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Sex-specific gene expression in preimplantation mouse embryos
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Abstract

The 3.5-day-old blastocyst-stage mouse embryo consists of two tissues and contains approximately
60 cells. This tiny structure has now been observed to express nearly 600 genes in a sex-specific
fashion, including at least one gene (Rhox/Pem) expressed only in females from their paternal X
chromosome.
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The daily deluge of marketing advertisements might have us

believe that our entire lives are occupied with sex. Recent

work from Kobayashi and colleagues [1] suggests that this

may not be too far from the truth. It has long been observed

that gene-expression differences correlated with genetic sex

exist at the preimplantation stages. This was first observed

30 years ago, when it was noticed that 50% of eight-cell-

stage mouse embryos expressed the histocompatibility Y

(Hya) antigen. At the time these were correctly presumed to

be the male embryos [2]. Later work [3,4] confirmed their

prediction. Since then, several studies have confirmed the

existence of a handful of genes that appear to be expressed in

a sex-specific fashion in the preimplantation embryo

(reviewed in [5]). Kobayashi et al. [1] recently increased that

handful of genes by two orders of magnitude when they

observed 591 transcripts that appeared to be differentially

expressed in either male or female blastocysts.

To study sex-specific expression, they analyzed RNA derived

from more than 1,000 sexed mouse blastocysts on a DNA

microarray representing 20,000 transcripts [1]. Although

gene arrays have been used before with staged preimplanta-

tion embryos and have identified a complicated milieu of

signaling pathways [6], they have not been used to look at

differences between the sexes. To overcome the technical

problem of correctly sexing so many embryos, Kobayashi et

al. [1] used a strain of transgenic mice harboring a constitu-

tively expressed X-linked green fluorescent protein (GFP)

transgene (XGFP) [7]. By breeding XGFPY transgenic males to

non-transgenic (XX) females, female progeny could be dis-

tinguished at preimplantation stages from male littermates

by their green fluorescence, which results from the zygotic

expression of the paternally inherited GFP transgene. Male

blastocysts, which have only a maternally inherited X chro-

mosome, were identifiable by the lack of fluorescence. 

While the identification of such a large number of genes with

possible sexually dimorphic expression will provide much

grist for the sex-determination field, this study will also

provide material to pursue the mechanisms of autosomal

and sex-chromosome imprinting - the preferential inactiva-

tion of genes according to maternal or paternal inheritance.

Gene expression from the inactive paternal X
chromosome
To test the validity of the assay, Kobayashi et al. [1] used

reverse transcription PCR (RT-PCR) to confirm the sex-

specific expression of the 11 genes that showed the greatest

difference in expression between the sexes. Four of the 11

genes proved to be expressed in a sex-specific fashion, with

between-sex expression differentials ranging from 2.5- to

14.8-fold. Although a number of autosomal loci were impli-

cated as being differentially expressed in the study, the con-

firmation of expression patterns was carried out only for

genes residing on the sex chromosomes.



Perhaps the most interesting aspect of the recent work by

Kobayashi et al. [1] is that on further study, it became

evident that one of the X-linked genes, Rhox5/Pem (repro-

ductive homeobox 5/placenta and embryos gene), was

apparently being expressed in females preferentially from

their paternal X chromosome, which is preferentially inacti-

vated in the preimplantation embryo. As a means of achiev-

ing dosage compensation in females, only one X

chromosome is believed to be generally active in any given

cell. This is true for the entire body, but the mechanism by

which this occurs is different at different developmental

stages. In later postimplantation stages, inactivation is

random in the embryo proper (which will give rise to the

fetus and resulting animal), that is, there is no preference for

whether the maternal or paternal X chromosome is inacti-

vated. This is not the case in the preimplantation embryo,

however, nor in extraembryonic tissues after implantation:

in both of these stages the paternal X chromosome exhibits

preferential, imprinted, inactivation. [8,9] Furthermore, a

body of evidence [10-14] is beginning to form suggesting that

the choice of which X chromosome to inactivate during the

preimplantation stages is not a singular decision and may be

governed by cumulative dynamic changes (Figure 1). 

In the diploid primordial germ cells of females, X inactiva-

tion occurs randomly [15], whereas in males both sex chro-

mosomes undergo temporary transcriptional inactivation

during meiosis [16,17]. After fertilization, it is likely that

these initial imprints are modified coincident with the onset

of zygotic transcription at the two- to four-cell stage (Figure

1b). The emerging molecular model holds that two separate

pathways enact this modification [10,12,18]. First, it appears

likely that the paternal X chromosome is delivered to the

unfertilized egg in a partially inactivated state (Figure 1a).

This is supported by the observation that two-cell embryos

have partially inactivated paternal X chromosomes [12]. At

this time a second pathway initiates a wave of de novo

imprinting that acts upon the inactivated X through to the

eight-cell stage to further impair its transcriptional activity

(Figure 1c) [11]. This inactivation is correlated with spread-

ing of the Xist RNA, accumulation of hypermethylated his-

tones, and localization of Polycomb group proteins along the

inactivating X chromosome [13]. Xist RNA is produced from

the inactive X-specific transcripts (Xist) locus on inactivat-

ing X chromosomes and contributes to inactivation by

binding progressively along the chromosome. Whether this

de novo imprinting occurs after partial or complete removal

of the imprints added in the sperm, or is simply layered on

top of them, is uncertain. Thus, the level of inactivation of

the paternal X chromosome increases through early develop-

ment, possibly as a function of proximity of chromosomal

regions to the paternally expressed Xist locus [12]. 

As the embryo begins to develop into a blastocyst, a new

round of modifications occurs on the paternal X chromo-

some of those cells allocated to the inner cell mass [14], the

precursor tissue of the embryo proper (Figure 1d). In these

cells, the paternal X is reactivated, and dosage compensation

is re-established in a random fashion. The trophectoderm

cells, which have an extraembryonic fate, maintain paternal

X inactivation.

This model does not rule out the presence of transcripts

expressed from the paternal X chromosome and does not

provide a mechanism for repression of the maternal allele of

those transcripts. Thus, the finding by Kobayashi et al. [1]

that Rhox5/Pem is expressed as a solely male transcript

places it in a relatively rare class of genes including, most

notably, Xist [5]. An additional 16-20 genes that are

expressed only from the allele on the paternal X chromo-

some have been putatively identified by gene-array screens

comparing midgestation parthenogenetic and androgenetic

embryos (which are engineered to contain either two mater-

nal or two paternal genomes, respectively) [19]. So far,

however, the imprinted expression of Xist, and now

Rhox5/Pem, are the only experimentally confirmed preim-

plantation examples of X-linked paternally expressed genes.

Rhox5/Pem is a member of the newly identified reproduc-

tive homeobox (Rhox) gene cluster. Like their better known

Hox cluster cousins, the temporal and spatial order of

expression of members of the Rhox cluster during gameto-

genesis correlates with their order on the X chromosome

[20]. Rhox5/Pem-deficient mice display male subfertility

phenotypes [20,21] consistent with the proposed role of

Rhox proteins in gametogenesis. Given the imprinted

expression of Rhox5/Pem, it will be interesting to examine

whether other members of the Rhox cluster are expressed

similarly in preimplantation embryos. As Rhox5/Pem is

expressed during spermatogenesis, when the paternal X

chromosome is acquiring its initial imprints, a detailed

profile of Rhox5/Pem expression dynamics during sper-

matogenesis will undoubtedly be useful in determining the

nature of the imprinting mechanism at this locus. In addi-

tion, as Xist-mediated inactivation occurs in a progressive

manner, it will be important to look for correlations between

the Rhox5/Pem expression dynamics in the preimplantation

embryo and the expression of other genes between the

Rhox5/Pem and Xist loci.

Towards defining the breadth of sex-specific
differences
A couple of issues may cast a cloud over the observations

made by Kobayashi and colleagues [1]. As they note, in mice,

male preimplantation-stage embryos develop more rapidly

than females [22,23]. Thus, some of the differentially

expressed transcripts observed in the blastocysts sampled

may represent artifacts produced by the slightly different

developmental stages of the male and female embryos.

Another complication could arise from the fact that the

experiments were performed on in vitro cultured embryos.
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Previous work has established that imprinting may be

perturbed during some in vitro conditions. For example, 65%

of mouse embryos cultured in Whitten’s medium, a com-

monly used mouse embryo culture medium, inappropriately

expressed transcripts from the autosomal H19 locus, which is

normally expressed only from the maternal allele, as well as

from the X-linked Xist locus [24-26]. This aberrant imprint-

ing was observed to persist through gastrulation [26], the last

developmental stage tested. In fact, Kobayashi and colleagues

[1] note that when the number of PCR cycles in the RT-PCRs

were increased, a small amount of both Xist and Rhox5/Pem

could be detected in male embryos (which do not contain a

paternal X chromosome). The authors did control for this by

looking at RT-PCR products from uncultured non-trans-

genic blastocysts; these blastocysts are, however, still subject

to the same sex-related aging biases. Although the use of

potassium simplex optimized medium (KSOM) in the

present study probably avoids most of the artifactual gene

expression seen with Whitten’s medium, the expression

signatures of individal genes will undoubtedly need to be
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Figure 1
Model for X inactivation in the female mouse embryo. (a) Sperm bearing an X chromosome (the paternal X or Xp) have epigenetic marks (blue flags),
leading to transcriptional repression of a portion of the chromosome. (b) In the female embryo (XX) these marks carry over through fertilization and
the first cleavages. (c) From the two-cell to the eight-cell stage, a separate mechanism establishes additional marks (red flags) on the paternal X,
repressing transcription at most loci. The maternal X chromosome (Xm) is unaffected. (d) In the blastocyst, repression of the paternal X is maintained in
trophectoderm cells that will go on to form the trophoblast (an extraembryonic lineage) but is lifted in cells of the inner cell mass (ICM) (which are fated
to form the embryo proper), where X inactivation now occurs randomly (green flags). (e) This state is maintained through later development, in which
the paternal X is inactive in extraembryonic lineages, but random X inactivation occurs in the embryo proper. In male (XY) embryos, which inherit only a
maternal X chromosome, no silencing occurs through these mechanisms.
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confirmed in subsequent studies using embryos that have

developed in vivo.

As often is the case, we are left with many open questions. As

the Rhox cluster maps distantly from Xist, it is uncertain

whether the imprinting of Rhox5/Pem is correlated with

coating of this region by Xist RNA or whether it is repressed

by another mechanism. From a developmental standpoint,

the results of Kobayashi and colleagues [1] beg the question

as to exactly which cells express Rhox5/Pem. Are the cells of

the blastocyst expressing Rhox5/Pem from the paternal allele

the ones fated to form specific tissues (such as the trophecto-

derm), where Rhox5/Pem will be expressed predominantly

from the maternal chromosome? One intriguing observation

[1] is that Rhox5/Pem is expressed specifically in extraembry-

onic tissues, the ones that are fated to inactivate their pater-

nal X chromosome. Even so, the expression switch reported

by Kobayashi and colleagues is intriguing, and may indeed

present a model for looking at X-inactivation dynamics near

the Rhox cluster in peri-implantation embryos.

This work has given us yet another glimpse of the breadth of

genetic differences between the sexes, and in doing so has

revealed an intriguing early developmental imprint to a gene

known for its role in gametogenesis. Clearly much work

remains to be done, but as the putatively differentially

expressed genes are individually tested, it will be interesting

to determine whether these sex-specific transcripts have sex-

specific roles in these earliest of embryos. One might be

tempted to fantasize that within their DNA array, Kobayashi

and colleagues [1] may have at hand information to identify

loci influencing our own sex-specific traits. But, sadly, we

still have to wait for the final word on what differentiates

blastocysts from their ‘blasto-sisters’.
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