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Zebrafish promoter microarray<p>The development and verification of a genomic microarray for ChIP-chip analysis of zebrafish genes is described.</p>

Abstract

We have designed a zebrafish genomic microarray to identify DNA-protein interactions in the
proximal promoter regions of over 11,000 zebrafish genes. Using these microarrays, together with
chromatin immunoprecipitation with an antibody directed against tri-methylated lysine 4 of
Histone H3, we demonstrate the feasibility of this method in zebrafish. This approach will allow
investigators to determine the genomic binding locations of DNA interacting proteins during
development and expedite the assembly of the genetic networks that regulate embryogenesis.

Background
As the development of an organism proceeds from the ferti-
lized egg to multicellular embryo, cascades of gene activation,
triggered in response to localized determinants and extracel-
lular signals, lead to changes in gene expression in groups of
cells. These changes in gene expression eventually direct the
course of cell differentiation [1]. Gene regulatory networks
(GRNs), which detail the inputs into the cis-regulatory sites of
each gene in a particular cell type at a particular time during
development, are increasingly being used to describe the
process of development and to provide a basis for testing
models of gene expression [1]. For instance, GRNs have
recently been created to describe mesendoderm formation in
sea urchin and Xenopus embryos [2-4], segmentation in Dro-
sophila and vulval development in Caenorhabditis elegans
(reviewed in [5]). These networks have been built using a
combination of knock-down and over-expression analyses,

expression arrays, promoter analyses, bioinformatics and
some direct promoter binding data. However, detailed knowl-
edge of the direct binding of developmental regulatory pro-
teins at promoters and enhancers in the genome is very
limited at present. Having such knowledge, linked to func-
tional gene expression data, will increase our ability to test
predictions made by network models of embryonic develop-
ment and to refine further our understanding of this complex
process [6].

One approach to identify genomic regions bound by tran-
scription factors and other DNA binding proteins is chroma-
tin immunoprecipitation (ChIP), which, when combined with
genomic microarrays, provides extensive information on
genomic binding and allows identification of active or
repressed genes and the elucidation of transcriptional regula-
tory networks. This approach, known as ChIP-chip or
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genome-wide location analysis, has been widely used in yeast,
Drosophila and mammalian cells to study gene regulation,
histone modification and localized binding of specific tran-
scription factors as cells differentiate or respond to environ-
mental signals (for example, [7-16]). Here we demonstrate
the application of this powerful, genome-wide approach in an
equally powerful model system, the zebrafish.

Zebrafish are firmly established as an important and inform-
ative model system for studying vertebrate embryogenesis
and organogenesis, as well as modeling human disease (for
example, [17-21]). Among the advantages of zebrafish are the
ease with which large numbers of embryos can be obtained
and the ex utero development of the embryos. Together these
allow manipulation at stages when many other vertebrate
models, such as the mouse, are inaccessible. In addition,
large-scale mutagenesis screens have generated many
mutants in embryonic development [22-25], and expressed
sequence tag (EST) projects and sequencing of the genome
have brought zebrafish into a post-genomic era that can now
be exploited. Finally, the ability to generate, inexpensively,
large numbers of transgenic embryos carrying promoter
reporter constructs make zebrafish an ideal model system for
functional studies of transcriptional regulation networks
[26]. For instance, zebrafish can be used to make transgenic
animals, both as transient and stable lines, to study reporter
gene expression under the control of regulatory sequences.

Here we describe the design of a genomic microarray repre-
senting a substantial fraction of zebrafish promoter regions
and we go on to verify this microarray using an antibody
directed against a trimethylated form of Histone H3. Covalent
modification of histone tails causes alterations in the struc-
ture of chromatin, which in turn regulate the availability of
regions of DNA to specific and general transcription factors.
One example is the trimethylation of lysine 4 in the tail of His-
tone H3 (H3K4Me3), which serves as a binding site for the
SAGA and SLIK histone acetyltransferase complexes and Iswi
chromatin remodeling ATPase in yeast [27,28]. This chroma-
tin mark is associated with actively transcribed genes in both
yeast and higher eukaryotes [9,10,29], and genome-wide
binding data and detailed studies of individual gene loci have
shown that H3K4Me3 is specifically localized to the 5' end of
transcribed genes in eukaryotes [9,30,31].

To verify the arrays and to show the utility of this microarray
resource in zebrafish, we used ChIP directed against tri-meth-
ylated K4 Histone H3. Since the gastrula stage embryo
expresses thousands of genes [32,33], using H3K4Me3 allows
us both to confirm the usefulness of the technique and our
microarray design and to identify those genes that are poten-
tially actively transcribed in the embryo. We show that 4,735
genes of the 11,117 represented on our microarray are marked
by H3K4Me3 in gastrula stage embryos, suggesting that these
genes are expressed. This approach not only identifies genes
that are expressed ubiquitously and/or at high levels, but also

allows us to identify genes that are expressed in a subset of the
cells of the embryo.

This paper is the first to describe chromatin immunoprecipi-
tation combined with genomic microarrays in zebrafish and
the use of an antibody against tri-methylated K4 Histone H3
validates the technique and resource for future use. In partic-
ular we hope that this approach can be applied to specific
transcription factors and many other chromatin marks or
DNA binding proteins during zebrafish development.

Results and discussion
Optimization of chromatin immunoprecipitation in 
zebrafish embryos
Before testing our genomic microarrays, it was first necessary
to optimize a ChIP protocol and assess the effectiveness of
conventional ChIP in zebrafish embryos. For this we used
gastrula stage zebrafish and a ChIP protocol [34] that we
modified for zebrafish with a well-characterized antibody
directed against H3K4Me3 (see Materials and methods for
further information), a marker of the 5' end of actively tran-
scribed genes. We then performed PCR analysis on the puri-
fied DNA using primers for the promoter region of genes
known to be expressed or not expressed during gastrulation.
The results show that we could reliably detect expressed
genes, such as bactin2 and wnt11, and that non-expressed
genes such as rhodopsin lacked the H3K4Me3 histone mark
(Additional data file 1). During the course of these experi-
ments we also performed control ChIP experiments with an
anti-HA antibody and with normal rabbit serum and saw no
significant enrichment of expressed genes (not shown).

For larger scale ChIP for microarray experiments, we used
1,000 embryos per sample for anti-histone immunoprecipita-
tion. Previous reports of ChIP combined with microarrays
have used approximately 1 × 107 to 5 × 108 cells for each ChIP
[10,12,14,15]. Because the number of cell divisions between
the start and end of gastrulation in zebrafish is known, we can
estimate that a mid-late gastrula stage embryo contains
approximately 8,000 to 16,000 cells, and our anti-histone
experiments, therefore, used approximately 8 × 106 to 1.6 ×
107 cells in each ChIP-chip assay.

Design of genomic microarrays
The design of our genomic microarrays is described in more
detail in Materials and methods. Briefly, 13,413 genes were
selected from 5 databases of zebrafish cDNA. These tran-
scripts were mapped to the zebrafish genome (Zv4; July
2004), and the 5' end of each mapped transcript was defined
as the transcription start site (TSS). We designed 60-mer
probes to represent the region from 1.5 kb upstream to 0.5 kb
downstream of the TSS and spaced at approximately 250
base-pair (bp) intervals (Figure 1a). In practice, spacings var-
ied because promoters were masked for repetitive sequence,
and oligo selection was optimized for parameters such as GC
Genome Biology 2006, 7:R71
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ChIP-chip method in zebrafish embryosFigure 1
ChIP-chip method in zebrafish embryos. (a) Design of promoter arrays: 60-mer oligonucleotides were designed against genomic sequence 1.5 kb upstream 
and 0.5 kb downstream of the annotated transcription start site of approximately 11,000 zebrafish genes. The resulting probes are arrayed onto two 
microarray slides. (b) ChIP-array protocol. (c) Examples of scatter plots obtained from one hybridization of immunoprecipitated DNA on one 2-slide 
proximal promoter microarray set. Log2 ratios for each labeled sample are plotted against each other. Enriched probes are seen above the diagonal. 
Control spots (zebrafish gene desert and Arabidopsis gene probes), shown in red, fall along the diagonal.
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content. A minimum representation of two probes was
required for a promoter region to be included in the final
design. The final design represents 11,117 promoter regions
that, due to redundancy in the genome assembly, map to
12,545 locations across the genome.

The arrays also contain negative control probes designed
against gene desert regions, defined as regions of the
zebrafish genome most distant from any annotated genes.
Additional negative controls were designed to represent Ara-
bidopsis genes that show no similarity to zebrafish genes.
Finally, the arrays include seven positive control genes with
probes printed two to four times on each slide for comparison
within and across slides.

In designing the promoter microarrays we selected databases
that are considered to contain full-length cDNAs, in order to
be confident that the upstream promoter regions were cor-
rectly assigned as far as possible. Despite this, because infor-
mation on the 5' ends of many zebrafish genes is currently
incomplete, it is inevitable that this approach will identify
some proportion of TSSs incorrectly. However, since
zebrafish sequencing projects are still underway, use of
probes of known sequence allows remapping as new genome
builds are released and mis-targeted promoters can be iden-
tified. As sequencing projects are completed and annotation
becomes more comprehensive, these arrays can readily be
updated to include additional probes or to remove incorrect
probes.

ChIP-chip with anti-H3K4Me3
To establish that these zebrafish arrays could be used to iden-
tify regions interacting with DNA binding proteins we per-
formed ChIP with anti-H3K4Me3 (Figure 1b,c). As an input
sample with which to compare H3K4Me3 we also performed
ChIP with an antibody against Histone H3. This gives a com-
parison with total nucleosome occupancy across the genome
and is a more accurate way to normalize data obtained from
histone ChIPs [9,35].

Our study identified 4,735 genomic regions occupied by
H3K4Me3 and, therefore, potentially active at gastrula stages
(Additional data file 5). On the one hand, this will slightly

under-estimate the number of genes associated with
H3K4Me3 since, in some cases, one 'bound region' might be
associated with two gene promoters on opposite strands. On
the other hand, since this list of bound regions is partially
redundant due to some duplication of regions in the Zv4
genome assembly (see above), 4,735 is likely to over-estimate
the actual number of genes bound by H3K4Me3. This figure
is, however, consistent with the previous analysis by Matha-
van and colleagues [33] of the number of zebrafish transcripts
during gastrulation. These authors found that 3,035 genes
represented on their expression arrays were zygotically
expressed during development. Of our 4735 genes, 1,070 are
also identified by transcriptome analysis [33]. This difference
is likely to be due in large part to the different sets of genes
represented on our arrays, which is a consequence of different
design strategies; of the 3,035 zygotically expressed genes
that were identified by Mathavan and colleagues, 1,224 are
represented on our array. This suggests that we failed to iden-
tify approximately 13% of those genes identified by transcrip-
tome analysis; this may be due to calling false negatives (see
analysis below) or because some of those genes identified as
zygotically active are expressed after gastrulation.

Validation of microarray data and estimation of false 
positive and false negative rates
Each microarray contained probes designed around the TSS
of seven positive control genes, with each probe being spotted
between two and four times on each microarray. These con-
trol genes (wnt11, vent, fgf8, flh, myod, msgn and pcdh8) are
all expressed at different levels and in different spatial pat-
terns in late gastrula embryos [36-42]. Figure 2 shows that
within and across each microarray calibration spots were very
similar, showing reliability and reproducibility in the array
data.

Of these seven positive controls, six were called as marked by
H3K4Me3, with MyoD not being called. However, at late gas-
trula stages myod is expressed in just a small patch of adaxial
cells, which may account for the low levels of H3K4Me3
detected [43]. However some false negative, such as myod,
and false positive calls are inevitable with a high-throughput
microarray approach; we therefore sought to quantify their
rates in these experiments.

Positive control replicates show similar enrichment valuesFigure 2 (see following page)
Positive control replicates show similar enrichment values. For positive control genomic regions each point shows unprocessed ChIP-enrichment ratios 
for probes on each slide (weighted average across three replicates [58]). The chromosomal position (based on Zv4 genome assembly annotation) is shown 
below each graph. The x-axes are not to scale.
Genome Biology 2006, 7:R71
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Figure 2 (see legend on previous page)
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Estimation of false negative and false positive rates
It is difficult to estimate false negative and false positive rates
since this relies on prior knowledge of all genes that are occu-
pied by H3K4Me3 in the gastrula stage embryo. None-the-
less, since H3K4Me3 occupancy correlates with actively tran-
scribed genes [9,31], we reasoned that genes that are not
expressed at gastrula stages would in general not have associ-
ated H3K4Me3, whilst those that are expressed would in gen-
eral be associated with this chromatin mark.

We therefore prepared a list of genes that are believed not to
be expressed at gastrula stages ('non-expressed controls';
Additional data file 6) and genes that are known to be
expressed at gastrula stages ('expressed controls'; Additional
data file 7) in order to compare them with the H3K4Me3
binding data (see Materials and methods). These controls
were selected from microarray expression data covering the
first 48 hours of zebrafish development [33]. Expressed con-
trols were selected from those that showed peak expression at
gastrula stages plus an additional list of mesodermal genes
expressed at gastrula stage derived from the Zebrafish Infor-
mation Network website [44]. 'Non-expressed' genes had no
significant expression during gastrulation, according to pre-
vious analyses.

Of the 86 predicted non-expressed controls, we found that 15
appeared to be tri-methylated at their transcription start site
(Additional data file 6). However, we could not rule out the
possibility at this point that some of the genes selected as
non-expressed controls are in fact expressed at gastrula
stages but fell below detection thresholds in other analyses.
To test whether any of these genes are indeed expressed at
gastrula stages, we performed semi-quantitative RT-PCR
analysis on gastrula stage embryos with primers directed
against nine of the expected non-expressed genes (anxa4,
col1a2, cryng2, hmbs, thy1, zar1, zgc:55621, zgc:661411, zgc:
77099). Five out of the nine non-expressed genes in fact
proved to be expressed at gastrula stages to varying degrees
(Figure 3), which when extrapolated to all 15 genes leads to an
apparent false-positive rate of approximately 9%. This is con-
sistent with previous reports of approximately 5% false posi-
tive rates [31,45,46]. We also used primers directed against 5
of the genes called as negative (hbae1, hbae3, he1, mylz2,
neurod4) and bactin2 as a positive control gene (which is
expressed strongly at gastrula stages). As expected, those
genes called as negatives are not expressed, and bactin2, a
positive control, is expressed at gastrula stages.

One possible explanation for these apparent false positives is
that H3K4Me3 binding is not always associated with active
gene expression. In embryonic stem cells, for example, some
developmentally regulated genes that are associated with
H3K4Me3 and H3K4Me2 (another mark of active transcrip-
tion in eukaryotes) are transcriptionally repressed by an
H3K27Me3 mark, as if in a state 'poised' to be transcribed
[47,48]. While there is currently no evidence that this also

occurs in cells of the developing zebrafish embryo, the
possibility that some genes are associated with both activat-
ing and repressive marks, and consequently not expressed, is
intriguing and currently under investigation.

From the list of expressed controls, 24 out of 123 genes are
not marked by H3K4Me3, despite previous evidence from in
situ and RT-PCR data that these genes are in fact expressed
during gastrula stages (Additional data file 7). This suggests a

RT-PCR of nine selected 'non-expressed' genes reveals five are expressed at gastrula stagesFigure 3
RT-PCR of nine selected 'non-expressed' genes reveals five are expressed 
at gastrula stages. Real-time RT-PCR analysis was carried out on 75% to 
85% epiboly zebrafish embryos.
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false negative rate of approximately 19%, consistent with pre-
vious reports [9,14,15]. There are several reasons why an
expressed gene may not be called as marked by H3K4Me3 in
this study. For example, these experiments used intact whole
gastrula stage embryos that contain approximately 8,000 to
16,000 cells. Genes expressed at low levels or in only a few
cells of the embryo, such as foxa1, which is expressed at very
low levels on the dorsal side of the embryo during gastrula-
tion [49], or vim, which can not be detected by in situ during
gastrulation [32], are unlikely to be identified above back-
ground noise. Large-scale expression analysis suffers from
the same limitation, since it measures mRNA abundance in a
large population of heterogeneous cells, and can, therefore,
overlook key changes in a small subset of cells. In addition,
some false negatives may derive from incorrect identification
of the TSS due to the incomplete annotation of the zebrafish
genome, or because alternative start sites of transcription are
used in different tissues.

That said, not all genes called as unmarked are expressed at
low levels. For example, cki and myf5 are strongly expressed
in the embryo and have good supporting evidence that the
most 5' TSS is correctly annotated, but they were not identi-
fied in our analysis. However, H3K4Me3 is not inflexibly
associated with active genes [9,31,50], and it is possible that
some of our false negatives include such genes. In addition,
while some genes may be expressed in a subset of cells where
transcript levels are high enough to be detected by other anal-
yses, the frequency of H3K4Me3 methylation may be insuffi-
cient to be detected by ChIP-chip. Nevertheless, as with all
microarray analyses some level of false calls is inevitable. Our
error model could be modified to reduce the fraction of false
negatives, but we chose to use a stringent threshold to achieve
a low false positive rate and to tolerate a higher false negative
rate.

H3K4Me3 marks the 5' end of expressed genes in 
zebrafish
In yeast and higher eukaryotes, such as Drosophila, chicken
and mouse, H3K4Me3 is associated with the 5' end of genes
[9,10,30,31]. We confirmed that this is also the case in
zebrafish by creating a composite meta-gene from the collec-
tion of regions marked by H3K4Me3 (Figure 4). The results
show that this chromatin mark occupies regions lying within
a few hundred bases of the transcriptional start site. Inspec-
tion of individual genes confirms that this enrichment can be
found at the 5' end of expressed genes. For instance ubiqui-
tously expressed genes, such as bactin2 and cyclin B1 (ccnb1)
are marked by H3K4Me3 at gastrula stages, whereas genes
that are not expressed at gastrula stages, such as embryonic
globin genes hbae1 and hbbe1, show no enrichment (Figure
5a,b).

We find that in many cases genes that are expressed in only a
subset of gastrula cells can also be reliably detected by this
technique, notwithstanding our false-negative observations

above. The gastrula stage embryo is sub-divided into three
germ layers and many genes expressed in just one of these
germ layers, or even in a subset of cells within a germ layer,
were identified as being marked by H3K4Me3 at their 5' ends.
For instance, bon and gata5, which are expressed throughout
the endoderm, were identified in this way. In the mesoderm
the pan-mesodermal marker ntl is identified, while chd
(expressed in dorsal axial mesoderm) and sizzled (expressed
in the ventral most mesoderm) were also identified (Figure 5;
Additional data file 5). Finally, we identify ectodermal genes,
such as zic2b and cyp26a1 (Figure 6; Additional data file 5).

Conclusion
In this paper we describe the creation of zebrafish genomic
microarrays and show that these can be employed in combi-
nation with chromatin immunoprecipitation to detect genes
with promoter sequences associated with DNA binding pro-
teins. We have used these arrays to identify genes marked by
H3K4Me3 in gastrula stage embryos and shown that these
genes include many that are known to be actively transcribed.
Preliminary data (unpublished) indicate that these arrays can
also be used successfully with ChIP to identify targets of
spatially restricted transcription factors in both gastrula and
adult zebrafish tissues, such as liver.

The techniques and reagents we report here pave the way for
studying genome-wide binding of regulatory factors during
vertebrate embryogenesis. This will be important since
understanding gene regulation in vertebrate model systems is
crucial for understanding human development; in the future

Metagene analysis shows enrichment of H3K4Me3 at the 5' end of the transcribed regionFigure 4
Metagene analysis shows enrichment of H3K4Me3 at the 5' end of the 
transcribed region. Plot of the averaged signal from all promoter regions 
occupied by H3K4Me3. This metagene was created from the smoothed 
and averaged collection of regions identified by the error model as 
containing H3K4Me3, as described in Materials and methods.
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Figure 5 (see legend on next page)
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this knowledge may allow us more precisely to manipulate
embryonic stem cells in vitro to form different cell and tissue
types. The zebrafish model is an ideal system in which to
study transcriptional regulatory networks on a genome-wide
scale in developing vertebrates since zebrafish produce hun-
dreds of embryos at each mating and the early embryos
develop externally, allowing easy collection and
manipulation. In contrast, studies during early embryogene-
sis in mammalian embryos are technically challenging due to
the large numbers of cells currently needed for this technique.
Thus, the availability of a genomic platform to study factor
binding in zebrafish now enables us to define transcriptional
networks in the developing embryo on a genome-wide scale.

Materials and methods
Chromatin immunoprecipitation
A detailed protocol for ChIP-chip is given in Additional data
file 2. Briefly, for each immunoprecipitation approximately
1,000 mid-late gastrula stage embryos (75% to 85% epiboly)
were enzymatically dechorionated and then fixed in 1.85%
formaldehyde in 1X embryo medium for 20 minutes at room
temperature. For conventional ChIP, approximately 200
embryos were used. Glycine (0.125 M) was added to quench
the formaldehyde and the embryos were washed in ice cold 1X
PBS and snap frozen on liquid nitrogen or used immediately.
Fixed embryos were homogenized in lysis buffer and incu-
bated for 20 minutes on ice. Nuclei were collected by centrif-
ugation, resuspended in nuclei lysis buffer then incubated for
10 minutes before diluting with immunoprecipitation (IP)
buffer and sonicating the chromatin sample on an ice bath.
Sonication conditions were optimized to give fragments of
approximately 300 to 700 bp. The lysate was incubated over-
night at 4°C with 100 µl of protein G magnetic Dynabeads
(Invitrogen, Carlsbad, CA, USA) that had been prebound to 6
µg of the appropriate antibody. Beads were washed five times
with RIPA buffer and once with 1X Tris buffered saline (TBS)
at 4°C. Bound complexes were eluted from the beads at 65°C
with vortexing in elution buffer. Cross links were reversed for
6 hours at 65°C and the chromatin purified by treatment with
RNase A, followed by proteinase K digestion and
phenol:chloroform:isoamyl alcohol extraction. Three sepa-
rate ChIP-chip experiments were carried out on three sepa-
rate batches of embryos.

DNA amplification and labeling
For ChIP-chip, purified DNA from anti-histone chromatin
immunoprecipitation was blunted using T4 polymerase and
ligated to linker. DNA was then amplified using a two-stage

PCR amplification protocol. Amplified DNA was labeled and
purified using Bioprime Array CGH random prime labeling
and purification kit (Invitrogen). Anti-H3 sample was labeled
with Cy3, anti-H3K4me3 sample was labeled with Cy5.
Labeled DNA for each channel was combined and hybridized
to arrays in Agilent hybridization chambers for 40 hours at
40°C. Arrays were then washed and scanned.

Antibodies
Antibody against Histone H3 (ChIP grade, Abcam 1791, Cam-
bridge, UK) was used to immunoprecipitate input DNA
against which DNA immunoprecipitated with anti-H3K4Me3
(ChIP grade, Abcam 8580) was compared. The anti-
H3K4Me3 antibody is also reported to recognize weakly di-
methylated K4 of Histone H3 [51], a chromatin mark also
associated with actively transcribed genes in higher eukaryo-
tes [10,30].

Embryos
Embryos for each ChIP experiment were collected from
crosses of AB strain fish and were collected at 75% to 85% epi-
boly. Embryos from several different crosses on several
different days were pooled for large scale chromatin
immunoprecipitation.

Genomic array design
Microarrays were designed as described below and manufac-
tured by Agilent Technologies [52]. Further information on
design can be found at the Whitehead Institute Bioinformat-
ics website [53].

Selection of transcription start sites and identification of promoter 
sequences
We interrogated five databases: Ensembl, VEGA, Refseq,
ZGC full length clones and a database provided by Dr Leonard
Zon (Harvard Medical School, Boston, USA) in order to
assemble an extensive list of zebrafish transcripts. The Zon
lab database is a hand-curated database of zebrafish genes
that have homologues in other species.

Since extraction of promoters requires accurate identification
of the 5' ends of full-length transcripts, we limited ourselves
to databases designed to include full-length cDNAs. We chose
the above databases rather than EST-based resources such as
UniGene, which are much more useful for the design of
expression microarrays than promoter microarrays. As a
result, the array was designed to include a high-confidence set
of promoters, rather than a more inclusive set of promoters
that may be prone to errors.

H3K4Me3 is enriched at the 5' end of ubiquitously expressed genes but not enriched at non-expressed genesFigure 5 (see previous page)
H3K4Me3 is enriched at the 5' end of ubiquitously expressed genes but not enriched at non-expressed genes. (a) Examples of genes marked by H3K4Me3 
showing a peak of enrichment at the 5'end of the gene. (b) Examples of non-expressed genes that are not marked by H3K4Me3. For (a) and (b) plots show 
unprocessed ChIP-enrichment ratios for all probes within a genomic region. The chromosomal position (based on Zv4 genome assembly annotation) and 
the transcription start site and direction of transcription for each gene are shown below each graph. The x-axes are not to scale.
Genome Biology 2006, 7:R71
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We included all transcripts that appeared in the manually
annotated databases (VEGA, Zon) and in the ZGC full length
database. We also identified genes present in any two of the
five databases and included those not already selected. The
transcripts were mapped to the zebrafish genome (Zv4, June
2004) obtained from UCSC Bioinformatics [54] and the TSS
for each transcript was determined. Transcripts with TSSs
within 500 bp were clustered into a transcriptional unit (TU)
and promoter regions were identified relative to the most
upstream TSS. This resulted in the identification of 13,413
TUs and corresponding promoter regions. Each promoter
region was extracted and masked for repetitive sequence by
RepeatMasker [55]. If the promoter region contained a gap,
the upstream sequence was also masked. Information on the
transcriptional units that were included in the final design
can be found at the Whitehead Bioinformatics website [53].

Selection of oligonucleotides
We then designed 60-mer oligonucleotide probes represent-
ing the region between 1.5 kb upstream and 0.5 kb down-
stream of the annotated TSS of each transcriptional unit.
Although transcription factors and other DNA binding pro-
teins are known to regulate genes from distances of greater
than -1.5 kb or +0.5 kb, much information can be gained from
regions close to the TSS [50], and the H3K4Me3 mark studied
in this paper is found at the most 5' end of a gene, close to the
TSS.

Selection of 60-mers for the microarrays was essentially as
described in [14] using the Zv4 build of the zebrafish genome
and a locally customized version of ArrayOligoSelector
[56,57]. We chose 60-mers so that promoter regions con-
tained approximately one probe every 250 bp, with a maxi-
mum distance between probes for each promoter region set at
600 bp. In cases where only one probe could be designed for

H3K4Me3 is enriched at the 5' end of genes expressed in localized domains of the embryoFigure 6
H3K4Me3 is enriched at the 5' end of genes expressed in localized domains of the embryo. Plots show unprocessed ChIP-enrichment ratios for all probes 
within a genomic region. The chromosomal position (based on Zv4 genome assembly annotation) and the transcription start site and direction of 
transcription for each gene are shown below each graph.
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a particular TU, these were not included in the final design.
This process yielded 80,839 probes for 11,171 promoter
regions.

We also incorporated several sets of control probes, both pos-
itive and negative. On each array there are 1,090 probes
designed against 'gene desert' regions, which are genomic
regions that are unlikely to be bound by transcriptional regu-
lators, and 270 probes designed against Arabidopsis thaliana
genes, which are not present in the zebrafish genome (by
BLAST). In addition, because our main motivation for mak-
ing these microarrays is to identify mesodermally regulated
genes we included seven genes expressed in mesoderm dur-
ing gastrulation as positive controls (wnt11, flh, vent, msgn1,
myod, fgf8, pcdh8). Probes designed against these promot-
ers, which flank from 3 to 4 kb around each TSS, are arrayed
2 to 4 times on each slide. Since these genes are expressed at
gastrula stages to varying degrees, they also serve as positive
controls in this study. Finally, there are 2,256 controls added
by Agilent and a variable number of blank spots. These probes
were divided between two microarray slides each with 44,290
features.

We refer to these two microarray slides as the 'proximal pro-
moter set'. A proximal promoter set based on these designs as
well as an expanded set of 9 slides that contain regions from -
9 kb to +3 kb relative to the TSS, are available by contacting
Agilent [52] or by downloading the design files from the
Whitehead Bioinformatics website [53] for self-manufacture.

Data analysis
Arrays were scanned using an Axon Instruments Genepix
4000B microarray scanner and Genepix software (Molecular
Devices, Sunnyvale, CA, USA) was used to obtain back-
ground-subtracted intensity values for each fluorophore for
each feature on the array.

Data normalization, analysis and identification of bound regions
Analysis was based on [14] with modifications. Data were set-
normalized using a collection of 1,360 control probes. A
whole chip error model [58] was used to calculate X scores for
each spot based on both the absolute value of intensities and
background noise in each channel. The X scores are assumed
to be normally distributed, which allows for the calculation of
a p value for the enrichment ratio seen at each feature. To
identify bound probes we initially selected an X score cut-off
that would give 5% false positives assuming a normal distri-
bution of non-bound probes on each slide. Any probe that
returned an X score ≥2.76 on slide 1 (standard deviation =
1.38) or 2.78 on slide 2 (standard deviation = 1.39) was
included in our list of bound probes. We next used an algo-
rithm that incorporates data from neighboring probes to cal-
culate a p value for a group of 3 neighboring probes (probe set
p values). Taking neighboring probes into account we
required that multiple probes in the probe set provide evi-
dence of binding, so that if the probe set p value was less than

or equal to 0.001 the central probe of that set was marked as
bound (Additional data file 4).

Annotation of bound regions
Each probe was independently mapped back to the zebrafish
genome (Zv4) and assigned to a transcriptional unit if it over-
lapped a promoter, as defined by the region from -1.5 kb to
+0.5 kb relative to the corresponding TSS. In some cases a
probe was assigned to two promoter regions due to overlap-
ping TUs, either on the same or different strand. Some probes
mapped to multiple locations in the genome and these were
removed from the final analysis (excluding repeated TUs). In
addition, we expect some misannotation of probes due to
errors in the genome assembly, which is not yet complete, and
errors in identifying transcript sequences from public data-
bases, especially those transcripts that are missing their 5'
ends.

Creation of meta-gene from regions containing H3K4Me3
The set of 2 kb regions that contained positive enrichment in
the H3K4Me3 mark were collected and used to assemble a
metagene of the average composite binding in vivo. Each
region was queried for probes and these were mapped into a
set width 2 kb window at the appropriate offsets based on the
strand orientation, thus removing strandedness from the cal-
culation. Linear interpolation was used to estimate continu-
ously the fold-enrichment at each base-position within the 2
kb window. This interpolation leaves the 5' and 3' ends of the
window somewhat under-represented, and subject to higher
variability.

The metagene was then created from this collection of contin-
uous functions by calculating the mean of the values mapped
to each position by all the regions enriched by H3K4Me3
ChIP. If the offset proved to correspond to the exact location
of a probe within a particular tiled region, the values are
directly experimentally measured; alternatively, the value is
calculated by linear interpolation of the two nearest flanking
probes, as described above.

Selection of non-expressed and expressed gene lists for 
estimation of false positive and false negative rates
To estimate the rates of false positives and false negatives we
compiled a list of genes that are not expressed at gastrula
stages ('non-expressed controls') and genes that are known to
be expressed at gastrula stages ('expressed controls'). These
control genes were selected from expression information
published by Mathavan et al. [33] on the zebrafish transcrip-
tome during development, from egg to 48 hours post
fertilization. Expressed controls were selected from those that
showed peak expression at gastrula stages in the transcrip-
tome data tables [59]. From this list we eliminated genes that
were not represented on our arrays. In addition, we selected
an additional set of expressed controls that are involved in
mesodermal patterning, and thus expressed at gastrula stages
and are of particular interest to us, giving a final list of 123
Genome Biology 2006, 7:R71
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expressed genes. Non-expressed genes were similarly
selected from transcriptome analysis data tables and checked
for inclusion on our arrays, and included those that were not
expressed at any time during development, and those that
were not expressed at gastrula stage expression but had high
levels of expression in the egg, at 24 hours or at 48 hours. For
these non-expressed controls we then searched the ZFIN in
situ hybridization gene expression database [44] and the Uni-
gene EST ProfileViewer [60] and excluded those genes that
had expression reported at gastrula stages in these databases,
yielding a final list of 86 non-expressed controls.

The false negative rate was calculated after performing the
RT-PCR analysis as follows: since 5/9 (approximately 55%) of
the genes on our 'non-expressed' controls list are both called
as bound and expressed, we assume approximately 55% of all
15 positive genes are also expressed. This gives approximately
8 genes that are both called as bound and expressed and this
number was then removed from the 'non-expressed' control
list, leaving 78 'non-expressed' genes. Since approximately 7
of the genes called as bound are not expressed (based on RT-
PCR results as described above), this leads to a false positive
rate of approximately 9%.

PCR analysis
During optimization of the ChIP protocol PCR analysis was
performed to confirm the enrichment of known positive tar-
get promoters (wnt11 and bactin2) and non-enrichment of a
negative target promoter (rhodopsin). Primers and cycling
conditions are shown in Additional data file 3. Products were
run on 1.6% agarose gel and stained using SYBR gold (Invit-
rogen). Chromatin immunoprecipitation with non-specific
antibodies, such as anti-HA (Roche, Basel, Switzerland) or
with normal rabbit serum showed no enrichment of any tar-
get promoters above background.

RT-PCR analysis
Total RNA was isolated from embryos and cDNA prepared by
standard protocols. The cDNA from 75% to 85% epiboly
embryos was used as a template in semi-quantitative PCR.
For a control sample, cDNA from unfertilized eggs, 75% to
85% epiboly embryos and 24 hours post-fertilization embryos
was mixed in equal quantities (each gene tested has reported
expression at 24 hours post-fertilization or in eggs) and seri-
ally diluted to test the number of cycles required to capture
the reaction in its linear range. For the analysis shown in Fig-
ure 3, 20 ng of 75% epiboly cDNA and an equivalent reaction
volume of minus reverse transcription (-RT) reaction was
used; the control sample was 60 ng of mixed stage cDNA (20
ng of each stage). Primers and cycling conditions are shown
in Additional data file 3.

Data availability
Complete, unprocessed data have been deposited into the
public database Gene Expression Omnibus [61] with the
accession number GSE4863. Additional analysis containing p

values and ratios for bound regions can be found on the Smith
lab worldwide web site [62].

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a figure showing
an example of PCR analysis on ChIPed DNA. Additional data
file 2 describes the zebrafish ChIP-Chip protocol, giving
detailed information of the experimental procedure used.
Additional data file 3 lists the primers used in RT-PCR valida-
tion; the sequences of primers used in reverse transcription-
PCR analysis and cycling conditions for each primer pair are
given. Additional data file 4 lists probes showing enrichment
in ChIP-chip analysis. Each probe is given a chromosome and
chromosomal position based on Zv4 zebrafish genome
assembly. Additional data file 5 lists genes and transcripts
associated with a genomic region or probe that is enriched in
ChIP-chip analysis. Additional data file 6 lists genes that are
reported not to be expressed at gastrula stages and indicate if
the gene is bound (probes at the 5' end of the gene are
enriched in ChIP-chip analysis), or not bound (probes show
no significant enrichment). The table also shows the results of
RT-PCR analysis on selected genes. Additional data file 7 lists
genes that are reported to be expressed at the gastrula stage
and indicate if the gene is bound (probes at the 5' end of the
gene are enriched in ChIP-chip analysis), or not bound
(probes show no significant enrichment).
Additional data file 1Example of PCR analysis on ChIPed DNAAnti-H3 and anti-H3K4Me3 antibodies were use to ChIP DNA from gastrula stage embryos. PCR was performed on this DNA and on whole cell extract DNA that was not immunoprecipitated with primers designed against the promoter region of rhodopsin, bactin2 and wnt11. As expected, rhodopsin, which is not expressed at gastrula stages, was not enriched over anti-H3, where as bactin2, which is expressed ubiquitously, and wnt11, which is a mesoder-mally expressed gene, are both enriched over H3.Click here for fileAdditional data file 2The zebrafish ChIP-Chip protocol, giving detailed information of the experimental procedure usedThe zebrafish ChIP-Chip protocol, giving detailed information of the experimental procedure usedClick here for fileAdditional data file 3Primers used in RT-PCR validationSequences of primers used in RT-PCR analysis and cycling condi-tions for each primer pair are givenClick here for fileAdditional data file 4Bound probesProbes showing enrichment in ChIP-chip analysis. Each probe is given a chromosome and chromosomal position based on Zv4 zebrafish genome assemblyClick here for fileAdditional data file 5Annotated bound regionsGenes and transcripts associated with a genomic region or probe that is enriched in ChIP-chip analysisClick here for fileAdditional data file 6'Non-expressed' control genesGenes that are reported not to be expressed at gastrula stages and indicate if the gene is bound (probes at the 5' end of the gene are enriched in ChIP-chip analysis), or not bound (probes show no sig-nificant enrichment). The table also shows the results of RT-PCR analysis on selected genesClick here for fileAdditional data file 7'Expressed' control genesgenes that are reported to be expressed at the gastrula stage and indicate if the gene is bound (probes at the 5' end of the gene are enriched in ChIP-chip analysis), or not bound (probes show no sig-nificant enrichment)Click here for file
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