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RNA interference pinpoints regulators of cell size and the cell
cycle
Megan J Cully* and Sally J Leevers†

Addresses: *Signal Transduction Laboratory and †Growth Regulation Laboratory, Cancer Research UK London Research Institute, 44
Lincoln’s Inn Fields, London WC2A 3PX, UK.

Correspondence: Sally J Leevers. Email: sally.leevers@cancer.org.uk

Abstract

Cell-based genome-wide RNA interference screens are being used to address an increasingly
broad spectrum of biological questions. In one recent screen, Drosophila cell cultures treated with
double-stranded RNA were analyzed by flow cytometry, providing a wealth of new information
and identifying 488 regulators of the cell cycle, cell size, and cell death.
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The growth of an organism is the net result of a variety of

processes, including changes in cell size, cell division and

apoptosis. These processes are regulated by intricate, inter-

related molecular networks, and their disruption can have

major biological consequences. In particular, the relation-

ship between changes in cell size and the cell cycle has long

fascinated researchers. It is complex, poorly understood, and

varies according to the organism, tissue type and develop-

mental context. In yeast, large-scale genetic screens have

uncovered many genes involved in cell growth and the initia-

tion of DNA synthesis (S phase) [1,2]. It is now clear that

yeast cells must grow to a certain minimal size before start-

ing DNA synthesis, providing a ‘cell size checkpoint’ at the

transition from the preceding G1 phase to S phase (the G1/S

transition). Yeast is a unicellular organism, however, and

there is increasing evidence that the relationship between

cell growth and cell division may be different in metazoans.

Excitingly, recent technical advances in high-throughput RNA

interference (RNAi) mean that large-scale screening

approaches, somewhat analogous to the genetic screens in

yeast, can now be applied to cultured metazoan cells.

Drosophila hemocyte cell lines have emerged as popular cell

systems for this experimental approach for a number of

reasons. First, they are very amenable to RNAi mediated by

double-stranded RNA (dsRNA): dsRNA molecules of more

than 500 bp can be easily introduced into these cells and are

rapidly processed into short interfering RNAs (siRNAs).

Second, there are significantly fewer genes in Drosophila than

in mammals, making the mammoth undertaking of a genome-

wide screen a little less daunting. Finally, there is less genetic

redundancy in Drosophila than in mammals, so depletion of

just one gene is more likely to reveal a phenotype.

Genomic screens for the total complement of protein kinases

(the kinome) and general genome-wide screens have been

performed in Drosophila cell cultures using diverse readouts

such as cell shape, resistance to bacterial infection and tran-

scriptional activity [3-8]. Bjorklund et al. [9] have recently

published one of the most comprehensive screens to date, in

which they searched on a genome-wide scale for dsRNAs

that alter cell size, cell-cycle distribution and cell death. The

dataset they generated provides an excellent starting point

for many new avenues of research. At the same time, this

massive undertaking highlights some of the bioinformatic

challenges associated with screens on this scale. For

example, the data generated can be analyzed and presented

in various ways to highlight the different phenotypic effects

(see the supplementary data accompanying [9]).

The Taipale lab [9] used dsRNAs corresponding to 11,971

individual cDNAs to target the silencing of approximately



70% of known Drosophila genes. After 4 days culture, flow-

cytometry profiles were generated for each dsRNA treatment

in triplicate to provide information on the distribution of

cells in different phases of the cell cycle as well as cell size.

The simultaneous effect of each dsRNA on six different cel-

lular phenotypes was recorded: the percentage of cells with a

DNA content of 2N (percentage of cells in G1; 2N denotes

cells in G1); 4N cells (percentage of cells in G2, the phase

after the DNA has been replicated); less than 2N (percentage

of dying cells); and greater than 4N (percentage of cells with

defective cytokinesis); as well as the average cell size of the

G1 population (G1 cell size), and the G2 population (G2 cell

size). A dsRNA was considered a ‘hit’ if it changed one of

these percentages relative to control cells by more than 5

standard deviations. The phenotypes of all the hits were then

clustered using an unbiased approach, allowing the authors

to identify groups of genes whose downregulation results in

similar phenotypes. In many cases, genes with similar

known functions clustered tightly together, but a number of

new or unexpected groups of genes were also identified.

Identifying genes involved in cell-cycle
progression 
One major aim of the screen by Bjorklund et al. [9] was to

identify genes involved in cell-cycle progression by screening

for dsRNAs that alter the proportion of cells in different

phases of the cell cycle. Although these data are informative

in themselves, more can be learnt when they are combined

with data on any simultaneous changes in cell number. This

is best illustrated by an example. dsRNAs can increase the

percentage of cells in G1 either by delaying progression from

G1 to S phase or by accelerating progression through M

phase (mitosis), and cell-number data can distinguish

between these two possibilities. Cyclin E is known to

promote the transition from G1 into S phase, and its deple-

tion increased the proportion of cells in G1, presumably by

delaying their progression into S phase. Such an effect would

have been accompanied by a reduction in cell number. The

protein kinase Wee1 inhibits progression through G2 and M

phase, and its depletion also increased the proportion of

cells in G1. In this case, however, the increased percentage of

the population in G1 is likely to reflect accelerated progres-

sion through M phase, and would therefore be accompanied

by an increase in cell number. Unfortunately, high-through-

put flow cytometry does not allow the simultaneous collec-

tion of reliable cell-number data. The current dataset might

be fruitfully exploited, however, by identifying the dsRNAs

that altered cell-cycle distribution, and then carrying out a

secondary screen of those dsRNAs to determine their effect

on cell number.

Silencing of genes encoding components of the small and

large ribosomal subunits resulted in cellular phenotypes that

clustered into three distinct groups. dsRNAs corresponding

to one group of ribosomal proteins increased the percentage

of cells in G1, decreased the percentage of cells in G2,

increased the percentage of cells undergoing apoptosis and

decreased both G1 and G2 cell size. It is tempting to specu-

late that these cells are impaired in their ability to synthesize

proteins and progress more slowly through G1/S, perhaps

because of reduced G1 cyclin synthesis. They are also

impaired in their ability to grow, consistent with the known

role of protein synthesis in cell growth; the increase in apop-

tosis may be due to a reduction in the translation of proteins

necessary for cell survival. Depletion of the second group of

ribosomal proteins seemed to cause a G1 arrest, as it

resulted in an even more marked increase in the G1 popula-

tion at the expense of the G2 population, with little effect on

apoptosis and no effect on cell size. Finally, dsRNAs corre-

sponding to a third group of ribosomal proteins increased

apoptosis but had no effect on the cell cycle or cell size.

While it is possible that the ribosomal proteins in these dif-

ferent groups have different functions, it is perhaps more

likely that the different phenotypes simply reflect different

efficiencies of RNAi. For example, slightly decreased ribo-

some function might result in a G1 arrest, whereas complete

ablation of ribosome function might induce apoptosis irre-

spective of the cell-cycle phase. Thus, the group with a pri-

marily apoptotic phenotype would contain the most effective

dsRNAs, whereas the group with a cell-cycle arrest-like phe-

notype would contain the least effective dsRNAs. To test this

hypothesis, one could treat Drosophila S2 cells with increas-

ing amounts of dsRNA corresponding to representative ribo-

somal proteins from each of the three groups in an attempt

to reproduce all three phenotypes.

Identifying genes that regulate cell size 
Another aim of the screen was to identify genes whose down-

regulation alters cell size. Becuase cells grow as they

progress through the cell cycle, dsRNAs that increase the

proportion of cells in G2 will also increase the mean cell size

of the entire cell sample without necessarily having an inde-

pendent effect on cell growth. Bjorklund et al. [9] got round

this problem by gating the flow-cytometry data and analyz-

ing the size of cells in G1 and G2 separately. A number of

genes were identified whose depletion increased both G1 and

G2 cell size without having any effect on the distribution of

cells in the cell cycle. In theory, these genes might represent

proteins which, when depleted, allow increased growth, or

proteins whose depletion delays cell-cycle progression

without having an effect on growth or the distribution of

cells in the cell cycle. These two possibilities could be distin-

guished by examining the effect of these dsRNAs on cell

number. Intriguingly, many of these hits for increased cell

size were identified by Computed Gene (CG) numbers only

(the CG nomenclature refers to genes of unknown function).

The way in which these genes affect cell size is hard to

predict but may represent an untapped source of informa-

tion. Some of these genes contain identifiable protein

domains and have potential orthologs in other organisms;

219.2 Genome Biology 2006, Volume 7, Issue 5, Article 219 Cully and Leevers http://genomebiology.com/2006/7/5/219

Genome Biology 2006, 7:219



thus, their functions may also be conserved. Some, for

example, are homologous to known transcription factors;

CG5684 and CG1884 are similar to components of the

general transcriptional machinery, while CG1024 and

CG18081 resemble zinc finger proteins.

The insulin signaling pathway leading to activation of the

protein kinase Tor is a well known regulator of growth and

can alter cell size in both Drosophila and mammals [10].

Activating insulin/Tor signaling increases cell and organism

size, whereas inhibiting this pathway has the opposite effect.

Despite the well known role of this signaling pathway in cell-

size regulation, only one of its known components, Tsc1, was

identified by Bjorklund et al. [9]. Tsc1 is a negative regulator

of the insulin/Tor pathway, so its depletion is predicted to

increase cell size. Although dsRNA-mediated RNAi silencing

of the Tsc1 gene did cause a modest increase in G1 and G2

cell size, it also caused defective cytokinesis, and hence Tsc1

clustered with other genes whose downregulation gave a

phenotype including defective cytokinesis. By searching

through the data manually, Bjorklund et al. [9] found that

dsRNA-mediated RNAi against eight other components of

the insulin/Tor pathway gave weak but detectable pheno-

types. Surprisingly though, they primarily affected the cell

cycle rather than cell size. Activation of this pathway in vivo,

through the mutation of negative regulators or the over-

expression of positive regulators, decreases the proportion of

cells in G1 and increases the proportion of cells in S phase

and G2/M [11-13]. Conversely, inhibiting the pathway

increases the proportion of cells in G1 [13]. The data pro-

vided by this RNAi screen are consistent with these observa-

tions: inactivation of the pathway reduced the proportion of

cells in G1. It is, however, unclear why depletion of the pro-

teins on this pathway had such a weak effect on cell size -

modulation of the insulin pathway in Drosophila S2 cells by

dsRNA-mediated RNAi can induce changes in cell size of

more than 25% ([14] and M.J.C. and S.J.L., unpublished

observations). Perhaps different culture conditions, varia-

tion among S2 cell lines, or different RNAi efficiencies are

responsible for this difference in sensitivity.

Although increasing numbers of dsRNA-mediated RNAi

screens with similar phenotypic readouts are being per-

formed, there is relatively little overlap between the gene

sets identified. This lack of overlap may result partly from

false negatives due to low RNAi efficiency and the inherent

problems associated with targeting stable proteins. In addi-

tion, false positives may have been generated by off-target

effects. The dsRNA library used by Bjorklund et al. [9] was

produced using full-length cDNA templates, so off-target

effects (generated when a stretch of 21 bp or more in the

dsRNA is identical to another transcript) may be substantial.

No doubt, the ongoing generation of large, searchable data-

bases containing data from different RNAi screens will

become crucial to interpreting the results of these genomic

approaches [8]. Correlation of the rich dataset generated by

Bjorklund et al. [9] with related screens, both past and

future, should help to clarify the roles of many molecular

networks that act together to regulate growth, cell size and

the cell cycle.
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