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Steganalysis-based cis-regulatory element identification<p>WordSpy, a novel, steganalysis-based approach for genome-wide motif-finding is described and applied to yeast and <it>Arabidopsis </it>promoters, identifying cell-cycle motifs.</p>

Abstract

The comprehensive identification of cis-regulatory elements on a genome scale is a challenging
problem. We develop a novel, steganalysis-based approach for genome-wide motif finding, called
WordSpy, by viewing regulatory regions as a stegoscript with cis-elements embedded in
'background' sequences. We apply WordSpy to the promoters of cell-cycle-related genes of
Saccharomyces cerevisiae and Arabidopsis thaliana, identifying all known cell-cycle motifs with high
ranking. WordSpy can discover a complete set of cis-elements and facilitate the systematic study of
regulatory networks.

Background
The comprehensive identification and characterization of
short functional sequence elements has become increasingly
important as we begin to elucidate transcriptional regulation
on a large scale. Transcriptional regulation involves a com-
plex molecular network. The interaction of transcription fac-
tors (TFs) and cis-acting DNA elements determines the
expression levels of different genes under various environ-
mental conditions [1]. Deciphering such a network is to infer
regulatory rules that can properly explain the expressions of
different genes with the regulatory elements in their promot-
ers and the presence of TFs [2,3]. Therefore, a complete set of
regulatory elements is essential for systematic analysis of
transcriptional regulation networks on a genome-wide scale.

The discovery of cis-regulatory elements in a genome has
been a challenging problem for decades. Most widely applied
approaches first cluster genes into small groups with similar
expression profiles or similar biological functions, and then
search for common short sequences (or motifs) in the regula-
tory regions of the genes in a group. This is based on the

assumption that coexpressed genes are more likely to be co-
regulated. Many efficient algorithms, including multiple local
alignment-based [4-7], word enumeration-based [8], and
dictionary-based [9], have been developed to search for sta-
tistically significant motifs from a small number of sequences.
Despite the success of these methods, this approach has
noticeable limitations. Computational gene clustering is often
inaccurate and subjective, in terms of what similarity meas-
ure to use and how many clusters to form. Importantly, many
genes belonging to a common pathway may have similar
expression patterns, but are not regulated by the same TFs.
Furthermore, transcriptional regulation is combinatorial [1],
in that a regulatory element needs to combine with various
others to function under different conditions. This means
that the same motif may appear in the promoters of genes
that express or function differently. Therefore, clustering
genes into small sets may split the genes containing a partic-
ular set of motifs into different clusters, which makes it diffi-
cult, if not impossible, to find all regulatory elements [10].
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In recent years, comparative genome analysis has been suc-
cessfully applied to the discovery of regulatory motifs [11,12].
Taking advantage of sequence conservation in related spe-
cies, this approach can effectively identify regulatory ele-
ments on a genome scale without any prior knowledge of co-
regulation or gene function. This approach is limited in some
situations, however. First, the species considered in a com-
parative analysis must be properly diversified evolutionarily.
They must be evolutionarily separated long enough to allow
nonfunctional elements to diverge. On the other hand, they
must not be evolutionarily too far apart from one another so
that functional elements remain conserved. For many appli-
cations, not many such genomes are available. Second and
more important, there exist species-specific regulatory ele-
ments, which a comparative genomic method can hardly
detect.

In this paper we propose a novel genome-wide approach to
comprehensively identify regulatory elements from a single
genome. Instead of clustering genes into groups, we use all
the genes of interest together - for instance, the genes related
to a particular biological process such as the cell cycle or the
genes responding to a particular stress condition. In this
approach, we first search for statistically over-represented
motifs as completely as possible. We then use additional
information, such as the coherency of expression profiles of
genes containing a motif and the specificity of a motif to tar-
get genes, in order to evaluate the biological relevance of the
extracted motifs so as to find truly functional regulatory
elements.

We view this genome-wide motif-finding problem from a per-
spective of steganography and steganalysis. Steganography is
a technique for concealing the existence of information by
embedding the messages to be protected in a covertext to cre-
ate a 'stegoscript' [13]. Steganalysis is the deciphering of a ste-
goscript by discovering the hidden message [13]. In this
approach, we consider the regulatory regions of a genome as
though they constituted a stegoscript with over-represented
words (that is, regulatory elements) embedded in a covertext
(that is, 'background' genomic sequences). We then model the
stegoscript with a statistical model - a hidden Markov model
[14] - consisting of a dictionary of motifs and a grammar. We
progressively learn a series of models that are most likely to
have generated the script. The final model is then used to
decipher the stegoscript as well as to extract over-represented
motifs. On the basis of this novel viewpoint, we have devel-
oped an efficient genome-wide motif-finding algorithm called
WordSpy that can discover a large number of motifs from a
large collection of regulatory sequences. Note that our techni-
cal approach of using a dictionary is inspired by the work of
Bussemaker et al. [15], in which they introduced innovative
ideas of segmenting sequences into words and building a dic-
tionary of words from the sequences.

Our WordSpy method has several salient properties. First of
all, by statistically modeling the regulatory regions as stego-
scripts, WordSpy aims to discover a complete set of signifi-
cant motifs. Therefore, instead of being trapped by some
pseudo-motifs, for example, over-represented repeats, Word-
Spy includes them in its model, making it less vulnerable to
spurious motifs. Second, WordSpy combines word counting
and statistical modeling. It applies word counting to effi-
ciently detect high-frequency words. It then enhances the
representation of words by position weight matrices (PWMs)
[16] to capture degenerate motifs. Third, WordSpy is able to
detect discriminatory motifs that can be used to properly sep-
arate two sets of sequences. Finally, by incorporating gene-
expression information and a genome-wide specificity analy-
sis, we augment the basic algorithm in order to distinguish
biologically relevant motifs from spurious ones, making the
overall method practical for genome-wide identification of
functional cis-regulatory elements, as we will demonstrate
here.

We will first evaluate the method with an English stegoscript
and 645 cell-cycle-related genes of Saccharomyces cerevi-
siae. We will then apply it to identify cell-cycle-related motifs
from more than 1,000 genes in model plant, Arabidopsis
thaliana. Furthermore, we will apply WordSpy as a discrimi-
native motif-finding algorithm by incorporating TF location
information - that is, chromatin immunoprecipitation DNA
binding microarray (ChIP-chip) data - and build a dictionary
of motifs for each known TF of budding yeast. Finally, we
compare WordSpy with a set of existing methods on a bench-
mark that includes 56 well-curated sets of sequences and
motifs in four species [17].

Results and discussion
Stegoscripts and the statistical model
The regulatory regions of a genome encode transcriptional
regulatory information using regulatory elements embedded
in background sequences. We can thus view the regulatory
regions of the genes of interest as a stegoscript, which con-
ceals the secret messages (cis-elements) with some covertext
(background sequences). The hidden secret messages are typ-
ically more conserved and statistically over-represented than
those in the covertext. This is particularly true for genomic
regulatory sequences, where a small number of TFs regulate
a large number of genes [1], making functional cis-elements
over-represented.

Consider a set of regulatory sequences or a stegoscript S =

(S1,S2,...,Sq) where Si = (Si1Si2... ) and li is the length of the

ith (i = 1, 2,..., q) sequence. Deciphering the script is to anno-
tate the sequences with a series of substrings χ = (x1,x2,...,xt),

where xj denotes the jth substring with length l(xj), which can

be a background word or a functional element. In general, a
stegoscript is a product of a grammar, by which all possible

sili
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scripts in the language can be generated by successively
rewriting strings according to a set of rules. Therefore, we
model the stegoscript statistically. The model captures regu-
latory motifs and background words by a dictionary, and
specifies how the motifs and words are used to form the ste-
goscript by a grammar. Given the statistical model, χ is just
the optimal parse over S using the words in the dictionary.

To accurately capture the transcriptional mechanism
encoded in the regulatory regions requires a complicated
grammar, which may be computationally not feasible. To
reduce computational complexity, we consider that motifs are
used independently. Therefore, we can use a stochastic regu-
lar grammar [18], which is equivalent to a hidden Markov
model (HMM) [14]. Figure 1 illustrates the model. Beginning
with a start symbol, a motif symbol M is produced with prob-
ability PM, or a background symbol B is generated with prob-

ability PB. From M, a degenerate motif Wi is produced, with

probability , from the motif subdictionary, and an exact

word w is generated with probability P(w|Wi). The process

for generating a background word from symbol B is similar.
The generated word is then appended to the script that has

been created so far and the process repeats until the whole
script is created.

We formally write the model as G = {Ψ, Θ, I}, where Ψ =

{PB,PM, } is the set of transition proba-

bilities, Θ = {Θb, Θ1, Θ2,..., Θn} is a set of emission probabili-

ties corresponding to the motifs and words in a dictionary D

= {Wb,W1,W2,...,Wn}, and I = { |Wi ∈ D} is a set of indica-

tors, where

Wb is the only word in the model that has a single base. As we

never consider a word of single base as a functional element,

Wb is always a background word, that is,  is always set to

0.

The WordSpy algorithm
The central problem of deciphering a stegoscript is learning a
statistical model with which a stegoscript was created.
Assume that a stegoscript S was generated from an unknown
model 〈D*, G*〉 of a dictionary D* and a grammar G*. With no
prior knowledge of the true model, the maximum likelihood
estimate, arg max〈D', G'〉 P(S|〈D', G'〉), is a good approximation
of 〈D*, G*〉. However, it is difficult to directly search for arg
max〈D', G'〉 P(S|〈D', G'〉), as a large number of words need to be
discovered and many unknown parameters to be optimized.
Therefore, we separate the learning process into two phases,
'word sampling' and 'model optimization', and adopt an
incremental learning strategy to progressively capture short
to long words and gradually build such a model (see Materials
and methods).

The procedure for learning the model and subsequently deci-
phering the regulatory sequences is shown in Figure 2. The
overall algorithm starts with the simplest model 〈D1, G1〉 with

only a background word Wb in D1. At the kth iteration, the

algorithm first runs word sampling to identify all over-repre-
sented words of length k. In this process, the algorithm scans
the script S once to tabulate all the words of length k in S and
their occurrences using a hash table. Every word in the table

is then tested against the current best model  which con-
tains over-represented motifs shorter than k. A word is con-
sidered over-represented if it occurs in S more often than

expected by . Furthermore, the newly discovered words

will be examined (to separate background words) and clus-
tered, if necessary, to form degenerate preliminary motifs. All
new words and motifs will be merged with the current best

dictionary  to form the next dictionary Dk. The model is

retrofitted to accommodate the new words, leading to the
next grammar, Gk. The new grammar Gk is then optimized to

A hidden Markov model for deciphering stegoscriptsFigure 1
A hidden Markov model for deciphering stegoscripts. It consists of two 
submodels, the 'secret message model' is for motifs and the 'covertext 
model' for background words. The blue boxes with dashed outlines each 
represent a word node, which is a combination of several position nodes. 
Node Wb is a single-base node and always belongs to the covertext model. 
States S, B, and M do not emit any letter.
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fit the script. The word statistics are recalculated in the model
optimization step and the insignificant words are discarded.
The process repeats until the model covers words up to a pre-
defined maximum length.

The classification of real motifs and background words is
important to the accuracy of the model. When no extra infor-
mation is available, we resort to a word significant threshold
to select putative motif words. We use the Z-score to quantify
the over-representation of a word (see 'Word sampling' sec-
tion in Materials and methods). If more information is avail-
able, such as gene-expression coherence in G-score and target
gene specificity in Zg-score (see 'Motif evaluation' section in
Materials and methods), more accurate classification can be
made.

Deciphering an English stegoscript
We evaluated the performance of WordSpy with a stegoscript
of English text that contains the first ten chapters (approxi-
mately 112,000 letters) of the novel Moby Dick embedded
within randomly generated covertext (approximately
156,000 letters). This stegoscript was created by Bussemaker
et al. [15]. We ran WordSpy with different Z-score thresholds
to find words up to length 15. WordSpy reached its best per-
formance with Z-score threshold 6. With covertext removed,
the deciphered text contains 16,522 words. Among the total
18,930 words that appear at least twice in the original text,

13,435 (70.9%) words are 100% matched to their correspond-
ing deciphered words, and 15,529 (82%) words overlap at
least 50% with their corresponding deciphered words. Only
761 (4.6%) deciphered words match less than 50% to their
counterparts in the original text. This result shows that Word-
Spy can accurately decipher the stegoscript and recover Moby
Dick from the covertext with high specificity and sensitivity
(see Additional data file 1 for a detailed analysis and more
results).

Identifying yeast cell-cycle regulatory motifs
To evaluate the performance of WordSpy on biological
sequences, we applied it to discover cis-regulatory elements
of cell-cycle related genes of S. cerevisiae [19]. To avoid bias,
we first removed homolog genes using WU-BLAST with an E-
value threshold of 10-12, resulted in 645 genes in the final set.
The promoter sequences were retrieved using the RSA tools
[20]. We compared WordSpy with three other methods,
MobyDick [15], RSA-tools [21] and Weeder [22], which can
handle a large number of sequences. We tuned these pro-
grams to get their best possible parameters. The Z-score
threshold for WordSpy was set to 3. The whole-genome anal-
ysis on the specificity of the motifs, Zg-scores, was performed
with the promoters of all the genes in S. cerevisiae. We also
used the yeast gene expression data collected in [23] to calcu-
late the G-score for each motif. As shown in Table 1, all known
cell-cycle-related cis-elements were identified with high

Components and flow diagram of WordSpyFigure 2
Components and flow diagram of WordSpy. Starting with k = 1 and a grammar G0 with a single word node Wb in background, the algorithm goes through 

the following steps, represented by the red numbers on the figure. 1. Model Gk-1 is optimized to  which contains over-represented motifs shorter 

than k. 2. Use  as a base model to detect over-represented exact words of length k. 3. Choose over-represented words for word clustering. 4. 

Evaluate all the words. Select and add background words to the background model. On the basis of similarity, cluster the rest of the words to form 
degenerate preliminary motifs. 5. Add the preliminary motifs to the motif sub-dictionary and create a new grammar Gk. 6. Optimize Gk. 7. Apply optimized 

 to decipher the script and locate motifs.
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ranking in either Zg-score or G-score. In contrast, MobyDick
failed to discover three of them, and RSA-tools and Weeder
missed four of them.

MBF and SBF are predominant TFs in the G1/S phase of the
yeast cell-cycle. Their binding motifs, MCB (ACGCGT) and
SCB (CRCGAAA) [24], are consistent with the top motifs dis-
covered by WordSpy. Among 199 discovered motifs of length
7, AACGCGT ranks the first in both Zg-score and G-score,
CGCGAAA is the second in G-score and the third in Zg-score,
and CACGAAA ranks the 10th in Zg-score and the 17th in G-
score. Another prominent motif GTAAACA (the 8th in Zg-
score and the 10th in G-score) has been reported to be the

binding motif of Fkh2 (or Fkh1) [25], which is involved in cell-
cycle control during pseudohyphal growth and in silencing of
MHRa [26]. WordSpy also identifies the binding motifs of
Ace2/Swi5 and Met4/Met28 with high G-score ranking, and
the binding motifs of Mcm1 and Ste12 with high Zg-score
ranking.

Figure 3 displays the distribution of all discovered motifs of
length 8 in reference to the Zg-score. The motifs that overlap
with some known motifs by at least six nucleotides are dis-
played in a different color. This result shows that most of the
top-ranking motifs based on the Zg-score resemble known
motifs. To facilitate motif selection, we clustered similar

Table 1

Identified known motifs in the promoters of 645 yeast cell-cycle genes

Transcription 
factors

Known motifs WordSpy Z-score Zg-score G-score Rank MobyDick RSA Weeder

Ace2, Swi5 RRCCAGCR [19] CCAGC(-) 5.4 5.2 0.0363 8/3/29 ACCCGGCTG
G

N/A N/A

GCCAGC(+) 5.3 2.6 0.0551 36/4/58

AGCCAGC(+) 4.6 2.5 0.0688 75/13/199

CCAGCAAA(-) 4.3 3.5 0.113 107/51/867

CCAGCAAG(-) 3.9 2.9 0.0976 185/67/867

GCCAGCAA(-) 3.9 3.4 0.1872 124/12/867

AGCCAGCA(+) 5.7 2.7 0.0929 189/73/867

ACCAGC [59, 60] AACCAGCA(+) 3.8 2.6 0.1983 239/8/867

Swi6, Mbp1 ACGCGT [19, 60] AACGCGT(+) 13.7 11.3 0.1816 1/1/199 AACGCGT AAACGCGT ACGCGT

GACGCGTC(+) 9.3 4.9 0.2106 41/4/867 ACGCGTC ACGCGTAA ACGCGTAA

AAACGCGT(+) 14.6 10.2 0.2093 3/5/867 AACGCGTC CGACGCGT

AACGCGTC(*) 10.8 8.9 0.2003 9/7/867 ACGCGTCA GACGCGTA

ACGCGTAA(*) 9.6 9.0 0.1341 7/36/867 ACGCGTCG AAACGCGT

ACGCGTCA(*) 8.9 7.3 0.1291 15/41/867 AACGCGTT GACGCGTG

CAACGCGT(+) 6.3 4.0 0.1014 73/59/867 AACGCGTA

Swi4, Swi6 CACGAAA [19, 
60]

CACGAAA(*) 4.6 5.7 0.0623 10/17/199 CGCGAAA ACGCGAAA ACGCGAAA

ACACGAAA(-) 6.6 4.5 0.1081 57/55/867 CGCGAAAA CACGAAAA

CACGAAAA(+) 7.1 5.5 0.1053 32/57/867 CACGAAAA ACACGAAA

CGCGAAA [60] CGCGAAA(*) 14.9 10.6 0.132 3/2/199

ACGCGAAA(*) 15.2 10.3 0.1733 1/15/867

CGCGAAAA(+) 17.7 9.4 0.1352 4/34/867

Fkh1, Fkh2 GTAAACA [25] GTAAACA(+) 8.2 7.4 0.084 8/10/199 GTAAACA GTAAACAA GTAAACAA

GGTAAACA(+) 7.2 4.6 0.1578 48/21/867 ATAAACAA AATAAACA

GTAAACAA [60] GTAAACAA(*) 9 6.6 0.098 11/66/867 AATAAACA

ATAAACAA [60] ATAAACAA(*) 8.8 5.9 0.0657 23/142/867

MCM1 TTTCCTAA [25] TTTCCTAA(+) 5.5 5.2 0.0435 35/307/867 N/A N/A N/A

Ste12 TGAAACA [61] TTGAAACA(*) 4.3 4.2 0.0647 66/145/867 N/A N/A N/A

TGAAACAA(*) 5 4.8 0.0631 46/149/867

Met4, Met28 TCACGTG [62] TCACGTG(-) 5 1.7 0.0845 129/9/199 N/A N/A N/A

Cbf1 GTCACGTG(-) 5 0.9 0.2205 661/3/867

The first two columns list the known TFs and the known binding motifs. The next five columns report the results from WordSpy, followed by the last 
three columns for the results from MobyDick, RSA tools, and Weeder. The motifs discovered by WordSpy are marked with (+) if on the up strand, 
(-) if on the down strand or (*) if on both strands. Rank is based on Zg-score and G-score, where the first number is the ranking on Zg-score and the 
second is on G-score and the third is the total number of discovered motifs of the same length.
Genome Biology 2006, 7:R49
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motifs. The motifs were first sorted by Zg-score or G-score.
From the highest to the lowest rankings, we took a motif that
had not been clustered as a seed, and grouped it with all the
motifs that shared a common substring of length 6 (out of 8
base pairs) with the seed or its reverse complementary. Com-
bining the top 20 clusters of all motifs of length 8 based on Zg-
score and G-score, all the known motifs are identified (see
Tables 3 and 4 in Additional data file 1). All these encouraging
results suggest that by combining Zg-score and G-score anal-
ysis, WordSpy can comprehensively identify real motifs from
a large set of regulatory sequences with a high specificity.

Identifying Arabidopsis cell-cycle regulatory motifs
Cell-cycle regulation in plants is more complicated than that
in yeast or even mammals. One possible explanation is that
the sessile life-style of plants requires a more sophisticated
mechanism for growth or development to adapt to adverse
environmental conditions [27]. What makes the study of the
cell-cycle in plants more appealing is that some plant cells
have surprisingly long life spans and are extremely resistant
to cancerous conditions. Understanding how plant cells are
controlled during development may shed light on the control
of human cell proliferation [27].

In this study, we applied WordSpy to identify regulatory ele-
ments of 1,081 cell-cycle regulated genes of A. thaliana, which
were identified by a high-throughput expression profiling
experiment [28]. After having removed homologous genes
with an E-value threshold of 10-12, we had 1,030 genes left for
analysis. The promoter sequences were obtained from TAIR
database [29]. We ran WordSpy to find motifs with lengths up
to 10. The Arabidopsis whole-genome transcription-profiling
data under normal growth conditions from the Weigel lab
[30] were used to calculate motif G-scores.

Figure 4 shows the distribution of 5,277 discovered over-rep-
resented words over gene specificity in Zg-score (x-axis) and
gene expression coherence in G-score (y-axis). We consid-
ered words with a G-score greater than 0.2 as biologically sig-
nificant, and used Zg-score thresholds of greater than 3.0 or
less than -1.0 to select cell-cycle-related or unrelated motifs.
With these criteria, motifs are split into six categories, as
shown in Figure 4. The motifs in region I are putative cell-
cycle-related motifs that we are mostly interested in. Region
II also contains many putative binding motifs for cell-cycle
genes, which may not be specific to cell-cycle processes. The
motifs in region IV are putative motifs that are more plentiful
in non cell-cycle genes. The motifs in regions III and V are the
ones that are statistically significant although their target
genes do not express coherently. We can consider the rest of
the words in the middle region as background words as they
do not satisfy either criterion.

There are 110 motifs in region I of Figure 4 (see Tables 5 and
6 in Additional data file 1). We clustered them to obtain 55
motifs (see Additional data file 2). We selected 14 of the 55
motifs, which are similar to some known motifs listed in the
plant motif databases PLACE [31] and PLANTCARE [32], and
present them in Figure 5.

To further evaluate whether WordSpy can indeed find func-
tional cis-regulatory elements, we analyzed these 55 clustered
motifs with respect to different cell-cycle phases. The expres-
sions of 247, 343, 131, and 247 of the 1,081 cell-cycle genes
peak in G1, S, G2, and M phases, respectively [28]. On the
basis of this target gene distribution in each phase, we calcu-
lated the specificity of each motif to every phase of the cell

Distribution of discovered yeast motifs of length 8Figure 3
Distribution of discovered yeast motifs of length 8. The x-axis is the 
genome Z-score (Zg-score) of a motif, which measures the motif's 
specificity to the cell-cycle genes. Motifs resembling known ones are 
marked in blue.
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Selected putative Arabidopsis cell-cycle-related motifsFigure 5
Selected putative Arabidopsis cell-cycle-related motifs. ID, the ranking of a motif in the overall list. The third column gives the number of cell-cycle genes 
whose promoters contain the motif. The following four columns are the number of target genes in S and M phases of the cell cycle and the corresponding 
P value. GO analysis gives the functional group with the best P value, which is shown in the last column.

MSA(YCYAACGGYY), MYB2(YAACKG), E2F(TTTYYCGYY), OCT(CGCGGATC), MYB(CNGTT), HEX(CCGTCG),
MYCATRD22(CACATG)

ID Motif logo
Cell

cycle S
S

P value M
M

P value
Known
motifs

GO analysis
(best)

GO
P value

2 122 26 9.98E-01 79 3.09E-14 MSA,MYB2
microtubule motor
activity 3.06E-06

3 188 47 9.92E-01 112 8.22E-16 MSA,MYB2

cyclin-dependent
protein kinase
regulator activity 6.61E-08

4 64 14 9.77E-01 47 1.25E-11 MSA,MYB2

cyclin-dependent
protein kinase
regulator activity 2.01E-06

8 31 19 6.50E-04 6 9.73E-01 E2F

9 6 6 1.06E-03 0 9.12E-01 OCT DNA binding 2.01E-05

20 123 25 9.99E-01 81 2.20E-15 MSA,MYB2

cyclin-dependent
protein kinase
regulator activity 6.09E-07

21 54 13 9.29E-01 34 4.14E-06 MYB nucleosome 1.99E-05

22 10 7 1.53E-02 1 9.83E-01 OCT DNA binding 7.29E-05

28 11 11 3.31E-06 0 9.89E-01 catalytic activity 3.14E-03

29 140 33 9.93E-01 96 5.30E-16 MSA,MYB2
microtubule motor

activity 1.29E-05

32 10 6 6.35E-02 2 8.96E-01 HEX DNA binding 1.31E-05

38 5 0 8.56E-01 4 4.43E-02 MYCATRD22

cyclin-dependent
protein kinase
regulator activity 1.66E-05

46 81 21 9.15E-01 51 1.09E-08 MSA,MYB2

cyclin-dependent
protein kinase
regulator activity 9.96E-04

47 85 21 9.52E-01 46 2.79E-05 MSA,MYB2
microtubule motor
activity 5.07E-04
Genome Biology 2006, 7:R49



R49.8 Genome Biology 2006,     Volume 7, Issue 6, Article R49       Wang and Zhang http://genomebiology.com/2006/7/6/R49
cycle. For example, 79 of 122 target genes containing motif 2
(ID = 2, Figure 5) are M-phase genes. When randomly select-
ing 122 genes from the set of cell-cycle genes, the chance to
have 79 M phase genes is less than 3 × 10-14. Therefore, motif
2 is very likely to be an M-phase motif. Surprisingly, all the
motifs in Figure 5 have very low p values in either M phase or
S phase. More interestingly, most motifs with low p values in
M phase match well with the mitotic-specific activation
(MSA) elements (consensus YCYAACGGYY) [33], and the
motifs with low p values in S phase resemble motifs E2F
(TTTYYCGYY) [34], Octamer and Hexamer [35], which are
known S-phase motifs.

Furthermore, to reveal possible functions for each of the 55
motifs, we calculated the enrichment of gene ontology (GO)
terms [36] within the genes containing the motif (see Materi-
als and methods). Figure 5 shows that almost every motif has
some enriched functional categories (p value < 1e-2). The
most common functional category is the cyclin-dependent
protein kinase regulator activity (CDK). Interestingly, many
motifs related to CDK are MSA elements or resemble MYB-
like motifs, suggesting that MYB-like TFs regulate cyclin
kinase-like proteins in G2M phase of the cell cycle. Motif 28
(TTCACCTAC, Figure 5) does not match with any known
motif. However, all its 11 target genes peak in S phase, and all
seven target genes with GO annotations are related to cata-
lytic activity, implying that this is a novel functional motif. We
report all new putative functional motifs in Additional data
file 2.

MSA motifs are position dependent
The top four motifs of length 7 ordered by G-score -
AGCCGTT, GACCGTT, ACCGTGG, and GGCGCCA - have
both significant Zg-score (> 3.0) and G-score (> 0.2). The first
three of these motifs resemble MSA elements (consensus
CYAACGGYY) [33]. We investigated their position
distribution on the promoters of the cell-cycle genes contain-
ing the motifs. The result is shown in Figure 6. Three MSA
motifs - AGCCGTT, GACCGTT and ACCGTTG - are signifi-
cantly over-represented near the transcription start sites
(TSSs).

We further studied the most significant motif of length 10,
ACTAGCCGTT, which is ranked the first in Zg-score (11.4)
and the second in G-score (0.718) (see Table 5 in Additional
data file 1). Figure 7 shows the expression patterns of the
genes whose promoters contain ACTAGCCGTT on either
strand. Both heat-map and profile chart demonstrate a highly
coherent expression pattern, except for three outliers,
AT3G61640, AT5G13100, and AT5G23480. Remarkably, the
loci of the motif on these outliers are far away from their TSSs,
as shown in Figure 8. Moreover, these cell-cycle genes, except
the outliers, are all M-phase related according to the experi-
ment in [28]. These results suggest that MSA motifs are posi-
tion dependent, and usually close to TSSs.

E2F binding motifs may vary in cell-cycle related and unrelated genes
Various studies have shown that in addition to the cell cycle,
the genes containing binding motif E2F appear in many func-
tional categories including transcription, stress defense, and
signaling [37]. As expected, we also identified many E2F-like
motifs in region II. Table 2 shows the discovered motifs that
match to the known E2F binding elements (consensus
TTTYYCGYY) [34]. The motifs in cluster 1 are in the motif
region I of Figure 4 with Zg-score greater than 3.0. This clus-
ter of motifs corresponds to motif 8 in Figure 5. The motifs in
cluster 2 are in the motif region II with Zg-score less than 3.0.
Obviously, the motifs in cluster 1 are more specific to cell cycle
than those in cluster 2. These two sets of motifs differ only by
two nucleotides in their core sequences. The motifs that are
more cell-cycle specific have 'GG' in the middle (TTT-
GGCGCC), whereas the motifs that are abundant in the
genome contain 'CC' in their core sequences (TTTCCCGCC).
Among the cell-cycle genes, TTTGGCGCC appears in 14 pro-
moters and TTTCCCGCC in 10 promoters. In the whole
genome, 100 genes have TTTGGCGCC in their promoters
and 257 genes have TTTCCCGCC.

In summary, these observations indicate that the preferential
cell-cycle-related E2F motif is TTTGGCGCC, and the non-
cell-cycle related E2F motif is TTTCCCGCC. In other words,
the E2F binding motifs differ based on whether or not they
are cell-cycle related. Our results also demonstrate that the
WordSpy method can detect such subtle and important dif-
ference in regulatory elements.

Finding discriminative motifs
Given two sets of scripts or sequences, a discriminative motif
is such a motif that is over-represented in one script but not
in the other. WordSpy is, in essence, an algorithm for finding

Distribution of the locations of putative Arabidopsis motifsFigure 6
Distribution of the locations of putative Arabidopsis motifs. The location 
distribution of the top four putative motifs of length 7 in the promoters of 
Arabidopsis cell-cycle genes is shown.
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discriminative motifs, because of its intrinsic feature of
modeling motifs and background words in an integral model.
Here, background words can be extracted from one set of
sequences (negative set), while the discriminative motifs are
identified from another set of sequences (positive set).

We applied WordSpy as a discriminative algorithm to find
regulatory motifs in S. cerevisiae. We constructed positive

and negative sequence sets based on the ChIP-chip experi-
ments of Lee et al. [38]. For a particular TF, we selected as the
positive dataset those promoters that the TF could bind to
with p values < 0.01 in the ChIP-chip experiments and as the
negative dataset those promoters with p values > 0.99. We
also applied two widely used algorithms, MEME [5] and Alig-
nACE [7] to the same data. MEME was executed with a sixth-
order Markov model on the yeast noncoding regions as back-
ground. Table 3 lists the motifs that are closest to the known
cell-cycle-related motifs from these three algorithms. As
shown, WordSpy not only found all known motifs for each TF
but also the known motifs of cofactors. MEME and AlignACE
were able to find most known motifs, but missed some bind-
ing sites of cofactors.

Evaluation with a benchmark study
Recently, Tompa et al. [17] developed a benchmark of a set of
well-curated regulatory sequences and cis-regulatory ele-
ments of budding yeast, fruit fly, mouse, and human for eval-
uating motif-finding algorithms. They introduced seven
statistical measurements to assess the performance of 13
motif-finding programs. An interesting observation on their
results is that the enumeration-based methods, represented
by Weeder [22] and YMF [8], outperformed the model-based
approaches, represented by MEME [5] and AlignACE [7].

Expression patterns of Arabidopsis genes associated with ACTAGCCGTTFigure 7
Expression patterns of Arabidopsis genes associated with ACTAGCCGTT. The gene-expression profiles are highly coherent except three outliers - 
AT3G61640, AT5G13100, and AT5G23480. (a) Heat-map analysis of microarray expression patterns. (b) Profile analysis of microarray expression 
patterns. Expression profiles are clustered into two groups. The profiles in both red and blue have similar patterns, but the profiles in red have relatively 
low values.

(a) Heat map (b) Profile

AT3G61640 AT5G23480AT5G13100

Distribution of the positions of the motif ACTAGCCGTT in the promoters of Arabidopsis cell-cycle genesFigure 8
Distribution of the positions of the motif ACTAGCCGTT in the 
promoters of Arabidopsis cell-cycle genes.
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Almost all the sets of sequences in the benchmark are rela-
tively small; none of them has more than 35 sequences.
Aimed at finding motifs from a large number of sequences, for
example, more than 1,000 promoters of genes related to cell
cycles in Arabidopsis, WordSpy was not originally designed
to deal with a small number of sequences. Nevertheless, it can
be used to find motifs from a small set of sequences and has a
very competitive performance, as we show here. We applied
WordSpy to the sets of sequences in the benchmark and com-
pared it with the other programs studied by Tompa et al. [17].
For fair comparison, we did not use gene-expression informa-
tion in WordSpy, but rather used only genomic sequences to
calculate the Zg-scores. Moreover, although WordSpy discov-
ered a set of motifs for each sequence set, we reported the
most significant motif with some selection criteria. For all the
experiments, we built a dictionary up to word length 10. Then
we filtered out the motifs with Zg-scores less than 4. Finally,
we selected the motif with the highest Z-score or Zg -score
depending on their site distributions. We always chose the
ones that are close to the TSSs.

Figure 9 shows the comparison results of WordSpy with the
13 programs (Weeder [22], YMF [8], RSA-tool [21], Quick-
Score [39], AlignACE [7], ANN-Spec [40], MEME [5],
Consensus [6], MIRTA [41], GLAM [42], Improbizer [43],
MotifSampler [44], SeSiMCMC [45]) on the seven statistics
introduced in [17]. A detailed description of these statistics is
available on the benchmark website [46]. As shown in Figure
9 and Additional data file 3, WordSpy outperforms the other
programs by all the measures. Figure 10 shows true positive
versus false positive in both nucleotide level and site level for
all the programs. WordSpy has the highest numbers of true
positives and relatively low numbers of false positives in both
cases. The success of WordSpy may be due to the following
reasons. First, WordSpy aims to discover all over-represented
motifs; the chance of it missing a significant motif is low. Sec-
ond, the Zg-scores computed in WordSpy help it to select the

right motifs that are specific to a given set of sequences.
Third, WordSpy uses a strategy of first searching for over-rep-
resented exact words and then combining them to form
degenerate motifs. This strategy makes the motif representa-
tion in WordSpy more stringent than that in the other meth-
ods, and as a result, it has a smaller false-positive rate. Note
that WordSpy performs better on the budding yeast and
human datasets than on the fruit fly datasets.

Conclusion
We propose a new approach to the challenging problem of
genome-wide motif finding, which combines a novel stega-
nalysis method for discovering over-represented motifs and
methods for selecting biologically significant motifs. By tak-
ing a steganalysis perspective on the motif-finding problem,
we were able to accurately identify a large number of motifs of
nearly optimal lengths. By considering all the genes of inter-
est altogether, we avoided the problem of subjectively
partitioning the genes into small clusters, which may make
some motifs difficult to detect. By applying our approach to
all cell-cycle-related genes in budding yeast and A. thaliana,
we demonstrated its power as an effective genome-wide motif
finding approach that compared favorably to many existing
methods.

The core motif-finding algorithm, WordSpy, combines both
word counting and statistical modeling. Like word-counting
methods, WordSpy can simultaneously detect a large number
of putative motifs. Unlike the existing word-counting meth-
ods, however, the wording-counting procedure of WordSpy is
progressive and retrospective. It considers short to long
words, adjusts the over-representation of shorter words after
examining longer ones, and subsequently eliminates not truly
over-represented shorter words. As a result, WordSpy pro-
duces fewer spurious motifs and is able to find motifs with
optimal lengths. Furthermore, instead of using statistical

Table 2

Discovered E2F motifs with G-score greater than 0.2

Motif Zg-score Z -score G -score Number of 
occurrences

Number of 
promoters

Known motifs

Word cluster 1:

TTGGCGCCTC(-) 3.768 11.6 0.633 4 4 E2F(TTTYYCGYY)

TTTGGCGCCT(-) 4.384 9.5 0.438 5 5 E2F(TTTYYCGYY)

TGGCGCC(*) 3.006 5.6 0.255 20 20 E2F(TTTYYCGYY)

Word cluster 2:

TTTCCCGCCA(-) -0.598 12.9 0.508 6 5 E2FANTRNR(TTTCCCGC)

TTTCCCGCC(+) -0.613 4.7 0.289 5 5 E2FANTRNR(TTTCCCGC)

TTCCCGC(+) 0.236 5.7 0.285 36 32 E2FANTRNR(TTTCCCGC)

TTTCCCGCT(+) 0.227 4.3 0.273 7 7 E2FANTRNR(TTTCCCGC)

Motifs in cluster 1 are in motif region I (Figure 4) with Zg-score greater than 3.0. Motifs in cluster 2 are in motif region II with Zg-score less than 3.0. 
The motifs are marked with (+) if on the up strand, (-) if on the down strand or (*) if on both strands. Number of occurrences is the number of 
occurrences of a motif and Number of promoters is the number of promoters containing the motif.
Genome Biology 2006, 7:R49
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models to characterize a small number of motifs with multi-
ple local alignments, WordSpy models a large number of
motifs, their compositions, and their usage to fit to the whole
of the given sequences. Consequently, all significant words in
regulatory regions can be identified.

WordSpy is a dictionary-based approach, which was initiated
in the innovative MobyDick algorithm by Bussemaker et al.
[15]. Nevertheless, we significantly extended their work in
many important aspects. First, we took a novel
steganographic view of the problem of motif finding. This
allows us to combine a grammar with a dictionary in a statis-
tical model to capture both conserved motifs and background
words. Second, WordSpy accurately quantifies the over-rep-
resentation of a word by considering the probability that the
word can be generated by the best model that has been built
so far, whereas MobyDick computes the over-representation
by counting the occurrences of a word in a large synthetic
dataset. Third, WordSpy considers only those words that

occur in the given sequences without enumerating all possible
words, which saves a substantial amount of computation,
especially for long words.

In the current implementation of WordSpy, we assumed that
the motifs and words in a dictionary were used
independently. For some applications, however, spatial rela-
tionship among motifs may be biologically important. For
such cases, we may resort to a more complex grammar, such
as stochastic context-free or context-sensitive grammar [18].
However, the incurred computational cost could be prohibi-
tively high for even small problems. A more efficient way to
capture motif correlations is to construct motif modules using
the motifs identified by a simple grammar model. Similar
post-processing strategies have been proposed [47,48].

In this research, we adopted two schemes to measure the bio-
logical significance of motifs. One is the expression coherence
of the genes whose promoters contain a motif, and the other

The results of a comparison of 14 motif-detection programs on a benchmark study [17]Figure 9
The results of a comparison of 14 motif-detection programs on a benchmark study [17]. At the nucleotide level, sensitivity (nSn), positive predictive value 
(nPPV), performance coefficient (nPC), and correlation coefficient (nCC) were measured. With nTP, nFN, nFP and nTN as nucleotide-level true positive, false 
negative, false positive, and true negative, respectively, nSn = nTP/(nTP + nFN); nPPV = nTP/(nTP + nFP); nPC = nTP/(nTP + nFN + nFP); and nCC = (nTP·nTN - 

nFN·nFP)/ . At the site level, sensitivity (sSn), positive predictive value (sPPV), and average 

site performance (sASP) were measured. With sTP, sFN, sFP as site-level true positive, false negative, and false positive, respectively, sSn = sTP/(sTP + sFN); 
sPPV) = sTP/(sTP + sFP; and sASP = (sSn + sPPV)/2.
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is the specificity of a motif to the genes of interest with respect
to the rest of the genome. Similar ideas have been proposed
[49]. As shown in this study, these two biological relevance
measures are effective in identifying cell-cycle-related TF-
binding motifs of yeast and A. thaliana. However, we need to
caution that a high G-score may not necessarily and
sufficiently mean a good motif, a similar restriction to the
clustering-first approaches, and that gene-expression infor-
mation may not be available for all genomes. Therefore, we
suggest using the Zg-score as the major criterion, and the G-
score and other information as supports.

In this study, we applied our approach to identify significant
cis-elements from sequences of a single species. Like most
algorithms that use information of a single species, WordSpy

may be vulnerable to noisy promoter sequences as a result of
the uncertainty of the annotation, especially in the genomes
of higher eukaryotes. A comparative approach may have an
advantage in such situations by utilizing conservation infor-
mation from multiple species. Therefore, we will consider
using evolutionary information to improve our method in
future work. Nevertheless, computational tools for large-
scale de novo motif finding for a single species are still impor-
tant, especially for applications where no sequences of closely
related species are available and for problems where species-
specific motifs are needed. It is interesting to note that single-
species motif finding can be competitive when compared with
comparative genomics methods using multiple species [50].

Materials and methods
Word sampling
The goal of word sampling is to discover over-represented
motifs as completely and accurately as possible. Word sam-
pling determines the structure of the model and initializes its
parameters. For biological sequences, a regulatory motif is
usually represented by a series of position profiles, each of
which is the distribution of four nucleotides at that position.
In our model, the emission probability of each position node
is equivalent to such a profile. However, such motifs, named
as 'profile motifs', exist in a continuous space. It is almost
impossible to comprehensively search for all over-repre-
sented profile motifs directly. Here, we combine methods of
word counting and statistical modeling. We apply a word-
counting method to detect over-represented words in the dis-
crete sequence space of four nucleotides, and then cluster
similar words to form a profile motif. All resulting profile
motifs will be further improved in the model optimization
phase.

We develop an efficient algorithm for word sampling to iden-
tify all over-represented words of length k in the sequence

space against the optimal model  in linear time and lin-

ear space complexity. The algorithm scans the script S once,
tabulates, using a hashing scheme, all exact words of length k
in S, and computes their over-representativeness. A word is
considered over-represented if it occurs more frequently in S

than it could be generated by the current best model .

We measure the over-representativeness by a Z-score. Let Nw

be the number of occurrences of a word w in S and random

variable w be the number of occurrences of w in a script

with the same length as S which were supposedly generated

by model . Denote E( w) and σ( w) as the mean and

standard deviation of w. The Z-score of w is defined as Zw

= (Nw - E( ))/σ( w). It is nontrivial to compute the statis-

tics of random variable w. Consider a word w of length k in

True positives and false positives of the 14 motif-detection programs comparedFigure 10
True positives and false positives of the 14 motif-detection programs 
compared. (a) Nucleotide-level true positive (nTP) is the number of 
nucleotide positions in both known sites and predicted sites; nucleotide-
level false positive (nFP) is the number of nucleotide positions not in 
known sites but in predicted sites. (b) Site-level true positive (sTP) is the 
number of known sites overlapped by predicted sites; site-level false 
positive (sFP) is the number of predicted sites not overlapped by known 
sites.
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a sequence of length L generated by model . There are

various ways to produce w using the model, for example, by
concatenating words of a single letter, or by merging a word's
suffix with another word's prefix. To compute the expected

number of occurrences of w, E( w), we define (i) (and

respectively (j)) to be the set of words in  whose suf-

fixes (and respectively prefixes) match the first i (and respec-

tively the last j) letters of w. The expectation E( w) can be

computed as

where

and w[j,k] represents the subsequence of w from its jth to kth

positions,  is the transition probability of motif Wu, and

 and  are the emission probabilities of the last i

and first j positions of Θu, respectively. The computation of

σ( w) is complex and costly [51,52]. Following the practice

in the existing methods, in our current implementation, we

approximate σ( w) by E( w).

All the words with Z-scores greater than a threshold are con-
sidered over-represented. Thereafter, all new words are clas-
sified into background words or motif words with some motif
evaluation methods. Two evaluation methods will be
described in the section on 'Motif evaluation' below. After
evaluation, background words are added to background sub-

dictionary of . The motif words are further clustered to

form profile motifs.

The current implementation of word clustering is a greedy
algorithm. Let C = {w1,w2,...,wm} be a set of words of length k,

sorted in a non-increasing order of their Z-scores. From the
beginning to the end of list C, we take a word wj as a seed and

search the words in C that match wj by at least κ letters, where

κ is determined so that the chance of two random words of
length k having κ matched letters is less than 0.001. All such
matched words are then merged with wj and subsequently

removed from the seed candidate list. The procedure termi-
nates after all seeds have been examined. This heuristic
assumes that the degeneracy is uniform over all positions of a
motif. Regulatory motifs may, however, have one or two core
parts that are more conserved than their flanking sequences,
which sometimes may be 'do-not-care' positions. Fortunately,

the current model  keeps all short but over-represented

motifs that may include those possible cores of longer motifs.
We can also make a nonuniform seed by parsing a word in C

through , finding some cores (substrings), fixing the

seed at those core positions, and allowing mismatches at the
other positions. Note that these word clusters are not final.
During the model optimization, word clusters are dynami-
cally changed as profile motifs are updated.

At the end of word sampling, the new profile motifs are added

to the motif sub-dictionary of  (IW is set to 1) to form the

next dictionary Dk. The model is retrofitted to accommodate

the new motifs, leading to the next grammar Gk. The new

model Gk is then optimized in the model optimization phase.

The overall process repeats until the model covers motifs up
to the maximum length.

Model optimization
The goal of model optimization is to optimize the profile
motifs as well as their usage probabilities. In this phase, motif
statistics are recomputed and insignificant motifs are dis-
carded. Given a stegoscript S and a grammar Gk = (Ψ, Θ, I),

where I has been determined in word sampling, an optimized

grammar  can be derived using the expectation maximiza-

tion (EM) algorithm [53].

Without loss of generality, we view a set of sequences as a long

sequence S = s1s2...sq. Let  = (Ψ(t), Θ(t)) be Gk's parameters

in the tth iteration. We can adopt a dynamic programming
forward-backward algorithm [14] to compute the most prob-
able state when observing sl ∈ S. Specifically, we compute the

probability of observing sl at the jth position of a motif W

given Ψ(t) and Θ(t) as follows,

where W[j] is the jth position of W, f(µ) is the probability of

observing S up to sµ (inclusive) given , µ = i - k, ρW =

PW(IWPM + (1 - IW)PB), and b(ν + 1) is the probability of

observing S from Sν + 1 (inclusive) to the end of S, ν = i - k +

l(W), and l(W) is the length of W. Function f(i) can be recur-

sively computed as f(i) = ·τW(i - l(W) + 1, i)·f(i -

l(W)). Similarly b(i) can be computed as b(i) =

·τW(i, i + l(W) - 1)·b(i + l(W)). Evidently,

P(S| ) = f(q) = b(1).
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With this posterior probability, we can easily have,

 and

, where

 is the average number of Wi likely to be observed and

(ς, j) is the average number of letter ς likely to be

observed at the jth position of Wi, in all the possible parses of

S given Ψ(t) and Θ(t). On the basis of the maximum likelihood
principle, a model that fits the data better will have the follow-
ing parameters,

where Λ is the alphabet, ς ∈ Λ, j = 1,2,...,l(Wi), l(Wi) is the
length of Wi, and δ (x, y) equals 1 if x = y, or 0 otherwise. The
model optimization is done iteratively using equations in (3)
until convergence.

In this procedure, the computation of the forward-backward
algorithm becomes more costly when the number of motifs in
the dictionary increases because its time complexity is
O(L·N), where L is the sequence length and N the size of the
dictionary. We introduce a hash scheme to index a word w
directly to the profile motifs that may emit w in the diction-
ary, which reduces the average cost of forward-backward
algorithm to O(αL), where α is the average link length of the
words in the hash table. The links are initially created during
word clustering. When a profile motif is generated from a
word cluster, every word in the cluster will add a link to the
motif in its hash field. Because a word may appear in multiple
clusters, its hash field may contain multiple links. These links
will also be dynamically changed at the end of each iteration,
as the profile motifs are updated.

Motif evaluation
WordSpy is designed to identify a complete list of putative
motifs and usually gives a large number of significant words.
How to separate true motifs from background words is criti-
cal. As the covertext consists of random strings, a proper Z-
score threshold can be used to filter out most background
words. However, the regulatory regions of a genome are not
purely random. There exist many highly over-represented
pseudo-motifs that make it harder to find real, functional
motifs. Fortunately, functional motifs often have intrinsic
properties that make them separable from spurious ones.

Table 3

Discovered motifs using positive and negative data

Transcription 
factors

Known motifs WordSpy MEME AlignACE

ACE2 CCAGCA GCTGG(1) CCAGC(2) GCTGGC(1) AACCAGC(2) AACCAGCA(7) AACCAGC(12)

Fkh1 GTAAACA GTAAACA(1) TGTTTAC(2) GTAAACAA(1) TTGTTTAC(2) GTAAACAA(1) AAANGTAAACA(5)

Fkh2 GTAAACA GTAAACA(1) TGTTTAC(2) GTAAACAA(1) TTGTTTAC(2) TTGTTTAC(1) AANRWAAACA(3)

Mbp1 ACGCGT ACGCGT(1) AACGCGT(1) ACGCGTT(2) AACGCGTT(2) RACGCGWY(3)

CRCGAAA GACGCGA(3) TCGCGTC(5) ACGCGAA(6) n/a ACGCGWAAAA(9)

Mcm1 TTTCCTAATTAGGAAA TAGGAAA(1) TTTCCTAA(9) TTAGGAAA(10) CCTAATTAGG(1) TTNCCNNNTNNGGAAA(1)

Met4 TCACGTG CACGTGA(1) TCACGTG(2) CACGTGA(1) CACGTGAY(2)

AAACTGTGG GTGGC(1) CCACA(3) TGTGG(5) CTGTG(6) CCACAGTT(3) AAACTGTGG(4)

TGTGGC(2) CCACAGT(3) GCCACAC(4) ACTGTGG(5) AACTGTGG(7)

Met31 AAACTGTGG TGTGGC(1) GCCACA(2) GCCACAC(2) TGTGGCG(10) AAAANTGTGGC(4)

TCACGTG CACGTGA(1) TCACGTG(3) GCACGTGA(2) CACGTGANNT(7)

Stb1 ACGCGA AACGCG(4) TCGCGTT(3) TCGCGTT(3) TTCGCGTT(3) AACGCSAAAA(3)

CRCGAAA TTCGCG(1) TTTCGCG(1) TTTGGCG(2) TTTCGTG(5) CGCGAAAA(1) AACGCSAAAA(3)

ACGCGT ACGCGT(3) n/a n/a

Ste12 TGAAACA TGAAACA(1) ATGAAAC(2) TGAAACAA(2) TGAAACA(2) ATGMAAC(13)

Swi4 CGCGAAA ACGCGAA(1) GACGCGA(2) AAACGCG(3) CACGAAA(7) GACGCGAA(1) RACGCGAAAA(2)

ACGCGT AACGCGT(10) n/a n/a

Swi5 CCAGCA GCTGG(1) CCAGC(2) n/a n/a

Swi6 ACGCGT ACGCGT(1) AACGCGT(2) ACGCGTT(3) AACGCGTT(2) AAACGCGW(4)

ACGCGA AAACGCG(5) CGCGTTT(6) ACGCGAA(10) TTCGCGT(12) TTTCGCG(3) AAACGCGW(4)

The table lists the motifs found by three algorithms which are closest to the known regulatory motifs of the 12 yeast cell-cycle TFs. Promoters were 
chosen based on the ChIP-chip experiments of Lee et al. [38]. The rankings from each algorithm are included in parentheses. The rankings for 
WordSpy are among the words of the same length.
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Specificity to the target promoters
An extracted motif cannot be considered as a genuine motif
specific to the genes of interest if it is prevalent in other pro-
moter regions of the genome. We utilize this property to dis-
criminate real motifs from fake ones. This is done by a whole
genome analysis with a Monte Carlo simulation of thousands
of runs. In each run, a set of promoters are randomly selected
from the genome and the occurrence of a motif is counted. A
genome Z-score, shortened as Zg-score, is calculated to meas-
ure the specificity of the motif to the target promoters from
which it was discovered with respect to randomly selected
promoters. A high positive Zg-score is desired, as it means
that the motif is unlikely to be a background word.

Gene-expression coherence
Statistically a set of genes sharing a motif will have more sim-
ilar expression profiles than a set of arbitrary genes. There-
fore, we can measure the likelihood of a motif being
biologically meaningful by the coherence of the expressions of
all the genes whose promoters contain the motif. We use the
average coherence of pairwise gene expression to measure the
coherence of a set of expression profiles. We call this measure
the G-score, where G stands for genes. A higher G-score
indicates a more biologically significant motif. The pairwise
gene-expression coherence can be measured in many ways,
such as Euclidean distances and Pearson correlation coeffi-
cients. Here, we present our results using Pearson correlation
coefficients. We have also analyzed the expression coherence
score in [49] and a normalized version of the G-score. Our
results on yeast (see Additional data file 1) indicate that the
simple Pearson correlation-coefficient G-score works slightly
better than the other two.

GO functional analysis
To determine whether any GO terms are enriched in a speci-
fied list of genes, we use GO::TermFinder perl module[54] to
calculate a p value with accumulative hypergeometric
distribution,

where N is the total number of genes, M is the number of
genes annotated to have a specific function, n is the number
of genes tested, and k is the number of genes tested which are
annotated to have the specific function. The p values are
adjusted by Bonferroni corrections for multiple tests [55]. GO
annotations of Arabidopsis were retrieved from TAIR data-
base (version January 2006) [56]. The significantly enriched
functional categories were discovered with a false-discovery
rate (FDR) of less than 0.05 [57].

WordSpy webserver
An online server has been set up for the WordSpy algorithm
to support direct access to the software at [58].
Additional file 1Click here for fileAdditional file 2Click here for fileAdditional file 3Click here for file

Additional data files
Additional data are available with this article. Additional data
file 1 contains supplementary material; Additional data file 2
contains Arabidopsis cell-cycle motifs; Additional data file 3
contains evaluation results on the benchmark.
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