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Abstract

Emerging scientific technologies provide rich sources of predictive biomarkers, which could transform
health care. Identification of causal biomarkers will enable the development of tools to quantify risk
and anticipate disease. Accurate health risk analysis is rapidly becoming feasible, so health care can

become rational, preventive and personalized.

Evolution of health care

At the beginning of the 20th century, the emerging sciences
of physiology, pathology, chemistry, biochemistry, microbi-
ology and radiology had the potential to change medicine
from a practice based on mythology and anecdotal observa-
tions to one grounded in experimental science. Particularly
powerful was the development of the germ theory, which
identified microorganisms as the cause of many diseases
prevalent at that time. The medical profession did not,
however, easily incorporate science into practice until
several decades later, when the development of academic
medical centers enabled a science-based approach and the
first major transformation of medical practice.

The impact of science on medicine has been striking. The
strengths of the reductionist method, which simplifies the
concept of pathogenesis to the smallest number of causal
factors, are shown by the burgeoning understanding, at a
molecular level, of human biology and the underlying causes
of many diseases. Spectacular medical therapies abound,
and new technology has continued to enhance the capabili-
ties of medicine. Nonetheless, the weaknesses of the reduc-
tionist scientific approach are also reflected in our
health-care system in which complex chronic diseases
account for most of the health-care expenditures. We have
created a model that focuses on acute treatment instead of
on the prevention of chronic disease (Figure 1).

The reductionist focus on specific and single etiological
causes of disease is a useful strategy to understanding patho-
genesis, but is limited in truly explaining disease. Even for a
microbial disease for which an etiological agent is known,
the outcome of infection is highly dependent on the state of
the host’s immune system and their general health status. In
genetic diseases resulting from well understood molecular
mechanisms, such as sickle-cell disease, there is a highly
variable course: some individuals have severe unremitting
crises leading to death by their early twenties, whereas
others live well beyond their fifties.

Chronic diseases develop as a consequence of an individual’s
baseline susceptibility coupled with their exposure to envi-
ronmental factors (Figure 2a). These may trigger initiating
events, leading to the accumulation of pathological changes
and the onset and progression of chronic disease (Figure
2b). Today, most health-care expenditure is focused on the
later stages of this process, long after the development of
many underlying pathological changes. Until recently, it
could be argued that the focus on treating disease was justi-
fied because the ability to predict, track, and prevent its
onset was not technically feasible. This is no longer the case,
and the emerging sciences of genomics, proteomics,
metabolomics, medical technologies and informatics are rev-
olutionizing the capability to predict events and enable inter-
vention before damage occurs. Personalized risk prediction
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The consequences of reactive health care. (a) A graph of US health-care spending shows that nearly three-quarters of a total of $1.5 trillion is
committed to the treatment of chronic disease. Little is spent on prevention. (b) The most common chronic diseases and the US national expenditure
on treating them are indicated. Sources: American Heart Association, American Cancer Society, American Lung Association, and National Institute of

Diabetes and Digestive and Kidney Diseases.

and strategic health-care planning will facilitate a new form
of care, which we have called ‘prospective health care’ [1].

The current approach to health care is well demonstrated by
the structure of the current medical record in the USA
(Figure 3). The medical record is the documentation of the
physician’s interaction with the patient on any given visit. It
begins with a notation of the ‘chief complaint’, the reason for
the patient’s visit to the physician; this already presumes that
it is a problem that is bringing the patient to see their doctor.
What follows is a logical ‘work up’ of the problem. The
present medical record outlines a proven approach to identi-
fying disease and to developing a plan to mitigate against it.

Prospective health care is a new approach that incorporates
all the power of current disease-oriented medicine but is
based on the concept of strategic health planning, a proactive,
prospective approach to care. In this system, individuals will
be evaluated to determine their baseline risk for various dis-
eases, their current health status, and the likelihood of their
developing specific clinical problems given their risks. In
order to provide an individual with their personalized health
plan (as part of their prospective personal health record), new
capabilities and tools are needed. For example, knowledge
and tactics are needed to measure an individual’s baseline
risk for major chronic diseases. Predictive biomarkers - mea-
surable biological factors that predict disease development,
such as low-density lipoprotein (LDL) for cardiovascular
disease - need to be identified and tracked over time to deter-
mine whether the individual’s likelihood of developing any
particular disease is increasing or decreasing [2]. In addition,

tools are needed to anticipate the development of specific
clinical events associated with the chronic disease (for
example, myocardial infarct as a consequence of coronary
artery disease) and to support appropriate therapeutics
based on the individual’s needs [3].

Facilitating accurate risk assessment and
evidence-based support

The key elements of all risk-prediction tools, from baseline
risk assessment to analysis of appropriate therapeutics, will
benefit from the molecular understanding of the pathogenesis
of disease, along with the identification of predictive factors,
particularly biomarkers that anticipate or quantify the patho-
genic process. Such factors may be determined in part through
the analysis of currently available clinical data, including
family history, clinical examination, and conventional labora-
tory analyses. Analysis of such information already provides
valuable insight into the likelihood of an individual developing
a disease. The power of such information, however, is rarely -
if ever - sufficient to predict accurately the precise timing of an
event or the best therapeutic options (Figure 4). This type of
prediction will require additional tools and better predictive
biomarkers, which are emerging.

Be it disease events and their timing, adverse outcomes of
treatment, weather forecasting, or the orbit path of a satel-
lite, prediction requires a mathematical equation, distribu-
tion or rule that is a statistical representation of the
measured outcome of many past events. The predictive
model is composed of predictor variables gathered from
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Figure 2

Mechanisms of pathogenesis and disease progression. (a) The reductionist concept is that disease occurs as a consequence of a pathogenic factor, for
example a microbe (top). This is overly simplistic. Disease is a consequence of susceptibility to pathogenic factors as well as exposure to them (bottom).
The emergence concept provides important opportunities for better understanding disease risks, tracking pathogenesis and earlier intervention [42].

(b) Disease progression is shown from baseline risk to irreversibility. Diseases develop as a consequence of inherited susceptibilities and environmental
exposure. Over time, pathology increases, reversibility decreases and costs increase (red line). Earlier intervention could clearly reduce the costs and the

disease burden [42].

studied cohorts - the particular factors that are likely to
influence the future outcome. Predictive modeling encom-
passes various procedures for creating models - from regres-
sion to neural networks - that distinguish predictors from
many other factors that are not as valuable for anticipating
the outcome [4-7]. In marketing, for example, a customer’s
income, age, sex, and purchase history might predict the
likelihood of a future sale, but their place of birth might be
an irrelevant variable.

Physicians use a cognitive predictive modeling process, built
on experience with numerous patients, lectures, literature
reading, and so on, to build internal heuristics for rapidly
anticipating or ascertaining problems on the basis of what
they judge to be the most salient factors. A key feature of
mathematical predictive models that sets them apart from
human heuristics is that the data input can be more compre-
hensive, and the uncertainty of the predictions can be

quantified as a result of a confidence interval used with stan-
dard regression methods or a high probability density used in
Bayesian statistical methods [8,9]. Therefore, with mathe-
matical models, the inputs are more comprehensive and the
outputs are more objective. Ultimate decision-making by
physicians is critical, however, as humans are more flexible in
appreciating outlying issues for which a model might be
unable to account. Thus, mathematical models can serve as
guidelines and default options to raise the overall standard of
care, but not to determine the final diagnosis or treatment
plan. An ideal scenario for the practice of health risk assess-
ment is to take advantage of highly accurate predictive
models as guidelines to help standardize the quality of care
while still giving physicians full flexibility to use good clinical
judgment to consider variables not accounted for by a model.

Predictive models have been used for risk assessment related
to very clearly defined clinical problems, such as recurrence
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The traditional medical record compared with the prospective approach.
Physicians are currently trained to evaluate patients using the approach
on the left. This clearly demonstrates a focus on identifying and rectifying
disease. The process can be broadened to include strategic health
planning, as demonstrated by the prospective evaluation and record on
the right.

and survival time, to guide difficult treatment choices for
various cancers, and to recommend disease-management
choices for patients with heart failure [10-12]. Nonetheless,
unlike in other industries, there has not been widespread or
standardized use of predictive models in clinical practice.
Part of the reason for this is that predictive models created
from randomized clinical trials or from prospective data
cohorts like the Framingham Heart Study (a population-
based study initiated in 1948 with the aim of identifying
major risk factors associated with heart disease) were origi-
nally based on a limited range of clinical and demographic
data from narrow populations, for which results could not be
easily generalized [13,14]. Furthermore, when predicting
dichotomous outcomes (for example, heart attack or no
heart attack over a given time-frame), such models often
have a concordance index (a measure of classification accu-
racy) under 90%, leaving concerns that too many false pre-
dictions could be made. Thus, predicting the likelihood of
the risk of a heart attack over ten years represents a useful
guide for physicians in identifying patients at risk, but to be
more useful, clinical medicine requires predictive models
that can predict events accurately over far shorter time-
frames. To achieve this, more relevant and specific data will
need to be collected for analysis (Figure 5).

Genomic research drives the discovery of
predictive factors and personalized medicine
Among the most important contributions that genomic
research will make to clinical medicine will be to provide a
source of relevant predictive biomarkers for use in the
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development of specific risk assessments, including baseline
risk evaluation, disease progression tracking, disease event
prediction, and therapeutic support tools. When accurately
measured, genomic factors that lie in the causal pathway of
disease or therapeutic response, or factors such as single-
nucleotide polymorphisms (SNPs) that are highly associated
with causal genes, will serve as better predictors of adverse
outcomes than much of the data now being collected. Stable
DNA gene predictors will enhance baseline clinical risk
assessment and primary prevention, and dynamic mRNA,
protein and metabolic factors will enhance refined risk
assessments to track disease progression, predict events, and
guide therapeutic choices.

Demographic, clinical, and family-history predictors that are
relatively easy and cost-effective to collect will probably retain
their value. But such information alone is associated with
many false-positive and false-negative predictions for any
given individual. Furthermore, there is an upper limit to the
predictive value of many current basic clinical and laboratory
tests in anticipating disease pathogeneses well before they
occur. Disease genes or SNPs linked to these causal genes, dis-
covered through biological studies, will serve as more accurate
markers of disease susceptibility. Depending on the complex-
ity of the disease pathogenesis, such genes may account for a
very small to a very large amount of the variation seen in the
natural history of a disease. Even in the most complex cases,
however, a collection of interrelated genes or SNPs, along with
a comprehensive family-history assessment, can serve as a
stable baseline of risk assessment that can guide the use of
more refined risk assessments - ones that incorporate
dynamic molecular factors, reflecting the interaction between
the individual’s stable genome and the changing environment.

The advantage of genotypic data for baseline prediction is
that it can be collected at birth. Baseline risk assessments
using basic family and demographic data or static genomic
information will probably have lower specificity (a higher
number of false positives) than molecular measures that are
dynamic and change with someone’s environment and
development. Nonetheless, baseline assessments will effec-
tively identify the people who require further evaluation
using molecular information that reflects disease develop-
ment. These general concepts also hold true for secondary
prevention (for example, heart attack in an individual with
diabetes), but the use of stable genomic data may be less
valuable when dynamic indicators have already manifested
and are part of the same pathway of disease as the gene pre-
dictors. In the long term, the decreasing cost of genotyping
may facilitate the use of DNA information for a more ratio-
nal and standardized approach to baseline risk assessment.

Identifying the appropriate disease genes and predictors for
baseline risk assessment will be further facilitated by new
clinical research and the HapMap project. The International
HapMap Consortium is characterizing common patterns of
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Towards focused prevention and effective intervention. As shown in Figure 2b, the typical time of intervention currently occurs after the disease burden
has started to increase. Emerging health risk assessment and evaluation tools will permit early detection (using either clinical observations or molecular
biomarkers) and will facilitate prevention and early intervention. Intervention before disease is detected may enable the damage to be prevented.

DNA sequence variation and the extent of linkage disequilib-
rium in the human genome. This will facilitate the character-
ization of genotypes and identification of key SNPs related to
chronic disease; traditional and advanced association algo-
rithms will allow the analysis of the HapMap [15-19]. Online
Mendelian Inheritance in Man (OMIM), a database of
disease risk genes, already reveals an increasing number of
disease-related stable genomic factors that could be useful in
predictive risk assessment [20]. Furthermore, the role of an
individual’s gene variants in altering the metabolism and
efficacy of drugs they take is already proving critical in drug
development and in certain areas of clinical practice, such as
oncology [21].

For individuals whom genes, SNPs, family history, or clinical
information identify as high risk for a particular disease,
comprehensive surveillance will be needed to track possible
disease progression and to provide therapeutic support. Such
tracking will include the measurement of dynamic factors,
including gene-expression, proteomics and metabolomic
assessments. The use of such analyses to track disease devel-
opment is still rudimentary but can be expected to be incor-
porated into personalized health plans in the future. For
example, children with a family history of type 1 diabetes can
have a baseline risk assessment that considers various SNPs
as predictors of developing the disease. Children at enhanced
risk could undergo a comprehensive surveillance protocol,
tracking their levels of factors that destroy pancreatic 3-cells
and that produce changes in insulin secretion [22,23]. This
process could be used to guide clinical research on preventive
interventions for type 1 diabetes. When effective therapies are
found, the same types of analyses could guide identification
of patients at risk and appropriate intervention.

Initial applications of technologies such as these are being
developed to predict outcomes in established conditions. For
example, gene-expression microarray tests and proteomic
techniques show promise for identifying the aggressiveness
of cancer, allowing the creation of predictive models for
likely survival time with and without treatment [24-27].
Moreover, gene expression in circulating mononuclear cells
is being used to predict organ rejection in patients with heart
transplants, obviating the need for myocardial biopsy in
some conditions [28].

These examples highlight the need for predictive tools in the
selection of treatment options. By including potential thera-
pies in these models, physicians can assess therapeutic
options to select their risk/benefit ratios. The highest possi-
ble predictive accuracy will be necessary for such screening
and decision support to be clinically useful. For example,
coronary artery bypass grafting supported by cardiopul-
monary bypass on pump is associated with a number of
serious adverse outcomes, including stroke. Current predic-
tive models for stroke as a result of ‘on-pump’ coronary
artery bypass grafting, a surgery in which blood is pumped
by a machine while the heart is being operated on, have a
relatively low sensitivity and specificity; none of the models
currently has an overall concordance index over 80%. New
SNPs and proteomic quantification of coagulation factors,
cytokines and C-reactive protein, which may be causally
related to susceptibility to stroke after bypass, may, however,
increase the accuracy of future models enough to make them
useful in improving therapeutic decision-making - in this
case whether to prescribe standard cardiopulmonary bypass,
or the more difficult but stroke-lessening off-pump bypass
approach, or other therapies [29].

Genome Biology 2006, 7:104

Snyderman and Langheier 104.5




104.6 Genome Biology 2006,

Volume 7, Issue 2, Article 104

Snyderman and Langheier

http://genomebiology.com/2006/7/2/104

Clinical and

Genotype

or SNPs Clinical data cohort

Gene expression [

Protein array [—|

=

FRETRERRARRRRARTREE
cereoeeric [ RERRERRRRRERRARRRE R
AL AEL L] Fhithite

Piaoe
Piaoe
Piawe

Out-of-sample
population verification

v

True positives

False negatives

? Baseline risk

MS/MS,

MALDI-TOF [

Anatomical Model selection
imaging - and averaging

coordinates

Predictive modeler

EEG, MEG
and fMRI

Advanced GIS
environmental —
data

Anonymized data for
biomarker validation
and model updating

. Disease progression
»y=f(X1,X,... %) > Event prediction

Therapeutic decision support

Relevant data l
of individual

Patient Doctor

Figure 5

Facilitating risk assessment by linking a dynamic predictive modeling system to clinical decision support. Clinical data and the results of biomarker
analyses (left) are collected from a cohort of people (top) and stored in disease model libraries, and models are developed from them (middle). Other
populations can be used to verify the data (top right). The models can be used to identify risk prediction factors for particular diseases or events and can
be compared against an individual’s profile to determine their risk, or to diagnose disease progression (right). Data from each patient can then be fed
back into the model, in order to improve it. Abbreviations: EEG, electroencephalogram; EKG, electrocardiogram; fMRI, functional magnetic resonance
imaging; GIS, geographic information systems; MALDI-TOF, matrix-assisted laser desorption ionization time-of-flight mass spectrometry; MEG,
magnetoencephalogram; MS/MS, tandem mass spectrometry; SNPs, single-nucleotide polymorphisms.

Risk assessment for breast cancer

Breast cancer provides a useful example of how genomic
research and predictive models can improve clinical care.
For personalized prevention and early intervention, it is nec-
essary to predict baseline risks, provide surveillance for early
detection, and facilitate optimal individualized therapy if
disease develops. For baseline risk measurement, a tool was
developed in 1989 to estimate the likelihood that a woman at
a given age and defined risk factors will develop breast
cancer over a specified time. The model to do this, termed
the Gail breast cancer model, aids physicians in developing a
personalized strategy for further screening and treatment.
This model was constructed from case-control data of the
Breast Cancer Detection Demonstration Project (BCDDP)
and included age at menarche, age at first live birth, number
of previous biopsies, and number of first-degree relatives
with breast cancer as indicators [30].

Newer predictive models include as predictors more robust
family history (for example, in the so-called Claus model)
and causal disease genotypes such as BRCA1 or BRCA2 (for
example, in the BRCAPRO model), and these have advan-
tages in predicting breast cancer compared with the original

Gail model. Whereas the Gail model is a logistic regression,
the Claus model uses a genetic modeling approach to deter-
mine age-specific breast cancer development probabilities
from family history. BRCAPRO, a Bayesian model, is focused
on BRCA1 and BRCA2 and the risk of breast cancer. Many of
these newer baseline risk models for breast cancer can be
accessed through a tool called CancerGene [31]. A current
challenge is determining optimal ways to use these models
in conjunction with one another, or designing ways to
combine clinical information, and genetic and family history
data into a single predictive model.

More work is necessary to facilitate accurate prediction of
breast cancer. The incorporation of BRCA1 and BRCA2
disease alleles as predictors does aid in risk assessment of
cancer but does not predict most forms of breast cancer in
the population. Breast cancer is a feature of many other syn-
dromes with known genetic mutations, for example Li-Frau-
meni syndrome (caused by a germline p53 mutation),
Cowden syndrome (a PTEN mutation), and Peutz-Jegher
syndrome (an STKi: mutation) [32,33]. Other genotypes
associated with increased risk of breast cancer are located in
several genes, including BRCATA on 11q, BRCA3 on 13q21,
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RBi1CC1 on 8q11, BWSCRIA on 11p15.5, and BRIP1 on 17q22
[34]. Tools have not yet been developed to be used effec-
tively in primary care screening for cancer risk, but it can be
assumed that with further research, useful baseline screen-
ing tools will become available [35].

A validated ‘SNP chip’ to test for the presence of disease geno-
types for multiple alleles should help improve the sensitivity of
the test for use in baseline risk assessment in the broader pop-
ulation [36]. When they become cost-effective, early screening
of a broader range of relevant genotypes could be incorporated
into personal health plans. Because genotype data are static, a
one-time screen has lifelong benefit by determining whether
or not the patient should be entered into a more comprehen-
sive breast-cancer surveillance program. Although no high-
throughput genotyping tool is currently available for
breast-cancer onset prediction, Genomic Health, Inc. has
commercialized its Oncotype Dx 21-gene predictor of breast
cancer recurrence [37], and Veridex, LLC has published
research on its gene-expression tests, reporting improvements
in the accuracy of predicting cancer prognosis [38]. These
enhancements are based on molecular tumor analysis; the
Oncotype Dx test has already been used to enhance Adjuvant
Online!, a predictive model for cancer recurrence and survival
[39,40]. Such tools, as well as those described earlier, provide
evidence that clinical-genomic predictive models may soon
have utility in clinical practice.

Future clinical research and/or other means of monitoring
clinical information will be vital to validate and add addi-
tional discoveries in genome biology for application to clini-
cal care. Bioinformatics tools can help cull the literature for
factors that may have an association with a particular
adverse outcome, and clinical experts can identify the factors
that should be evaluated as risk factors in prospective
patient cohorts. To support increasingly accurate risk assess-
ments, we envisage a process in which the validation of new
genomic biomarkers by biostatistical means will be coupled
to the use of current best practice. Over time, improving
development of accurate predictive models will become an
output of clinical practice.

The application of these new technologies to health care will
not only provide a far more detailed understanding of health
and its evolution toward disease, but will also support the
ability to predict events and anticipate appropriate interven-
tions. Highly accurate risk assessment is an important com-
ponent of a shift to prospective health care. Causal genomic
factors and their products will play key roles as predictors of
disease in tools used for clinical decision support. Clinical
research is necessary to validate the accuracy of newly devel-
oped predictive models and the relative usefulness of new
biomarkers. The creation of systems to facilitate this type of
information gathering, as well as the use of model-based
clinical decision support, is critical for enabling us to provide
prospective health care.
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Just as a century ago the emerging sciences transformed
medicine, the new sciences of the early 21st century will
again transform health care. Whereas a century ago micro-
biology and biochemistry drove fundamental change, the
current drivers will include the emerging technologies of
genomics, proteomics and metabolomics, coupled with
bioinformatics, medical informatics, biostatistics, data
mining and decision sciences [41,42].
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