gene level for CDS
evaluation. Each dot represents the overall value for each program on the 31 test sequences. Bottom panel: boxplots of the average sensitivity and
specificity for each program. Each dot corresponds to the average in each of the test sequences for which GENCODE annotation existed.
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Most of the methods predict genes that, on average, have

fewer coding exons per gene than the GENCODE annotation

(Figure 9). The only exceptions to this observation are

EXOGEAN, DOGFISH, and MARS, which all predict more

coding exons than the annotation.

Prediction tracks from the UCSC browser were generally

clustered near the EGASP entries for similar categories. At

the transcript level, the BLAT aligned REFSEQ mRNAs

(‘REFgene’) were both more sensitive than all of the

prediction methods except EXOGEAN and ACEVIEW, and

approximately 8% more specific than the best EGASP

entries. The MGC transcripts (‘MGCGene’) and the CCDS

transcripts (‘CCDSgene’) were 10% and 18% more specific at

the transcript level, but had significantly lower sensitivity

than the best EGASP method due to the incomplete nature

of these sets at the time of the workshop.

In general, the accuracy of the programs varied substantially

across test sequences, but some programs appear to behave

more consistently than others (as is reflected in the boxplots

in Figures 5-8).

Programs performed in general better in the training than in

the test sequences, the two exceptions being ACEVIEW from

category 3 and FGENESH++ from category 1 (Figure 10).

No overall trend was observed when comparing performance

between manually placed ENCODE regions and the random

ones (Figure 11). Even though, programs in category 4

performed consistently better in the random picks.

Programs performed clearly better in medium or high gene

dense regions than in regions poor in genes (Figure 12). Only

the category 6 method SPIDA had higher accuracy in regions

of low gene density.

The accuracy of the programs was also related to the level of

conservation of the genomic sequence in the mouse genome,

with programs performing generally better in the test
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Figure 9
Exon counts per gene transcript. A comparison of the number of exons per transcript and coding exons per transcript in the GENCODE annotation of
the 31 test regions and in the predictions. Blue bars show the average number of coding exons per coding transcript for each of the programs in
categories 1, 2, 3, and 4; the blue line shows this for the GENCODE annotation. The number of all exons per transcript in the GENCODE annotation is
shown with a red line. Those programs that predict non-coding exons are noted with red bars. Programs marked with an asterisk predict multiple
transcripts per gene locus.
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sequences showing stronger conservation in the mouse

genome, but the trend was not as strong as with gene density

(Figure 13).

Results by category for the CDS evaluation
Category 1: methods using any type of available information
Four prediction methods were considered in EGASP

category 1. Of these the FGENESH++ pipeline [56], the

PAIRAGON-any pipeline [57], and AUGUSTUS-any [58] are

conceptually similar. Each of these approaches uses

information from both expressed sequences and from ab

initio or de novo gene prediction strategies.

FGENESH++ and PAIRAGON-any consist of an alignment

step followed by de novo prediction in the regions where

there are not alignments. The sensitivity of these two

methods is similar for all levels of the evaluation, but

PAIRAGON-any is significantly more specific. AUGUSTUS-

any uses both the ‘hints’ discovered in its expressed

sequence (category 3) strategy and those discovered in its

dual-genome (category 4) strategy.

Both the AUGUSTUS and the PAIRAGON groups submitted

predictions in categories 1 and 3, allowing us to judge the

value of the additional information that each of the

programs used in producing the category 1 predictions.

Neither program shows a significant increase in predictive

performance in this category over their respective category 3

predictions (see below). For AUGUSTUS-any, this suggests

that its models get very little additional information from the

inclusion of the dual-genome prediction information. For

PAIRAGON-any, the category 1 prediction set included only

two transcripts not included in the category 3 prediction set

(PAIRAGON+NSCAN).

JIGSAW [59] is unlike the other three methods. It uses a

statistical combination of several sources of evidence to

create the best consensus prediction. Considering all the

evaluation measures, JIGSAW is the most accurate category

1 prediction method, although both PAIRAGON-any and

FGENESH++ are more sensitive than JIGSAW at the

transcript level. FGENESH++ and PAIRAGON-any predict

multiple transcripts per gene locus.
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Figure 10
Correlation Coefficient Accuracy for Training and Test Sequences.The correlation coefficient (CC) at the nucleotide level for CDS evaluation for
sequences EN_TRN13 and EN_PRD31 for training and test set sequences. NA, not available; because the submitters did not send their results for the
training set.
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Category 2: single-genome ab initio methods
Three ab initio prediction methods use only the information

found in the human genome sequence. All three methods

only predict coding transcripts and are thus only considered

by the CDS evaluation. Of the three, GENEZILLA is the most

sensitive at the nucleotide and exon levels, while

AUGUSTUS-abinit is the most specific. AUGUSTUS-abinit is

consistently better than the other two at finding the start and

end of translation and is thus both more sensitive and more

specific at both the transcript and the gene level.

There are two variants of the predictions made by (the

human genome version) of the GENEMARK.hmm program

[60]. Data marked GENEMARK.hmm-A were produced and

submitted prior to the deadline and inadvertently used

unmasked genomic sequence (communication at the work-

shop by M Borodovsky). This is also the case for the

GENEZILLA predictions in the single genome category,

which were also created using unmasked sequence. There-

fore, we caution the direct comparison of GENEMARK.hmm-

A and the GENEZILLA results to the results of the other

programs, which in general used masked genomic sequence.

It is well known that gene finding programs do worse on

unmasked sequences due to the high ‘protein-coding-like’

content of repetitive elements, resulting in an increase of the

number of false positive predictions [61]. Data marked

GENEMARK.hmm-B were produced by the same human

genome version of the GENEMARK.hmm algorithm run on

the masked sequence (communication by M Borodovsky),

although this was a post-deadline submission. It is clearly

seen that the specificity values for GENEMARK.hmm are

higher when run on masked sequence due to the significant

decrease in the false positive rate.

Category 3: EST-, mRNA-, and protein-based methods
More submissions were received for category 3 than for any

of the other categories and the type of expressed sequence

information (EST, mRNA, protein sequence) varied among
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Figure 11
Correlation Coefficient Accuracy for manually and randomly selected Sequences. The correlation coefficient (CC) at the nucleotide level for CDS
evaluation for EN_MNLp12 and EN_RNDp19 for manually and randomly selected sequences within the test set.
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the methods, as did the strategy for incorporating the

information. As such, it is not surprising that the methods

have various strengths and weaknesses depending on the

details of the method. For example, ACEVIEW [52] has the

highest transcript sensitivity and predicts an average of 4.05

coding transcripts per gene locus. This is nearly twice as

many transcripts per gene compared to EXOGEAN [62],

which is nearly as sensitive (44.7% and 42.5%, respectively)

and predicts only 2.34 coding transcripts per gene locus.

ACEVIEW also has the highest coding exon sensitivity, but its

high sensitivity comes at a cost of a relatively low specificity.

For the CDS evaluation at the nucleotide level, AUGUSTUS-

EST [58] is the most sensitive program and EXOGEAN is the

most specific. There is little distinction at the nucleotide

level among most of the category 3 programs with the

exception of EXONHUNTER [63], which seems to get less

information from expressed sequences and scores

significantly lower than the other programs.

At the coding exon level, the best programs (EXOGEAN,

PAIRAGON+NSCAN_EST, and ENSEMBL) predict more

than 75% of the exons correctly, while maintaining

specificity greater than 80%. Of these three, EXOGEAN is

the most sensitive, and PAIRAGON+NSCAN_EST is the

most specific. A similar story exists at the transcript level,

where each of these 3 programs predicts more than 39% of

the coding transcripts correctly, with specificity greater than

50%. Again EXOGEAN is the most sensitive (42.5%

compared with 39.3% for PAIRAGON+NSCAN_EST and

39.8% for ENSEMBL) and PAIRAGON+NSCAN_EST is the

most specific.

At the gene level, ENSEMBL [64] is more sensitive than

PAIRAGON+NSCAN_EST (71.6% versus 69.6%) and more

specific. EXOGEAN is the most specific program at the

gene level at a specificity of 80.8% with a sensitivity of

63.2%.

Category 4: dual- or multiple-genome based methods
Six groups submitted gene structure predictions that were

assigned to the dual-genome category. ACESCAN, however,

submitted predictions only on the 13 training regions and

was, therefore, not evaluated.
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Figure 12
Correlation Coefficient Accuracy in relation to gene density. The correlation coefficient (CC) at the nucleotide level for sequences EN_PGH12,
EN_PGM11 and EN_PGL8 for high, mid and low gene density sequence sets within the test set.
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Of the dual-genome prediction programs, NSCAN [57] is

generally the most sensitive and the most specific for all

evaluation levels. The only exception is at the nucleotide level,

where AUGUSTUS-dual [58] is more sensitive (88.9% versus

85.4%) at a cost of being less specific than NSCAN (80.2%

versus 89.0%). All of the dual-genome predictors except MARS

[65] are limited to predicting one transcript per gene locus.

NSCAN is one of the most conservative of the dual-genome

gene predictors, which partly explains its high transcript and

gene specificity. It predicts approximately 90 fewer genes

than SAGA [66], approximately 110 fewer than MARS, and

almost 130 fewer than AUGUSTUS-dual. Only DOGFISH

[67], which predicts 219 genes, is more conservative.

Other predictions
Two programs submitted predictions on the test regions for

category 5 (methods predicting unusual genes, non-canonical

splicing, short intronless genes, and so on). Both GENEID-

U12 and SGP2-U12 (T. Alioto, unpublished) are optimized to

find genes that contain U12 introns (see Patel and Steitz [68]

for an in-depth review on U12 splicing).

Six programs submitted predictions that were included in

category 6 (exon only predictions). ASPIC predicted only

introns for the training regions, CSTMINER predicted

coding regions, but did not provide strand information or

splice site boundaries, DOGFISH-C-E and UNCOVER

predicted only novel exons, and AUGUSTUS-exon and

SPIDA predicted exons but they did not attempt to link them

into transcript structures.

The programs in categories 5 and 6 have very specialized and

diverse goals and cannot easily be compared to each other or

to the predictions in other categories. Their accuracy values,

however, have been computed when possible, and they are

provided in the Supplementary material.

Results for the mRNA evaluation
In the computational gene finding literature, gene predic-

tions have traditionally been evaluated using coding

transcripts only. That is, only the exonic structure of the

coding fraction of the gene or transcript is taken into

account both in the prediction and in the annotation. One

reason for this has been the difficulty of experimentally
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Figure 13
Correlation Coefficient Accuracy in relation to sequence conservation. The correlation coefficient (CC) at the nucleotide level for sequences EN_PMH7,
EN_PMM5 and EN_PML7 for high, mid and low conservation with mouse sequences only for the randomly selected sequences in the test set.
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determining ‘full length’ cDNAs, which represent a full

mRNA transcript. While it is difficult to accurately clone and

sequence the 3’ UTRs of cDNA clones, it is even harder to

obtain and sequence the 5’ UTRs of a gene transcript.

Besides the limitation of existing experimental data, very

little signal information exists in the sequence of 5’ and 3’

UTRs of genes that can be statistically modeled. Therefore,

most of the computational gene finders have historically

made no attempt to predict UTRs, and instead predicted

genes from the start codon to the stop codon.

Apparently, encouraged by the announcement to explicitly

try to “replicate the GENCODE annotations”, which included

many full mRNA transcript annotations in the training set,

several programs submitted predictions of the entire exonic

structure of the mRNA molecules. FGENESH++,

PAIRAGON+NSCAN_EST, ACEVIEW, ENSEMBL,

EXOGEAN, and NSCAN programs all submitted full

transcript predictions, including coding and untranslated

(UTR) exons. We have compared these predictions with the

annotated exonic structure of the mRNA transcripts within

the GENCODE annotation. Accuracy results for the mRNA

evaluation of these programs are given in Table 6.

In general, programs performed worse when predicting the

exonic structure of the entire transcript than when predic-

ting only the coding exons. This is consistent with the fact

that the UTR sequences are less constrained than regions

coding for amino acid sequences. Note, however, that the 3’

and 5’ end of the genes are particularly difficult to delineate

experimentally. Therefore, a metric that emphasizes predic-

tion of exact exon boundaries will lead to an under-

estimation of the accuracy of the predictions. Evaluation of

the predictions at the intron level, instead of exon level,

could partially address this limitation. In any case, given

these limitations, ACEVIEW exhibits the highest accuracy of

mRNA evaluations and has similar accuracy, at least at the

nucleotide level, when considering either the entire mRNA

or the CDS. In contrast to other programs, ACEVIEW is

more specific in the entire mRNA than on the CDS. It also

has the highest sensitivity, although ENSEMBL, EXOGEAN

and PAIRAGON+NSCAN_EST are more specific.

Interpreting the results
The 44 ENCODE regions represent 30 Mb (approximately

1%) of the human genome. The 31 EGASP test regions

include 21.6 Mb and represent an even smaller fraction of

the human genome. Although this is the largest region ever

used for benchmarking automatic genome annotation, it is

not a random selection of the human genome, and, there-

fore, results obtained in them should only be extrapolated to

the whole genome with appropriate caution. The stratifica-

tion of the ENCODE regions into ‘manually’ versus ‘randomly’

selected and according to gene density and conservation

with mouse (Table 1) allows for an investigation into how

these factors affect the accuracy of gene predictions.

Figure 14a displays the accuracy of each program (average

sensitivity and specificity at the nucleotide level) in the form

of boxplots for each individual sequence in which genes were

annotated (27 of the 31 EGASP regions) and for the

collections of sequences discussed next (random versus

manual, training versus test, low, medium and high gene

density, and low, medium and high conservation with the

mouse genome). The accuracy of the programs varied

substantially across sequences (with a median value raging

from values below 0.7 (ENm011) to above 0.95 (ENr332).

Figure 14b shows similar results but on the exon level. In

what follows, we describe potential biases in the evaluation

results that can be explained by the characteristics of the raw

sequences, instead of the behavior of the prediction methods.

Training versus testing regions
We compared the predictive accuracy of each of the

programs on the set of 13 training regions to their

performance on the 31 test regions. Most of the gene

prediction programs were more accurate on the training set

compared to the test set (Figure 10). This can be partially

explained by the training set being enriched in gene dense

regions (see the section Gene rich versus gene poor regions

below; Table 1). Indeed, 11 of the 13 training regions (85%)

had a high or medium gene density, compared with 23 out of

the 31 test regions (74%).

Random versus manual regions
Within the test set, we compared the performance of each of

the gene prediction programs on the set of 12 manually

placed ENCODE regions to their performance on the set of

19 ENCODE regions chosen randomly (Figure 11). Some

programs performed better in the manual regions, while

others did on the random ones, but no overall trend could be

observed. Only programs in category 4 (dual- or multiple-

genome predictors) performed consistently better in the

random than in the manual picks. One possible explanation

for this might be that the GENCODE annotation is more

exhaustive in the regions selected manually. These regions

contain genes of interest, and some of them have been

extensively investigated. Therefore, the coverage by cDNAs -

on which the GENCODE annotation is based - is likely to be

higher in the manual than in the randomly chosen regions,

which might explain the difference in class performance.

Gene rich versus gene poor regions
We compared the performance of the prediction programs

based on the stratification of high (12 sequences), medium

(11 sequences) and low (8 sequences) gene dense regions

(see the data description in the section Description of the

sequence above). In general, all programs performed better

in regions with medium or high gene density than in regions

with low gene density (Figure 12). This reflects the low

specificity resulting from a higher rate of false positive

predictions. Interestingly, single genome ab initio gene

finders (category 2) performed the best in very gene rich
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Figure 14
Gene Prediction Accuracy for each ENCODE sequence at the nucleotide and exon levels. Boxplots showing the average sensitivity and specificity at the (a)
nucleotide level and (b) exon level for CDS evaluation of each program on every sequence of the test set. Sequences are displayed across the x-axes. Manual
picks are shown in in light blue; random picks are shown in orange. Boxplots corresponding to the overall average sensitivity and specificity at the nucleotide
level for CDS evaluation in different subsets of the ENCODE sequences are shown at the right of the graph. EN_TRN13, the set of 13 training regions, and
EN_PRD31, the set of 31 test regions, are shown in green. EN_MNLp12, the 12 manual picks in the test set, and EN_RNDp19, the 19 random picks in the
test set are shown in dark blue. EN_PGH12/EN_PGM11/EN_PGL8, the subsets of 12 high, 11 medium and 8 low gene dense sequences from the set of test
sequences, are shown in yellow. EN_PMH7/EN_PMM5/EN_PML7, the subsets of seven regions with high sequence conservation with mouse, five regions
with medium conservation, and seven regions with low conservation from random picks in the test set, are shown in red.
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regions, while the programs in all other categories

performed the best in regions with an intermediate density

of genes. This is possibly due to the training of the programs

tuned to balance over- and under-prediction.

High versus low conservation with mouse regions
We also compared the performance of the prediction

programs in the randomly selected sequences with high

(seven sequences), medium (five sequences) and low (seven

sequences) conservation with mouse (see the data descrip-

tion in the section Description of the sequence above).

Programs performed generally better in sequences showing

higher conservation with mouse, but the trend was not as

strong as with gene density (Figure 13). As expected, dual

genome predictors performed better in sequences with high

mouse homology, but the trend was also observed for single

genome predictors. It is possible to speculate that genes

conserved across species are also likely to exhibit more

typical sequence characteristics, in terms of codon bias and

splice site signals, whereas fast evolving genes may have

undergone changes toward unusual sequence biases. Single

genome predictors are likely to perform better on genes

exhibiting typical features.

The experimental test of unannotated predictions
The second major goal of EGASP was to assess the complete-

ness of the GENCODE annotation. This annotation is based

on available evidence, and we cannot immediately rule out

the possibility that it misses a fraction of protein coding

genes. Indeed, many predictions submitted for EGASP did

not match any GENCODE annotated exon. Table 7 lists the

total number of unique coding and non-coding exons predic-

ted by each program, as well as the number of unannotated

exons (that is, predicted exons not overlapped by a

GENCODE annotated exon by 1 bp or more). Also listed is

the number of unannotated exons predicted in intergenic

regions. The unannotated are termed ‘wrong exons’ in the

evaluation section above. It is unclear what fraction of these

unannotated exons belong to annotated genes or are exons

of novel, unannotated genes. We have carried out an initial

investigation by comparing the unannotated exons with

transcript data obtained from the hybridization of polyA+

cytosolic RNA onto Affymetrix high-density genome tiling

microarrays covering the ENCODE regions. Details of the

technology and applications have recently been published

[69,70]. Briefly, positive hybridization probes are combined

into discrete sites of transcription, which are usually known

as TARs (transcriptionally active regions) or transfrags

(transcribed fragments). It is important to note that

identification of TARs/transfrags is based on selecting a

threshold of detection that is derived from estimates of 5%

false positive detection using a bacterial sequence spike in

controls [71]. Raising or lowering the false positive rates can

alter these thresholds. More or fewer detected regions of

transcription will likely follow from these changes.

TAR/transfrag maps corresponding to different cell lines

and conditions have been downloaded from the ENCODE

specific UCSC browser [35]. Table 7 lists the number of

predicted unannotated exons that overlap TARs/transfrags

by at least 1 bp. Overall, 44.7% of the EGASP predicted exons

overlap TARs/transfrags. Importantly, while 71% of the

annotated exons overlap TARs/transfrags, only 13% of the

unannotated exons do. This difference suggests that many of

the predicted, but not annotated, exons are false positives.

Support by TARs/transfrags, however, indicates only that

the predicted exon appears to be transcribed and, possibly,

processed into an RNA sequence. It does not allow us to

infer that the predicted exons assemble into the predicted

transcript structure, or that the transcript is a protein-

coding RNA. Therefore, to better assess the likelihood of the

predicted exonic structures, we selected a subset of the

predicted but unannotated exon pairs to be tested experi-

mentally by RT-PCR. We focused our verification efforts on

the subset of 8,634 intergenic exons (Table 7), since these

predictions could correspond to yet undetected, novel genes.

We ranked the predictions based on the predictive specificity

at the exon level for the given programs and then selected

the top 200 ranking exons. We next identified all predicted

introns (exon pairs) radiating from this set of exons. That is,

we paired each of these exons with its immediate upstream

and downstream neighbors within the same predicted

transcript. Selection of those pairs not overlapping any

GENCODE annotation resulted in 238 unique non-inclusive

exon pairs (pairs in which one of the exons was included in

an exon from another selected exon pair were discarded). Of

these pairs, 221 could be tested by RT-PCR (see Materials

and methods) in 24 tissues. All data files can be accessed

through the Supplementary material web page. Of the

assayed exon pairs, only seven (3.2%) produced a positive

result, all with perfectly predicted exon boundaries. Of the

seven validated exon pairs, three were intergenic,

presumably representing new transcribed loci, while four

extended existing gene annotations. Every positive case was

expressed in only a single tissue out of the 24 tested. This

result is comparable to that obtained for novel human genes

identified using the chicken genome as reference (expressed

on average in 3.3 tissues) [72] or for the recently described

chimeric transcripts (expressed on average in 2.5 tissues)

[73]. This result is significantly below the 7 to 8 average

positive tissues out of 12 tested found for known mammalian

genes [14,74], suggesting that the majority of yet unanno-

tated genes have a restricted pattern of expression. This also

suggests an explanation for why these transcripts have

eluded identification by experimental means until now.

The number of exon pairs (introns) tested per program, and

the number of positive verifications are given in Table 8 (see

also the Supplementary material web page for information

about the positive cases [51]). There appear to be differences

in the success rate by program, but the numbers are too

small to draw significant conclusions. Interestingly, the
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positive predictions tended to be classified high in our

ranking based on the specificity of the programs: 3 out of the

7 positive predictions ranked among the top 50 ranked

predictions, and 6 ranked among the 100 top ranking

predictions. This suggests that combining multiple sources

of evidence helps to identify the computational predictions

that correspond to ‘bona fide’ genes. Consistent with these

observations, TARs/transfrags overlap with about 20% of

the exons classified among the 200 top ranking ones, but

only with 13% of the intergenic predicted exons overall. Two

of the positive predictions had already been included in later

releases of the GENCODE annotation, but were unknown at

the time of experimental verification. Two are extending

‘putative’ GENCODE loci, and three could correspond to

novel genes - one being antisense to an annotated GENCODE

locus. In the GENCODE annotation, the sequence of the

RT-PCR products is passed back into the GENCODE

pipeline, where it is used as another source of transcript

sequence evidence. Future versions of GENCODE will

incorporate the validated computational predictions.

Since TAR/transfrag support has not been used to prioritize

predicted exons for experimental verification, it is possible

to investigate whether the results of the RT-PCR experi-

ments are consistent with the TAR/transfrag data, and

whether these data can be used to prioritize verification

experiments. For example, one would expect the likelihood

of RT-PCR success to be higher when the two predicted

exons to be tested are both supported by TARs/transfrags

from the same cell line and condition, suggesting that the

two exons are connected into the same RNA sequence. In

only seven of the 221 exon pairs tested were the two exons
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Table 7

Exons predicted by the programs not overlapping GENCODE annotated exons, and supported by transfrag evidence from genome
tiling microarrays

Number of Number of 
Total number Number of Number of non-annotated Number of intergenic 

of unique exons overlapping non-annotated exons overlapping intergenic exons overlapping 
exons TARs/transfrags (%) exons TARs/transfrags (%) exons TARs/transfrags (%)

Category 1

AUGUSTUS-any 4,160 2,718 (65.3%) 484 74 (15.3%) 281 38 (13.5%)

FGENESH++ 4,784 2,766 (57.8%) 1,071 146 (13.6%) 885 123 (13.9%)

JIGSAW 3,935 2,673 (67.9%) 206 34 (16.5%) 130 19 (14.6%)

PAIRAGON-any 4,414 3,080 (69.8%) 284 84 (29.6%) 221 68 (30.8%)

Category 2

AUGUSTUS-abinit 3,699 2,336 (63.2%) 776 175 (22.6%) 482 111 (23.0%)

GENEMARK.hmm 6,897 2,552 (37.0%) 3,796 319 (8.4%) 2,826 244 (8.6%)

GENEZILLA 3,415 1,535 (44.9%) 1,361 110 (8.1%) 970 69 (7.1%)

Category 3

ACEVIEW 8,410 5,756 (68.4%) 539 118 (21.9%) 449 106 (23.6%)

AUGUSTUS-EST 4,073 2,700 (66.3%) 439 73 (16.6%) 253 37 (14.6%)

ENSEMBL 4,505 3,094 (68.7%) 251 27 (10.8%) 187 17 (9.1%)

EXOGEAN 5,014 3,480 (69.4%) 183 21 (11.5%) 100 15 (15.0%)

EXONHUNTER 6,376 2,843 (44.6%) 2,782 257 (9.2%) 2,055 187 (9.1%)

PAIRAGON+NSCAN_EST 4,404 3,073 (69.8%) 284 84 (29.6%) 221 68 (30.8%)

Category 4

AUGUSTUS-dual 4,024 2,588 (64.3%) 629 114 (18.1%) 364 65 (17.9%)

DOGFISH 3,194 2,290 (71.7%) 267 115 (43.1%) 225 99 (44.0%)

MARS 4,623 2,801 (60.6%) 948 161 (17.0%) 528 89 (16.9%)

NSCAN 3,996 2,686 (67.2%) 500 133 (26.6%) 342 92 (26.9%)

SAGA 2,115 1,147 (54.2%) 564 36 (6.4%) 433 26 (6.0%)

All unique exons (18 progs) 26,818 12,001 (44.7%) 12,025 1,563 (13.0%) 8,634 1,163 (13.5%)



supported by TARs/transfrags from the same cell line.

Interestingly, three of these cases were positive by RT-PCR.

This is a success rate of 43%, compared with 4 successful

RT-PCRs out of 214 exons not having consistent transfrag

support (less than 2% success rate). While the numbers are

too small for significant conclusions, the trend is quite

striking: consistent transfrag support of computational

predictions is strongly indicative of RT-PCR success.

Conversely, the reasons why exon pairs fail RT-PCR

verification when supported by consistent transcription

evidence from the same cell line and condition are multiple.

Depending on the primers chosen, for instance, wrong

prediction of the exon boundaries, even by a small offset,

may lead to failed RT-PCR amplification. Moreover,

TAR/transfrag maps have been obtained from cell lines

different from the tissues used for RT-PCR. Given the

extremely restricted expression pattern that these novel

transcripts appear to show, transcripts expressed in one

given cell line may not be expressed in any of the 24 tissues

analyzed. In this regard, it is interesting to note that the four

negative RT-PCR exon pairs cluster into a single locus, and

even share some sequence (see the Supplementary material

web page), and, therefore, may represent the same

transcript, while the three other transfrag-supported

positive RT-PCR exon pairs correspond to three distinct loci

mapped to three different ENCODE regions.
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Table 8

Number of exon pairs (introns) tested per program, and the number of positive verifications

Number of Number of % of positive 
Number of tested exon pairs positive RT-PCR pairs RT-PCR pairs 

Number of positive RT-PCR suported by TARs/ supported by TARs/ supported by 
tested exon exon pairs and transfrags and % over transfrags and % over TARs/transfrags 

pairs % over tested tested pairs supported pairs over positive 

Category 1

AUGUSTUS-any 31 2 (6.5%) 3 (9.7%) 1 (33.3%) 50.0%

FGENESH++ 119 3 (2.5%) 3 (2.5%) 1 (33.3%) 33.3%

JIGSAW 19 2 (10.5%) 3 (15.8%) 1 (33.3%) 50.0%

PAIRAGON-any 1 0 (0.0%) 0 (0.0%) 0 (0.0%) 0.0%

Category 2

AUGUSTUS-abinit 29 2 (6.9%) 2 (6.9%) 1 (50.0%) 50.0%

GENEMARK.hmm 99 1 (1.0%) 3 (3.0%) 1 (33.3%) 100.0%

GENEZILLA 34 2 (5.9%) 1 (2.9%) 0 (0.0%) 0.0%

Category 3

ACEVIEW 13 4 (30.8%) 2 (15.4%) 2 (100.0%) 50.0%

AUGUSTUS-EST 31 2 (6.5%) 3 (9.7%) 1 (33.3%) 50.0%

ENSEMBL 10 1 (10.0%) 2 (20.0%) 1 (50.0%) 100.0%

EXOGEAN 18 1 (5.6%) 3 (16.7%) 1 (33.3%) 100.0%

EXONHUNTER 23 1 (4.3%) 2 (8.7%) 0 (0.0%) 0.0%

PAIRAGON+NSCAN_EST 1 0 (0.0%) 0 (0.0%) 0 (0.0%) 0.0%

Category 4

AUGUSTUS-dual 26 1 (3.8%) 3 (11.5%) 1 (33.3%) 100.0%

DOGFISH 11 2 (18.2%) 1 (9.1%) 1 (100.0%) 50.0%

MARS 47 7 (14.9%) 5 (10.6%) 3 (60.0%) 42.9%

NSCAN 26 0 (0.0%) 2 (7.7%) 0 (0.0%) 0.0%

SAGA 9 0 (0.0%) 1 (11.1%) 0 (0.0%) 0.0%

All unique exon pairs 238 7 (2.9%) 7 (2.9%) 3 (42.9%) 42.9%

The percentage of success has been computed in the table on the 238 selected exon pairs. For technical reasons, only 221 of them could be tested by
RT-PCR. In the text the percentages are given with respect to this number.



Discussion
The unfolding of the instructions encoded in the DNA

sequence is initiated by the transcription of DNA to RNA,

and the subsequent processing of the primary transcript to

functional RNA sequences. According to the central dogma,

most of these processed RNAs correspond to mRNAs that

are eventually translated to proteins. Despite the fact that

the identification of the protein-coding mRNAs (or genes) is

essential for our understanding of how the genome sequence

translates into biological phenomena, uncertainty still

remains with respect to the set of human genes. The lack of

an accurate and complete gene catalogue undermines the

impact of the genome sequence on human biology and bio-

medical research. Experimental determination of expressed

mRNA sequences and computational mapping of this

sequence onto the sequence of the genome constitutes the

most reliable approach to identify the exonic structure, and

chromosomal location, of protein-coding genes. However,

this approach has limitations. First, it is unclear what

fraction of low and specifically expressed transcripts can be

effectively sequenced, and high throughput mRNA sequen-

cing often leads to only partial sequences. Second,

computational mapping of mRNA to genomic sequences is

not trivial, and it is complicated by fragmentary mRNA

sequences, sequencing errors, sequence polymorphism, and

the highly repetitive nature of the human genome. More-

over, the high pseudogene content of the human genome,

and the presence of small exons, leads to uncertain or

incorrect mapping of exon boundaries. Therefore, sub-

stantial manual intervention is required to delineate an

accurate protein coding gene map from the available mRNA

sequence data.

We organized EGASP as a community experiment with the

goal of assessing the ability of computational methods to

automatically reproduce the accurate protein-coding gene

map produced by a team of expert human curators. Such a

map [33], subsequently verified experimentally, has been

obtained for only 1% of the human genome selected by the

ENCODE project [30]. Scaling the map to the entire human

genome will require substantial additional resources, and it

will enormously benefit from improved computational

strategies for gene finding. With its focus on this 1% of the

human genome, EGASP has indeed demonstrated progress

in the performance of newly developed computational gene

finding pipelines, with accuracies of about 80% at the coding

exon level for both sensitivity and specificity, and of nearly

90% at the coding nucleotide level (Table 4). However, the

success of these metrics is significantly tempered by the

relatively low numbers of coding transcripts that are predicted

correctly. Programs relying on mRNA and protein sequences

were the most accurate in reproducing the manually curated

annotation. This is not unexpected, and, to some extent,

circular, since the manually curated annotation relies on

mRNA and protein sequences as well. Notably, however,

programs based on sequence comparisons across two or

more genomes - which do not use information from known

mRNA or protein sequences - also exhibited impressive

accuracy at the nucleotide and exon levels (Table 6). Dual

genome prediction programs, however, were significantly

less accurate at finding complete genes than the expressed

sequence based methods. Finally, with few exceptions, all of

the methods struggled to predict correctly the non-coding

exons of transcripts. Indeed, UTRs are often predicted as

mere extensions of first and terminal exons, if predicted at

all. Thus, while the computational methods are quite reliable

in predicting the protein coding components of transcripts,

they have difficulties in linking them into transcript

structures. Indeed, the most accurate programs were only

able to correctly predict about 40% of the annotated

transcripts, meaning the correct prediction of all of the

exons constituting a transcript (Table 5). The results of

coding gene predictions were more encouraging. For up to

80% of human genes the exact structure of the coding part,

including all the splice junctions and start/stop codons,

could be predicted correctly in at least one transcript.

Contributing to the difficulty is the unexpected complexity of

the protein coding loci in higher eukaryotic genomes. Indeed,

as revealed in the GENCODE annotation, most protein

coding loci appear to encode a mixture of coding and non-

coding transcripts, sharing part of their sequence. Additional

transcriptional activity, including chimeric, overlapping and

antisense transcripts, transcripts within introns, and other

transcriptional phenomena, appear to be less exceptional

than had been previously suspected. Thus, the model of a

eukaryotic gene currently implicit in most computational

methods is too simple to capture this complexity, leading to

relatively poor prediction performance.

The second goal of EGASP was to assess the completeness of

the manual/computational/experimental GENCODE annota-

tion. This annotation is based on available evidence, and

thus may miss some protein coding genes and exons.

Indeed, in EGASP, computational methods predict many

exons and transcripts that are not included in the

GENCODE annotation (Table 7), a trend accentuated in ab

initio and comparative gene finders, which do not rely on

available evidence from transcript sequences. While we were

not able to confirm experimentally the bulk of these

predictions and they are likely to be false positives, some

might be real.

To assess what fraction of the predicted exons unannotated

in GENCODE could correspond to novel genes, we

prioritized - based on the reliability of the programs predic-

ting them - a subset of intergenic predicted exon pairs, and

attempted to experimentally verify them by RT-PCR in 24

human tissues. Only 3.2% of these pairs tested positive, a

result consistent with most of the computational predictions

outside of GENCODE being false positives. All verified cases

tested positive in only one tissue among the 24 tested,
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emphasizing the extremely restricted expression patterns of

these novel, unannotated exons. Since many more tissues

and cell lines exist, it cannot be ruled out that some other

predictions could also be positive in other tissues. Support

for a larger fraction of predictions corresponding to real

exons comes from the observation that 13% of these predic-

tions overlap sites of transcription (or TARs/transfrags) as

detected by genome tiling experiments. Interestingly, the

success rate of RT-PCR was much higher (at least 40%) for

those few tested exon pairs that both overlapped TARs/

transfrags and were detected in the same cell line and con-

dition. Thus, consistent TAR/transfrag support is strongly

indicative of an underlying transcript, including exons

predicted to be connected. In total, about 100 unannotated

predicted exons in EGASP are consistently supported by

TARs/transfrags, and are, therefore, likely to belong to

transcribed RNAs. In summary, a non-negligible fraction of

unannotated exons predicted in EGASP have some evidence

of transcription (not necessarily associated with protein

coding), but only a small fraction of the predicted structures

connecting exons could be verified experimentally here.

In this regard, the EGASP experiment seems to indicate

that the GENCODE annotation of protein coding genes is

quite complete, although it is still unclear what fraction of

all the alternative transcript diversity of gene loci is

captured by GENCODE. EGASP was also useful in helping

to identify the software tools that can contribute to reduce

the amount of human intervention required to delineate the

GENCODE annotation. Programs accelerating and improv-

ing the mapping of cDNA sequences (partial or complete)

into the genome sequence could be particularly useful

towards that end.

Overall, we believe that the EGASP project has given a fair

assessment of the state-of-the-art of gene prediction in

human DNA. This will allow biologists to interpret better the

annotations presented to them in public genome databases

such as GenBank, the UCSC browser, ENSEMBL and others.

It has also clearly shown that we are still far from being able

to computationally predict human gene structures with total

accuracy from the DNA sequence alone. Furthermore, while

we believe the experiment has shown that only very few

protein-coding human genes seem to missing from the

annotations, the exact protein sequences are annotated for

roughly over 50% of the sequences. Getting a complete

protein sequence correct is also made difficult by the

existence of many splice forms, mis-assembled cDNAs and

additional contamination in cDNA/EST sequences in the

public databases. Each can lead to various spurious protein

sequence annotations. Unfortunately, there are very few

processes in place to remove erroneous sequences and

annotations from the public databases, so it will still take

some time to get a better picture of exact gene structures. It

has to be noted that the human genome and its annotation

for protein coding genes are still works in progress.

Another class of genes, non-protein coding transcripts,

which were not generally considered by EGASP, are thought

to be especially difficult to predict. These genes, such as

those that encode miRNAs and snoRNAs, were not

addressed in this experiment; nevertheless, they seem to

play a very important role in physiological processes such as

development and disease.

One of the most difficult problems in gene prediction

accuracy assessment is the definition of a reference set

against which to evaluate. Ultimately, this reference set

should be ‘unknown’ to the prediction teams. In EGASP, the

delayed publication of the GENCODE annotations partially

achieved this goal, although a significant amount of the

annotation information was known from previously

submitted cDNA and EST sequences to public databases

such as ENSEMBL or Genbank. This is slightly different to

GASP1 [27], where novel cDNA sequences had been

withheld before the experiment. Additionally, it may be

optimal if each group used the same auxiliary data for their

predictions. One suggestion would be to ‘freeze’ databases of

auxiliary data and allow only the inclusion in the predictions

of these frozen databases, so that progress in these

assessment experiments can be measured independently of

growing experimental data.

Furthermore, while our assessments have started to evaluate

gene annotations on the transcript level, better and

additional evaluation methods for evaluating UTRs are

needed. One suggestion would be to evaluate the transcript

performance at the intron level (similar to the exon

evaluation above). This measure would exclude the

beginning and end of a gene, two coordinates that are

considered the most difficult to obtain experimentally, but

would include non-coding introns that are determined by

their splice sites.

One of the major benefits of this kind of experiment is that it

allows prediction teams to measure their programs and

methods against each other, to learn from their failures, and,

as a community, to identify the open and difficult questions

in this area of research.

Materials and methods
Submitted predictions
Files submitted to the EGASP server were validated to

conform to the GTF specifications [33] and the use of

standard annotation features such as ‘exon’, ‘CDS’, ‘stop

codon’ and ‘start codon’. Submissions not conforming to this

format were rejected, although the participants were allowed

to fix prediction files accordingly and to resubmit to the

server (Figure 1) [47]. Submissions were clipped to the

ENCODE region sequence boundaries. The clipping criteria

were the following: ( feature_start < 1 and feature_end >= 1

then feature_start == 1 ) and ( feature_end > sequence_end
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and feature_start <= sequence_end , then feature_end ==

sequence_end ); while those records where ( feature_end < 1

or feature_start > sequence_end ) were removed from the

GENCODE annotation and the submitted predictions before

performing the evaluations.

Evaluations
We used different programs to obtain accuracy values at

nucleotide, exon, gene/transcript and clustered transcripts.

These programs included software developed by the authors

at IMIM and at the EBI. We also used the Eval package [75].

We confirmed the results obtained with the evaluation

programs by comparison. The programs can be downloaded,

along with a small description on how to use them, from the

Supplementary material web page [51].

When comparing annotations against the predictions for

each individual sequence in the test sets for the boxplots,

sequences that contained no feature annotations either in

the annotations or in the predictions were excluded from the

analysis for the boxplots. This did not happen when the

numbers were computed globally for the sequences. We

considered the following sequence sets build up by

concatenating (without overlap) the coordinates of different

sequence annotation and prediction sets: EN_TRN13, all

training set sequences (13 sequences); EN_PRD31, all

evaluation set sequences (31 sequences); EN_MNLp12,

evaluation set sequences, manual picks (12 sequences);

EN_RNDp19, evaluation set sequences, random picks (19

sequences); EN_PGH12/EN_PGM11/EN_PGL8, all the

sequences of the test set were collected into three sequence

sets based on their gene density into three sequence sets, for

high, medium and low densities (12, 11 and 8 sequences,

respectively); EN_PMH7/EN_PMM5/ENPML7, in this case,

the random sequences from the evaluation set were

considered, depending on their sequence conservation with

mouse, into three sequences, for high, medium and low

conservation (7, 5 and 7 sequences, respectively). See the

Supplementary materials web page for the complete set of

results on all sequences and sequence sets [51].

The box-and-whisker plots [76] (simply ‘boxplots’) describe

graphically how the data being analyzed are distributed. The

horizontal line within the box shows the median value of the

data set, while the top and the bottom of the box correspond to

the third and first quartiles, respectively; therefore, the box

represents the interquartile range (IQR). The whiskers

represent the range of the data and show a maximum and a

minimum, which are based on 1.5 times the length of the IQR.

The notches centered on the median correspond to the 5%

interval of confidence for this median (median ± 1.57 · IQR/√n,

as defined in R [77]).

RT-PCR
Primers mapping in the two predicted exons spanning the

exon junction to be tested were designed using Primer3 [78]

with the following parameters: 18 ≤ primer size ≤ 27, optimal

size = 20, 57°C ≤ primer Tm ≤ 63°C, optimal Tm = 60°C,

20% ≤ primer GC percentage ≤ 80%. Similar amounts of 24

human cDNAs (brain, heart, kidney, spleen, liver, colon,

small intestine, muscle, lung, stomach, testis, placenta, skin,

peripheral blood lymphocytes, bone marrow, fetal brain,

fetal liver, fetal kidney, fetal heart, fetal lung, thymus,

pancreas, mammary glands, prostate, final dilution 1,000·)

were mixed with JumpStart REDTaq ReadyMix (Sigma-

Aldrich, St. Louis, MO, USA) and 4 ng/µl primers (Sigma-

Genosys, Cambridge, U.K.) with a BioMek 2000 robot

(Beckman, Fullerton, CA, USA) as described and modified

[14,79,80]. The 10 first cycles of PCR amplification were

performed with a touchdown annealing temperature

decreasing from 60°C to 50°C; the annealing temperature of

the next 30 cycles was 50°C. Amplimers were separated on

‘Ready to Run’ precast gels (Amersham Pharmacia,

Sunnyvale, CA, USA) and sequenced. We tested 221 exon

pairs out of the 238 exon pairs with an exon ranked in the

top 200. The remaining 17 exon pairs were not

experimentally evaluated because either the targeted

amplimer was too small (8 cases) or one of the exons was too

short to allow us to design a primer (9 cases).
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