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Abstract

The first systematic investigation of an annelid genome has revealed that the genes of the marine
worm Platynereis dumerilii are more closely related to those of vertebrates than to those of
insects or nematodes. For hundreds of millions of years vertebrates have preserved exon-intron
structures descended from their last common ancestor with the annelids. 
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Among the millions of invertebrate species, the genomes of

insects (particularly fruit flies of the genus Drosophila) and

nematodes (from the genus Caenorhabditis) have come

under the closest scrutiny. Now it is time for annelids - the

segmented worms - to reveal their DNA sequences and gene

structures. Last November, Raible and co-authors reported

in Science the initial investigation of 30 genes from the

marine annelid Platynereis dumerilii [1]. And it revealed a

big surprise. The sequences of the annelid proteins were

found to be more closely related to their human orthologs

than to the insect and nematode orthologs. Moreover,

among the species compared, the exon-intron structure of

P. dumerilii genes was also most similar to that of humans:

the human and the marine worm genomes have the highest

number of introns per gene (7.8 for annelid and 8.4 for

human and other mammalian genes) and more than 60% of

annelid introns divide protein-coding sequences at exactly

the same positions as human introns. By comparison,

insects have 2.4 to 5.4 introns per gene and the plant repre-

sentative Arabidopsis thaliana has 4.4, whereas fungi have

the broadest spread from 0.0075 to 6.8 [2]. Thus, as far as

shared introns are concerned, P. dumerilii is more similar to

humans than to any insect or nematode. 

The similarities in intron numbers and positions between

P. dumerilii and humans does not imply that annelids

should be combined with the vertebrates into a sister clade

and distanced from nematodes and insects. Despite known

uncertainties in the exact positioning of the segmented

worms on the animal evolution tree (reviewed in [3]), nobody

has ever grouped annelids with vertebrates. Molecular evolu-

tion is an intricate nonlinear process that can be interpreted

in many different ways and it cannot be inferred from a set

of equations. Conflicting facts and opposing opinions are

common in the field and several alternative phylogenetic

trees have been proposed for the animal kingdom. In their

short article, Raible et al. [1] present only one animal phy-

logeny, whereas a subsequent comment by Kumar and

Hedges [4] in Cell points out other well-recognized possible

alternative relationships between flies, worms and humans.

There has been a long and fierce debate about the phyloge-

netic relationships between arthropods, nematodes and ver-

tebrates [5]. The ‘Ecdysozoa hypothesis’ groups arthropods

and nematodes into a monophyletic clade and distances

them from the vertebrates. The alternative ‘Coelomata

hypothesis’ considers arthropods to be more closely related

to the vertebrates than to the nematodes. We are still very far

from resolving this dilemma. Even the whole-genome phylo-

genetic analyses of Drosophila, Caenorhabditis elegans and

humans have not brought much clarity because, depending

on the algorithms used, support can be found for both the

Coelomata hypothesis [6] and the Ecdysozoa hypothesis [7].



Undoubtedly, the results in the Science article by Raible et

al. [1] will serve as important additional, yet non-decisive,

evidence in these endless debates on the origin of species.

The new data of Raible et al. [1] further complicate our per-

ception of evolution. We used to think that humans have sig-

nificantly advanced in complexity compared to the various

worm phyla. It is, however, unclear where this complexity is

encoded within our genome. Homo sapiens has only 21%

more protein-coding genes than the microscopic nematode

worm Caenorhabditis elegans, whose entire neural system is

composed of 300 neurons [8]. Moreover, Raible et al. [1]

have now shown that evolutionary changes in human

protein sequences have occurred more slowly than in insects

and nematodes. Thus, our proteins cannot be superior to

those of invertebrates. Many biologists used to think that

vertebrates had perfected their gene structures by acquiring

thousands of new introns which, in turn, increased their

protein diversity via alternative splicing. Yet according to

Raible et al., the last common ancestor between vertebrates

and annelids had nearly as many introns as humans. So,

evolution has hardly affected the gene structure of the verte-

brate lineage. 

The last line of defense in our ambition for pre-eminence is

the total size of our genomes. Indeed, the human haploid

genome contains more than 3 billion nucleotides, or 3.5

picograms (pg) of DNA. According to the Animal Genome

Size Database [9] this is several times more than the haploid

genome size of the vast majority of invertebrates, including

Drosophila melanogaster (0.18 pg), C. elegans (0.10 pg), and

P. dumerilii (0.89 pg). There are, however, many exceptions

to the correlation between an organism’s morphological and

functional complexity and the absolute size of its genome.

Some invertebrates have a genome size comparable to that of

humans [10,11]. The well-known example of the unicellular

Amoeba dubia, with a genome 200 times larger than that of

humans [9], demonstrates that mere DNA length does not

determine an organism’s complexity. The major fraction of

an animal genome is represented by non-protein-coding

sequences: for humans, the noncoding regions comprise

98.5% of the genome. For years, noncoding DNA (including

introns) was largely ignored and was frequently referred to as

‘junk’ or ‘selfish’ DNA. But only a few years ago it became

generally appreciated that three quarters of our genome is

transcriptionally active and produces at least 16,000 non-

protein-coding RNAs, many of which have important cellular

functions [12,13]. Nevertheless, a considerable fraction of

transcribed noncoding RNA from species with extra-large

genomes probably represents random transcripts without

any valuable role for the organism [14]. Therefore, organis-

mal complexity cannot be simply determined by the genome

size, the number of protein-coding genes, the number of

introns, or the total number of genomic transcripts. Rather,

we should assess these parameters all together, and estimate

how efficiently a particular species utilizes its genomic

machinery, and the proportion of nonfunctional genomic

ballast to functional elements. 

Introns, for example, are ambivalent elements that create

several problems for cells and perform various functions

[15,16]. Jeffares et al. [17] have recently reviewed the process

of intron gain and loss. They and others have demonstrated

that intron evolution is not a simple stochastic process, and

that a number of biological factors have important influ-

ences on change or preservation of exon-intron gene struc-

tures. Despite the fact that marine annelids and humans

have the same number of introns, commonly in the same

positions, the importance of these introns for the host cells

could be different. Right now we only know for sure that

human introns are longer than those of P. dumerilii and

contain hundreds of noncoding RNAs as well as a number of

valuable cellular signals [14]. All in all, introns are not trivial

elements, and the comparison of their positions in different

species is only the first step in understanding their intricate

evolution in animals and other eukaryotic taxa. Biologists

have recently gained access to genomic information from

dozens of eukaryotic and hundreds of prokaryotic species.

This has only brought us to the embryonic stage of genome

biology theory and numerous surprises are to be expected

along the road ahead.
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