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Expression profiling of in vitro growth<p>A meta analysis comparing 60 tumor cell lines, 135 normal tissue samples and 176 tumor tissue samples in humans shows significant differential expression between cell lines and tissues of around 30% of the 7,000 genes analyzed.</p>

Abstract

Background: Cell lines as model systems of tumors and tissues are essential in molecular biology,
although they only approximate the properties of in vivo cells in tissues. Cell lines have been
selected under in vitro conditions for a long period of time, affecting many specific cellular pathways
and processes.

Results: To identify the transcriptional changes caused by long term in vitro selection, we
performed a gene-expression meta-analysis and compared 60 tumor cell lines (of nine tissue
origins) to 135 human tissue and 176 tumor tissue samples. Using significance analysis of
microarrays we demonstrated that cell lines showed statistically significant differential expression
of approximately 30% of the approximately 7,000 genes investigated compared to the tissues. Most
of the differences were associated with the higher proliferation rate and the disrupted tissue
organization in vitro. Thus, genes involved in cell-cycle progression, macromolecule processing and
turnover, and energy metabolism were upregulated in cell lines, whereas cell adhesion molecules
and membrane signaling proteins were downregulated.

Conclusion: Detailed molecular understanding of how cells adapt to the in vitro environment is
important, as it will both increase our understanding of tissue organization and result in a refined
molecular portrait of proliferation. It will further indicate when to use immortalized cell lines, or
when it is necessary to instead use three-dimensional cultures, primary cell cultures or tissue
biopsies.

Background
How different are cells grown in vitro from cells that are part
of a tissue? Human tissues and tumors are complex and het-
erogeneous as they are composed of different cell types that
influence each other through paracrine signaling pathways
and interactions with extracellular matrix (ECM). Cell lines
on the other hand consist of a more or less clonal cell popula-

tions that lack interactions with other cell types and interact
with an artificial support such as plastic. Cell adaptation to in
vitro microenvironments have probably involved recalibra-
tions of many cellular pathways through genetic alterations
[1], transcriptional alterations [2], different post-transcrip-
tional regulation [3] and changed signaling networks [4].
Thus, the degree to which cell lines are representative of the
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specific cell types they were derived from varies [5,6]. Fur-
thermore, among cell lines established for in vitro growth
there is an overwhelming bias for tumor-derived cells. It has
been very hard to establish non-transformed cells for long-
term in vitro growth. Detailed comparisons of the genotypic
and phenotypic characteristics of in vitro grown cells with a
panel of normal and tumor tissues may reveal how cell lines
have adapted to in vitro environments. Moreover, compari-
sons of cell lines with both tumors and the normal tissues they
were derived from are needed to assess how well they repre-
sent their tissue of origin and which of their features may have
been acquired in vitro.

Analyses of mRNA expression levels using DNA microarrays
have contributed to an increasingly detailed understanding of
patterns of gene expression in different tissues [7,8] and also
how in vitro selection and adaptation affect basic cellular
processes. So far, these studies have been focused on single
cell types. Cell lines from colon [9], breast [10], lymphoma
[11], leukemia [2], and lung origin [12] have been compared
to their corresponding in vivo malignancies. These studies
have consistently demonstrated that different cell lines of the
same tissue origin are more similar to each other than to the
tumors they derived from. From these gene-expression stud-
ies, it has also been repeatedly shown that genes associated
with proliferation [2,10,11] and ribosomal activity [9] are
upregulated in cell lines. However, no study so far has
addressed the issue of whether the same genes are perturbed
by the in vitro environment in cell lines derived from tumors
of different tissue origins, that is, if there may be an 'in vitro
expression profile'.

Developing meta-analytical tools for comparing gene-expres-
sion data generated in different studies and laboratories is
important. Some meta-analysis of gene-expression profiles of
multiple tumors and normal tissues have been pursued, iden-
tifying common upregulated genes in neoplastic transforma-
tion and in relation to tumor differentiation status [13].
Moreover, a collection of gene-expression data from different
tumor types has been used to identify upregulated or
repressed modules of genes with coherent expression profiles
in specific tumors [14]. In both these studies, gene-expression
data was gathered from multiple platforms and laboratories,
although the data were analyzed independently (that is, for
each dataset separately). In the first study, the expression lev-
els in each array were normalized independently to unit
length (a median expression of zero and a standard deviation
of one) [13]. In the second study, each gene was subtracted by
the mean expression level across the samples in each dataset,
respectively [14]. Subsequently, genes which were consist-
ently up- or downregulated could be identified in compari-
sons within multiple datasets [13].

In this study, we describe a cross-site approach to quantita-
tively integrate gene-expression profiles from three laborato-
ries [15-17] comprising 60 cell lines and 311 tissue samples.

We integrated gene-expression data from cell lines derived
from tumors of nine different tissue-origins (NCI60 cell lines)
with two large gene-expression datasets of human tissues and
human tumors. All these studies used the same platform and
array-type (Affymetrix Hu6800). Using a meta-analysis we
defined the transcriptional changes observed in all cell lines
compared to both normal and tumor tissues independent of
tissue origin. The cell lines showed statistically significant dif-
ferential expression of approximately 30% of the approxi-
mately 7,000 genes investigated. Among the upregulated
genes we consistently found - not surprisingly - many genes
involved in macromolecular turnover, cell-cycle progression,
energy metabolism, and histone modifications. Adhesion
molecules and membrane signaling proteins were enriched
among the downregulated genes, a possible consequence of
the disrupted tissue organization in vitro. The origin-inde-
pendent transcriptional alterations defined in this study are
probably the consequence of the in vitro adaptation and
selection. As such, our data will be important to improve our
understanding of the biological consequences of in vitro
growth and thus how well cell lines correspond to the in vivo
tissues and tumors.

Results
Normalization of gene-expression profiles from 
multiple sources
To study the expression signature of in vitro growth, we col-
lected gene-expression profiles from 60 cancer cell lines [15],
135 normal tissue samples [16,17] and 176 tumor tissue sam-
ples [16] generated using the same Affymetrix Hu6800 array
platform (dataset I). The cell lines were derived from nine dif-
ferent tumor types, the normal tissues samples 19 tissues and
the tumor samples from 13 different tissues (see Materials
and methods). As a control, we also used gene-expression
data from an independent study, in which both cell lines and
tissues were profiled within the same study [18] using
Affymetrix HGU95A arrays (dataset II). Dataset II was more
limited, however, as 21 of the 25 cell-line samples were of
lymphoid origin. Together, these two datasets (Table 1) were
considered as well suited to systematically evaluate how cell
lines in general approximate their tissues of origin and thus
their resulting validity as biological model systems.

It must be emphasized that comparing gene-expression data
from different laboratories may introduce different biases
resulting from different experimental conditions and proto-
cols. To quantitatively compare gene-expression profiles
from different studies, we rescaled all samples using the glo-
bal scaling algorithm (see Materials and methods). We inves-
tigated each sample after the rescaling procedure to check
whether any samples were of questionable quality by comput-
ing its average correlation to all other samples. This analysis
step served two purposes: first, to investigate how similar
were the gene-expression patterns of the biological replicates;
second, to verify that samples of the same tissues in the
Genome Biology 2005, 6:R65
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different datasets were more similar to each other than to
other tissues. Overall, the average correlations between sam-
ples of different tissue origins were between 0.5 and 0.6. Cer-
tain samples, however, were found to have an average
correlation to other samples as low as 0.15 (Figure 1a). These
samples with low average correlation also had higher scaling
factors (Figure 1b), indicating that they had lower signals on
the chip. This could be a result of a less successful hybridiza-
tion, and it is likely that our rescaling procedure worked less
efficiently for these samples. Therefore, we removed the 28
samples with an average correlation of less than 0.34 (Figure
1). The removed samples were of diverse tissue origins and
the low average correlation observed for these samples was
not an effect of being a single sample from a specific tissue.
We used the gene-expression profiles of the same normal tis-
sues that were present in two of the datasets [15,16] as an ini-
tial evaluation of the rescaling procedure. The expression
profiles from the same tissues should be more similar to each
other than to samples from other tissues, independently of

the laboratory in which the data were generated. We com-
pared the correlation between the 59 normal samples from
Hsiao et al. [17] to the 91 normal samples from Ramaswamy
et al. [16]. The matrix of correlations is presented in Figure 2.
Gene-expression profiles of the same tissues gathered in the
two laboratories showed in general higher correlations, indi-
cating that tissue-specific differences within each dataset
were larger than a possible systematic difference between the
two datasets. There were, however, high correlations between
gene-expression profiles of hormone-related tissues (for
example, breast, ovary and uterus) both within and between
datasets.

Validation of the quantitative comparison across 
datasets
Singular value decomposition (SVD) has been successfully
used to investigate the fundamental patterns in gene-expres-
sion data [19,20]. We analyzed our merged gene-expression
data (dataset I) using SVD to asses the fundamental patterns

Table 1

Sources of gene-expression data

Source Number of cell lines Number of normal 
tissue samples

Number of tumor 
samples

Dataset Platform

[15] 60 - - I Hu6800

[17] - 59 - I Hu6800

[16] - 60 189 I Hu6800

[18] 25 65 5 II HGU95A

Identification of outlier samples by correlation analysis and scalar factorsFigure 1
Identification of outlier samples by correlation analysis and scalar factors. (a) Plotting the average correlation for each sample from pairwise comparisons 
to all other samples (y-axis). The samples were sorted according to their average correlation (x-axis). We used an average correlation of 0.34 as a cutoff 
(marked with a dashed line). (b) Comparison of the average correlation (x-axis) with the scalar factor used in the global scaling procedure (y-axis). Many 
of the samples with low average correlations had been rescaled using high scaling factors, indicating that they might have had poor hybridizations. Again, 
the dashed line displays the average correlation cutoff.
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within the data, and in particular the similarities between the
expression data from the different laboratories. We projected
each sample into a SVD subspace by calculating the correla-
tion between the expression profiles of each array and the two
eigenarrays (derived from the SVD), respectively (Figure 3a).
Because the first two eigenarrays are associated with the two
largest singular values [19,21], this procedure captures the
largest variability inside the gene-expression data into a two-
dimensional plot. Importantly, the gene-expression profiles
of normal tissue samples from the two different studies were
overlapping after the SVD projection. Moreover, normal tis-
sue and tumor tissue samples of CNS origin, from the two dif-
ferent laboratories, were in proximity to each other in SVD
subspace (Figure 3a). Therefore, laboratory-dependent sepa-
ration of the tissue samples was not observed. However, the
cell lines were distinctly separated (Figure 3a). This could
reflect either a technical artifact in the merging of only the

gene-expression data of the cell lines, or that the cell lines
have very different gene-expression profiles compared to
tissues.

Therefore, we performed the identical analysis of dataset II
(the validation dataset) comprising both cell lines and tissue
samples within the same study. Using the identical SVD pro-
cedure, cell lines were again separated from tissues in their
correlation with the two first eigenarrays (Figure 3b). This
excluded the possibility that the cell line versus tissues dis-
tinction in dataset I was a technical artifact. Moreover, the
separation of cell lines from tissue samples was captured by
the first eigenarray in both datasets demonstrating that this
difference was the largest in the gene-expression data. Hier-
archical clustering of the gene expression in datasets I and II,
were also found to repeatedly separate all cell lines from nor-
mal and tumor tissues (data not shown).

Correlation matrix between all normal samples from two studiesFigure 2
Correlation matrix between all normal samples from two studies. The gene-expression profiles of each normal tissue sample were compared to all other 
normal tissue samples from the other dataset by measuring the correlation across all genes. The normal samples from Hsiao et al. [17] are presented along 
the y-axis and samples from Ramaswamy et al. [16] along the x-axis. The correlation matrix displays each pairwise comparison and each entry is color-
coded according to the scale bar to the right of matrix. Black rectangles highlight correlation values between the samples from the same tissues in the two 
different datasets.
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The gene-expression profiles of cell lines compared to normal and tumor tissuesFigure 3
The gene-expression profiles of cell lines compared to normal and tumor tissues. (a) Projection of each sample in dataset I into SVD space drawn by the 
correlation of each sample to SVD eigenarray 1 (x-axis) and 2 (y-axis). The normal tissue samples of CNS origin from two laboratories (green squares, 
Hsiao et al [17]; black squares, Ramaswamy et al. [16]) were overlapping, as well as the tumor tissue samples (red squares, Ramaswamy et al. [16]). The cell 
lines were separated from tissue samples by the first SVD eigenarray. Samples of lymphoma and leukemia origin were also separated in the SVD analysis. 
(b) Projection of each sample in dataset II into the SVD space drawn by the correlation of each sample to SVD eigenarray 1 (x-axis) and 2 (y-axis). The cell 
lines (crosses) were separated from tissue samples. Whole blood samples were distinctly clustered close to the cell lines. (c) Other separation of normal 
samples. Significance analysis of microarrays (SAM) was used to identify differentially expressed genes between cell line and tissue samples in dataset I. The 
number of statistically significant genes (x-axis) as a function of the median and 90th percentile of the FDR (y-axis) estimated based on 1,000 permutations. 
(d) SAM analysis of cell line versus tissue samples in dataset II. Identical parameters as in (c). (e) Plot of the degree of differential expression between cell 
lines and tissues for each gene in dataset I (x-axis) versus dataset II (y-axis) respectively. The degree of differential expression was measured using the 
signal-to-noise metric [23].

Table 2

Classification of cell lines and tissue samples across five datasets

Dataset reference Accuracy (%) Number of cell lines Number of tissue samples

Dataset I 99* 60 371

Dataset II 100 25 70

Dataset III [8] 100 10 123

Dataset IV [24] 95 15 64

Dataset V [12] 96 10 81

*One cell line (breast cell line HS578T) was misclassified as a tissue sample.
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Identification of origin-independent transcriptional 
alterations in vitro
We next sought to estimate the number of genes that were
specifically up- or downregulated in cell lines and responsible
for the distinct separation of cell lines from tissue samples.
We used significance analysis of microarrays (SAM) [22] to
identify the number of genes with statistically significant dif-
ferential expression as a function of the false discovery rate
(FDR). In dataset I, using conservative criteria, we identified
1,500 genes with an estimated FDR of zero, and 2,900 genes
at a FDR of 1% (Figure 3c). For example, at a FDR of 1% only
29 false positives are estimated out of the 2,900 genes identi-
fied. In dataset II we identified 1,800 genes at a FDR of zero
and 3,400 genes at a FDR of 1% (Figure 3d). In total, using a
FDR of 1%, we identified 41% of the genes as differentially
expressed between cell lines and tissues in dataset I and 29%
in dataset II respectively. To investigate the generality of our
results, we investigated whether the identical genes were
identified as up- or downregulated in cell lines in dataset I
and II despite the sample and platform differences. Of the
2,000 most differentially expressed genes in dataset I, we
found corresponding probe sets for 1,476 of the genes on the
HGU95A arrays (635 upregulated and 841 downregulated
genes) using a recently published map [23]. We confirmed
the upregulation of 399 genes (63% of the genes; p < 4e-70,
Fisher's exact test) and 176 (21% of the genes; p < 1e-7,
Fisher's exact test) of the downregulated genes in cell lines by
identifying the intersection with the genes with statistically
significant differential expression in dataset II (FDR of 1%).
The list of genes found to be differentially expressed in both
datasets is found in Additional data file 1. Second, we also
compared the score of differential expression for all genes in
both datasets (Figure 3e). A correlation coefficient of 0.33
between the degree of differential expression in dataset I and
II was observed, even though they are generated using two
different Affymetrix arrays and the sample origins were
diverse. Again, this demonstrated that the results obtained by

comparing the cell lines to normal and tumor tissues in data-
set I were not due to technical artifacts.

Classification of samples based upon the in vitro 
signature
To further validate that the gene-expression differences
between cell lines and tissues identified in both dataset I and
II (399 upregulated and 176 downregulated genes) represent
true transcriptional alterations associated with long-term
cultured cell lines, we evaluated the ability to classify samples
on the basis of these genes (Materials and methods). First, as
a control, we classified each sample in dataset I and II into
either 'cell line' or 'tissue'. The accuracy of the classification
was 99% and 100% respectively (Table 2). Second, we classi-
fied each sample in three additional datasets [8,12,24], again
with high accuracy (Table 2). Plots of the distributions of
scores for each dataset can be found in Additional data file 2.

Features of the in vitro gene-expression signature
We observed a qualitative difference in the expression pat-
terns of the up- and downregulated genes in cell lines that
might explain the higher degree of confirmation of upregu-
lated genes in dataset II. Figure 4 shows the general trends in
the expression of differentially expressed genes in both data-
set I and II across cell lines and tissues. The upregulated
genes were highly expressed all cell lines and in general
expressed in lower amounts in tissue samples (Figure 4b;
some exceptions are discussed below). Genes found to be
downregulated in cell lines were low in all cell lines, but highly
expressed in only a subset of the tissues (Figure 4a). No genes
were found to be universally expressed in vivo but not in
vitro. As a consequence, the identification of downregulated
genes in cell lines depends on the tissue samples present in
the comparison. This might explain the lower concordance
between different datasets for downregulated genes com-
pared with upregulated genes, as large differences between
the types of tissue samples in datasets I and II existed (for
example, no tumor samples in dataset II).

The gene-expression signature of in vitro growthFigure 4 (see following page)
The gene-expression signature of in vitro growth. All genes found to be differentially expressed between cell lines and tissues across two dataset I and II 
(576 genes) were subject to hierarchical clustering (average linkage and Euclidean distance metric) using the Genesis software [43]. Before clustering, all 
genes were normalized to an average expression level of zero and a standard deviation of one (that is unit length). Above the cluster image, samples are 
labeled as cell lines, normal tissues and tumor tissues (except for the primary cultures and FACS-sorted cells in datasets II that were not annotated). (a) 
Top part of the cluster presents the genes found to be downregulated in vitro. These genes were not detected in vitro and were often only expressed in a 
subset of tissue samples. It is likely that these genes represent downregulated tissue markers from the respective tissues. (b) In contrast, genes found to 
be upregulated in vitro were highly expressed in all cell lines, while occasionally expressed in a few tissue samples. Specific clusters of genes in (a) and (b) 
are annotated on the right of the cluster image (clusters A to H). Specific groups of samples are annotated in color above the cluster image and by number 
below the cluster image (cluster numbers 1 to 7). Cluster number 1, kidney and liver samples; cluster number 2, lung and muscle; cluster number 3, 
lymphomas; cluster number 4, leukemias (ALL); cluster number 5, leukemias (AML); cluster number 6, CNS tumors (medullablastoma and glioblastoma); 
cluster number 7, germinal center cells.
Genome Biology 2005, 6:R65



http://genomebiology.com/2005/6/8/R65 Genome Biology 2005,     Volume 6, Issue 8, Article R65       Sandberg and Ernberg R65.7

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

Figure 4 (see legend on previous page)
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Table 3

Biological process upregulated in vitro

GO category Total number of genes Genes changed Log10 (p-value) FDR GO ID

Translation

Translation 76 36 -7.95 0.0000 GO:0043037

Ribosome biogenesis and assembly 42 19 -4.10 0.0037 GO:0042254

Ribosome biogenesis 41 19 -4.27 0.0000 GO:0007046

Regulation of translation 33 14 -2.81 0.0077 GO:0006445

Translational initiation 23 13 -4.20 0.0042 GO:0006413

tRNA metabolism 27 12 -2.69 0.0070 GO:0006399

tRNA modification 23 11 -2.82 0.0078 GO:0006400

tRNA aminoacylation for protein translation 21 10 -2.59 0.0125 GO:0006418

tRNA aminoacylation 21 10 -2.59 0.0125 GO:0043039

rRNA processing 17 10 -3.53 0.0056 GO:0006364

rRNA metabolism 17 10 -3.53 0.0056 GO:0016072

Regulation of translational initiation 14 8 -2.79 0.0075 GO:0006446

Translational elongation 14 7 -2.07 0.0400 GO:0006414

Transcription from Pol I promoter 7 5 -2.44 0.0141 GO:0006360

Splicing

RNA processing 123 52 -9.02 0.0000 GO:0006396

RNA metabolism 130 52 -8.00 0.0000 GO:0016070

mRNA metabolism 64 21 -2.27 0.0217 GO:0016071

mRNA processing 57 20 -2.56 0.0123 GO:0006397

RNA splicing 41 18 -3.70 0.0030 GO:0008380

RNA splicing, via transesterification reactions with bulged 
adenosine as nucleophile

33 15 -3.37 0.0050 GO:0000377

RNA splicing, via transesterification reactions 33 15 -3.37 0.0050 GO:0000375

Nuclear mRNA splicing, via spliceosome 33 15 -3.37 0.0050 GO:0000398

RNA modification 25 11 -2.46 0.0143 GO:0009451

Nucleotide metabolism

Nucleobase, nucleoside, nucleotide and nucleic acid 
metabolism

806 192 -4.43 0.0000 GO:0006139

Nucleotide metabolism 61 20 -2.18 0.0304 GO:0009117

Nucleotide biosynthesis 45 16 -2.21 0.0303 GO:0009165

Ribonucleotide metabolism 28 13 -3.09 0.0047 GO:0009259

Ribonucleotide biosynthesis 27 13 -3.28 0.0048 GO:0009260

Purine nucleotide metabolism 29 12 -2.37 0.0164 GO:0006163

Purine nucleotide biosynthesis 26 12 -2.86 0.0080 GO:0006164

Purine ribonucleotide metabolism 25 11 -2.46 0.0143 GO:0009150

Purine ribonucleotide biosynthesis 24 11 -2.63 0.0115 GO:0009152

Nucleoside triphosphate metabolism 23 10 -2.23 0.0299 GO:0009141

Ribonucleoside triphosphate metabolism 20 9 -2.17 0.0295 GO:0009199

Ribonucleoside triphosphate biosynthesis 19 9 -2.35 0.0167 GO:0009201

Nucleoside triphosphate biosynthesis 20 9 -2.17 0.0295 GO:0009142

Purine ribonucleoside triphosphate metabolism 20 9 -2.17 0.0295 GO:0009205

Purine ribonucleoside triphosphate biosynthesis 19 9 -2.35 0.0167 GO:0009206

Purine nucleoside triphosphate metabolism 21 9 -2.00 0.0413 GO:0009144

Purine nucleoside triphosphate biosynthesis 19 9 -2.35 0.0167 GO:0009145

Nucleoside metabolism 14 7 -2.07 0.0400 GO:0009116

Protein modifiication and degradation

Protein metabolism 836 210 -6.86 0.0000 GO:0019538

Protein biosynthesis 207 72 -7.76 0.0000 GO:0006412

Intracellular transport 176 63 -7.36 0.0000 GO:0046907

Protein transport 149 52 -5.75 0.0000 GO:0015031
Genome Biology 2005, 6:R65
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Intracellular protein transport 138 50 -6.11 0.0000 GO:0006886

Amino acid and derivative metabolism 126 36 -2.31 0.0198 GO:0006519

Amino acid metabolism 98 29 -2.19 0.0297 GO:0006520

Ubiquitin-dependent protein catabolism 48 26 -7.39 0.0000 GO:0006511

Modification-dependent protein catabolism 48 26 -7.39 0.0000 GO:0019941

Protein targeting 70 23 -2.44 0.0139 GO:0006605

Protein folding 46 22 -5.14 0.0000 GO:0006457

Ubiquitin cycle 31 12 -2.10 0.0351 GO:0006512

Amino acid activation 21 10 -2.59 0.0125 GO:0043038

Polyamine metabolism 5 4 -2.27 0.0271 GO:0006595

Metabolism

Metabolism 2008 457 -12.88 0.0000 GO:0008152

Biosynthesis 423 119 -6.33 0.0000 GO:0009058

Energy pathways 128 38 -2.74 0.0074 GO:0006091

Energy derivation by oxidation of organic compounds 89 32 -4.02 0.0036 GO:0015980

Main pathways of carbohydrate metabolism 56 20 -2.67 0.0069 GO:0006092

Coenzyme and prosthetic group metabolism 55 18 -2.00 0.0419 GO:0006731

Coenzyme metabolism 44 16 -2.32 0.0200 GO:0006732

Glucose catabolism 30 12 -2.23 0.0307 GO:0006007

Coenzyme and prosthetic group biosynthesis 31 12 -2.10 0.0351 GO:0046138

Oxidative phosphorylation 13 11 -6.25 0.0000 GO:0006119

Coenzyme biosynthesis 23 10 -2.23 0.0299 GO:0009108

Cellular respiration 11 9 -4.94 0.0000 GO:0045333

Aerobic respiration 9 8 -4.92 0.0000 GO:0009060

Tricarboxylic acid cycle 18 8 -1.94 0.0462 GO:0006099

ATP synthesis coupled electron transport (sensu Eukarya) 6 5 -2.91 0.0061 GO:0042775

ATP synthesis coupled electron transport 6 5 -2.91 0.0061 GO:0042773

Cell-cycle progression

Cell cycle 324 89 -4.32 0.0000 GO:0007049

Cell organization and biogenesis 315 83 -3.38 0.0054 GO:0016043

DNA metabolism 188 64 -6.53 0.0000 GO:0006259

Mitotic cell cycle 153 58 -7.84 0.0000 GO:0000278

Cytoplasm organization and biogenesis 202 55 -2.73 0.0073 GO:0007028

DNA replication and chromosome cycle 83 30 -3.85 0.0033 GO:0000067

M phase 62 26 -4.68 0.0000 GO:0000279

Nuclear organization and biogenesis 79 25 -2.36 0.0176 GO:0006997

DNA packaging 69 25 -3.31 0.0049 GO:0006323

S phase of mitotic cell cycle 72 25 -3.00 0.0043 GO:0000084

Chromosome organization and biogenesis (sensu Eukarya) 77 24 -2.20 0.0300 GO:0007001

DNA replication 67 23 -2.72 0.0071 GO:0006260

Nuclear division 54 22 -3.82 0.0031 GO:0000280

Establishment and/or maintenance of chromatin 
architecture

64 21 -2.27 0.0217 GO:0006325

M phase of mitotic cell cycle 45 20 -4.15 0.0040 GO:0000087

DNA repair 59 20 -2.36 0.0173 GO:0006281

Mitosis 42 19 -4.10 0.0037 GO:0007067

Microtubule-based process 45 19 -3.61 0.0059 GO:0007017

DNA-dependent DNA replication 35 15 -3.04 0.0044 GO:0006261

Microtubule cytoskeleton organization and biogenesis 27 14 -3.94 0.0034 GO:0000226

G1/S transition of mitotic cell cycle 35 13 -2.06 0.0396 GO:0000082

G2/M transition of mitotic cell cycle 21 9 -2.00 0.0413 GO:0000086

M-phase specific microtubule process 12 7 -2.56 0.0132 GO:0000072

Chromosome segregation 14 7 -2.07 0.0400 GO:0007059

Microtubule nucleation 9 6 -2.65 0.0117 GO:0007020

Table 3 (Continued)

Biological process upregulated in vitro
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The genes downregulated in cell lines and only expressed in
subsets of tissues and tumors were likely to represent tissue-
specific genes for which the expression was lost in cell lines
(Figure 4a). Indeed, examples of tissue-specific genes that
were downregulated in cell lines were identified for blood
cells (Figure 4, cluster A, for example, PBXIP1, ISGF3 and
IkB-alpha), brain tumors (Figure 4, cluster C and sample
cluster 6, for example, CCND2 and APPBP2), renal biopsies
(Figure 4, cluster E, for example, hMT-If) and brain normal
and tumor biopsies (Figure 4, cluster F, for example, Proto-
cadherin 2).

Leukemias (sample clusters 4 and 5 in Figure 4), lymphomas
(sample cluster 3 in Figure 4), and germinal center cells (sam-
ple cluster 7 in Figure 4) had gene-expression profiles most
similar to those of the cell lines. They had downregulated a
large portion of the genes similarly downregulated in cell
lines (Figure 4, cluster D). They had also upregulation of
genes associated with replication (cluster G, for example,
TOPII, MCM2, MCM3 and MCM6) and metabolism (cluster
H). The information of all genes present in Figure 4 along
with its presence in different subclusters can be found in
Additional data file 1. A high-resolution image of Figure 4
with all sample names and gene identifiers can be found in
Additional data file 3.

Transcriptional alterations affect multiple biological 
processes
Because of the considerable and consistent differential
expression of genes in cell lines, we used Gene Ontology (GO)
to investigate which biological processes were affected by
long-term in vitro selection and adaptation. Using GoMiner
[25] we identified the GO categories over-represented among
the differentially expressed genes defined by SAM at a FDR of
1% (735 up- and 1,699 downregulated genes). By this

approach, multiple and highly overlapping GO categories
showing statistical significance were identified. GoMiner
corrects the p-values for the multiple comparisons and we set
the FDR threshold to 5% for the GO category identification.
We found that upregulated genes in cell lines are over-repre-
sented for multiple GO categories relating to three main cel-
lular processes: cell cycle; macromolecular biosynthesis,
processing, modification and degradation; and energy metab-
olism (Table 3). Seven genes belonging to the 'histone modi-
fication' category were also upregulated. Interestingly, among
the downregulated genes we identified many genes involved
in 'cell adhesion', 'cell-cell adhesion', 'enzyme linked receptor
protein signaling pathway', and 'cell-cell signaling' (Table 4).
A similar pattern of downregulated genes involved in cell-cell
communication, membrane signaling and second messenger
signaling was observed in dataset II (data not shown). We
also identified many downregulated genes involved in
immune-system functions and antigen presentation. How-
ever, these differences were dataset dependent and not
observed in dataset II. Therefore these categories were
excluded from Table 4 but are given in Additional data file 4.

Discussion
The use of immortalized cell lines as model systems of normal
and pathological tissues is controversial [5,26-28]. There are
obvious general differences between the environment of cells
growing in vitro and that of in vivo tissue cells, including oxi-
dative pressure, nutrient accessibility, cell-cell contact and
interactions with ECM, as well as in growth rate. These differ-
ences influence the gene expression and the phenotype of the
cells grown in vitro. Many gene-expression studies have ana-
lyzed the differences between cell lines derived from a specific
tumor tissue to the corresponding tumor tissues and primary
cultures [2,10,12,29]. These studies are important to asses

DNA replication initiation 10 6 -2.32 0.0190 GO:0006270

Spindle assembly 8 6 -3.05 0.0045 GO:0007051

Tubulin folding 9 6 -2.65 0.0117 GO:0007021

Mitotic spindle assembly 6 5 -2.91 0.0061 GO:0007052

Pre-replicative complex formation and maintenance 5 4 -2.27 0.0271 GO:0006267

Chromatin modifications

Histone modification 12 7 -2.56 0.0132 GO:0016570

Covalent chromatin modification 12 7 -2.56 0.0132 GO:0016569

Others

Physiological process 2917 574 -3.84 0.0032 GO:0007582

Macromolecule biosynthesis 345 100 -5.98 0.0000 GO:0009059

Response to endogenous stimulus 77 23 -1.89 0.0486 GO:0009719

Response to DNA damage stimulus 71 22 -2.02 0.0412 GO:0006974

Table 3 (Continued)

Biological process upregulated in vitro
Genome Biology 2005, 6:R65
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how cell-line model systems have maintained the gene
expression of their tumor origins, that is, their tissue identi-
ties. We have previously developed a method to assess how
gene expression in individual cell lines relates to tumors of
different tissue origins [30]. It is, however of equal impor-
tance to pinpoint the cellular processes affected by long term
in vitro growth irrespectively of tissue origin. Therefore we
have performed a comprehensive analysis of gene-expression
profiles of 60 cell lines and 311 samples from multiple tissue
origins. The analyses showed that approximately 30% of the
genes investigated were differentially expressed in immortal-
ized cell lines.

We used GO to characterize the cellular processes that were
transcriptionally altered in cell lines. This analysis identified
the common biological processes that were transcriptionally
altered in rapidly dividing cells, that is, a molecular portrait of
proliferation. In support of previous findings [2,10], these
data confirmed an upregulation of genes involved in transla-
tion, cell-cycle regulation and DNA replication. In addition,
this comparison identified many other cellular processes that
were upregulated (Table 2). Genes involved in energy metab-
olism, nucleotide metabolism, splicing, protein modifications
and degradation, and chromatin regulation were enriched
among the upregulated genes in vitro. As expected, many of
the upregulated genes seem to be directly involved in cell
divisions. For example, the maintenance methylation
enzyme, DNA methyltransferase 1 (DNMT1), was consistently
upregulated in the rapidly dividing cell lines. DNMT1 methyl-
ates newly synthesized DNA and is directly involved in the
DNA replication process. The de novo DNA methylation
enzymes DNMT3A and DNMT3B were not, however, upregu-
lated in cell lines. Therefore, it is tempting to speculate that
the list of upregulated genes is enriched in genes directly
involved in the essential cellular processes for rapidly diving

cells (for example, DNA replication). The gene list might
therefore be used to predict which cellular factors are general
and which factors have more specialized regulatory roles.
Certain histone-modifying proteins (HDAC1, EZH2, and HP1
beta and gamma subunits) were upregulated in cell lines
whereas others were not. Could these factors also be directly
involved in DNA replication?

Among the genes downregulated in vitro we detected many
involved in cell communication, membrane signaling, and
adhesion to ECM. A downregulation of genes involved in
ECM interactions were previously found in a serial analysis of
gene expression (SAGE) study [31]. Our results confirm their
observation. We further demonstrate that additional
membrane signaling proteins, working downstream of G-pro-
tein-coupled receptors, were downregulated in vitro. The
downregulation of many proteins involved in membrane sig-
naling, cell-cell communication and adhesion to ECM proba-
bly reflect the altered environment for cells growing in vitro
and in defined cell-culture media and in contrast to the
organization of cells in tissues [6,26,27]. Indeed, when trans-
planting tumor cell lines into immunodeficient mice and ana-
lyzing the resulting tumors, genes involved in ECM and cell
adhesion were again upregulated [32]. The gene-expression
comparison presented in this study could also be used for
detailed characterization of particular pathways [14] to iden-
tify which are up- or downregulated as part of the cell-line
adaptation to in vitro conditions.

This study compared immortalized cell lines to solid tumors
of diverse origins. Tissues are complex, heterogeneous mix-
tures of cell types, whereas cell lines contain just one more-
or-less clonal cell type, selected for its ability to grow under in
vitro conditions. It is likely that the expression of genes in
tumor-derived cell lines is more similar to that in the

Table 4

Biological process downregulated in vitro

GO category Total number of genes Genes changed Log10 (p-value) FDR ID

Membrane signaling and cell adhesion

Cell communication 1088 565 -13.76 0.0000 GO:0007154

Signal transduction 831 428 -8.86 0.0000 GO:0007165

Cell surface receptor linked signal transduction 413 232 -8.66 0.0000 GO:0007166

Cell adhesion 257 139 -4.10 0.0000 GO:0007155

Cell-cell signaling 240 132 -4.38 0.0000 GO:0007267

Cell motility 197 105 -2.91 0.0171 GO:0006928

G-protein coupled receptor protein signaling pathway 175 102 -4.87 0.0000 GO:0007186

Enzyme linked receptor protein signaling pathway 107 61 -2.78 0.0231 GO:0007167

Cell-cell adhesion 87 53 -3.41 0.0000 GO:0016337

G-protein signaling, coupled to IP3 second messenger 
(phospholipase C activating)

35 23 -2.32 0.0490 GO:0007200

Extracellular structure organization and biogenesis 17 14 -3.02 0.0029 GO:0043062

Extracellular matrix organization and biogenesis 16 13 -2.73 0.0225 GO:0030198
Genome Biology 2005, 6:R65
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malignant cells within the tumor tissue. Thus the in vitro sig-
nature is a combined effect of in vitro adaptation and selec-
tion for subtypes of cells from the tissue. Although at present
it would be methodologically very hard to establish the contri-
bution from either of these two phenomena, some general
remarks can be made. Genes more highly expressed in the
malignant cell would appear upregulated in cell lines as a
result of the enrichment of this cell in culture. Because the
tumor samples contained at least 50% malignant cells (usu-
ally more, see Materials and methods) this 'enrichment effect'
could never result in an artificial fold-change of more than 2.
In our data, 344 genes (dataset I) and 1,159 genes (dataset II)
were upregulated in cell lines with a fold-change exceeding 2.
It is therefore impossible that the enrichment effect explains
the major part of the observed upregulation of genes in vitro.
It could only bias the numbers to a limited extent. On the
other hand, the degrees of infiltration of stromal cells vary
between different solid tumors [33]. There is a possibility that
genes upregulated in stromal cells appear downregulated in
cell lines as a result of the lack of these cells in culture. This
dilution effect could potentially result in an apparent
downregulation in cell lines of genes with a fold-change value
exceeding 2. This requires that there is a sixfold change in the
expression in the stromal compartment comprising 20% of
the cells in the tumor, for a gene to appear downregulated by
more than twofold in cell lines. One extreme, but interesting,
possibility would be that the cells growing in vitro are derived
from a putative 'cancer stem cell' [34]. In that case the enrich-
ment effect could be profound, and the observed expression
signature would then be a combination of the in vitro adapta-
tion and selection for a common cancer stem cell signature.
These intriguing issues might be resolved using laser-capture
microdissection [35] on specific subpopulations of cells
within the tumor for cases where reliable stem-cell markers
can be established or applying tissue modeling in in vitro
three-dimensional culture systems [26,27]. It must be
emphasized, however, that the tumor tissue phenotype is very
much dictated by the interplay between different cell types,
which is decisively interrupted by growth in vitro [28,33].
The interplay between malignant cells and stroma can be dis-
sected using xenografts. In a recent study, human cell lines
were injected into mice and the effect of stromal components
on the gene expression of the malignant cell was specifically
investigated [32]. Finally, it is of fundamental importance to
pinpoint the common transcriptional differences and similar-
ities of these cell lines to their tissues of origin irrespective of
their causes, as in our study. These cell lines are routinely
used as model systems of tumors and normal tissues. There-
fore the nature and volume of effects related to in vitro cul-
ture are profoundly relevant.

It would be interesting to investigate the temporal aspects of
the establishment of the in vitro signature. In a recent study
6- and 24-hour primary cultures of hepatocytes were com-
pared to liver tissues [36]. Not surprisingly, it was found that
the gene-expression profiles separated gradually with time.

However, the genes reported to be upregulated at 6 and 24
hours are not the same as the ones that were found to be uni-
versally upregulated in our tumor-derived cell lines, indicat-
ing the need for a longer period of time before the in vitro
signature gets established. Other studies have identified
higher expression of a limited set of proliferation-associated
genes in immortalized cancer cell lines when compared with
primary cultures [10,29]. Therefore, it is likely that the exten-
sive differential expression observed in this study occur as a
result of long-term adaptation due to in vitro selection and
adaptation.

This study also introduced a fruitful cross-site approach for
quantitative comparison of gene-expression data from differ-
ent laboratories. The growing wealth of gene-expression data
available in public databases offers great opportunities for
computational experiments. It must, however, be emphasized
that a successful comparison of gene-expression data from
different laboratories depends on the quality of the data and
similarities in the experimental protocols used [37]. There-
fore, careful quality controls and validations of gene-expres-
sion comparisons must always be performed. If available, raw
data files (that is, CEL files) would enable additional quality
controls (such as checking the image for hybridization
scratches) and the use of different methods to estimate tran-
script levels [38]. We developed a quality-control procedure
by examining the scalar factors, correlation between similar
samples, SVD, and an independent validation dataset. This
approach was successful in the analysis of gene-expression
data from three different laboratories (using the same
Affymetrix Hu6800 platform). Thus, quantitative compari-
sons of gene-expression data from different sites may be
feasible.

Conclusion
This cross-site comparison of gene expression in cell lines,
normal, and tumor tissues revealed a distinct in vitro gene-
expression signature. This signature deserves attention as a
biological phenomenon itself, as it can elucidate and teach us
about the impressive consequences of in vitro selection and
adaptation, with implications for tissue organization and
future tissue engineering in vitro.

Materials and methods
Gene-expression data
We compiled gene-expression data on cell lines, normal, and
tumor samples from three different studies [15-17] that all
used Affymetrix Hu6800 arrays. The National Cancer Insti-
tute NCI60 cell-line gene-expression data [15] were down-
loaded from Cancer Program Data Sets [39]. The tab-
delimited text file (NCI60_aug99_resfile.txt) contained
scaled expression data together with 'absolute calls' (absent,
present and marginal). The 60 cell lines came from the fol-
lowing tissues: lung (n = 9), colon (n = 7), breast (n = 8), ovary
Genome Biology 2005, 6:R65
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(n = 6), leukemia (n = 6), renal (n = 8), melanoma (n = 8),
prostate (n = 2), nervous system (n = 6). Gene-expression
data for 59 human tissue samples [17] were downloaded from
Human Gene Expression Index [40] in an already normalized
format and represented the following samples: blood (n = 1),
brain (n = 11), breast (n = 2), colon (n = 1), cervix (n = 1),
endometrium (n = 2), esophagus (n = 1), kidney (n = 6), liver
(n = 6), lung (n = 6), muscle (n = 6), myometrium (n = 2),
ovary (n = 2), placenta (n = 2), prostate (n = 4), spleen (n = 1),
stomach (n = 1), testis (n = 1), vulva (n = 3). Gene-expression
profiles of 60 normal and 189 tumor samples from 14 differ-
ent tissue origins [16] were downloaded as raw (unscaled)
gene-expression data (GCM_Total.res) from Cancer Program
Data Sets [39]. Tumor tissue origins were: breast, prostate,
lung, colon, lymphoma, melanoma, bladder, uterus, leuke-
mia, kidney, ovary, mesothelioma, and central nervous sys-
tem. Normal samples were from the following tissues: breast,
prostate, lung, colon, germinal center, bladder, uterus,
peripheral blood, kidney, pancreas, ovary and central nervous
system. All tumors were biopsy specimens from primary sites,
obtained before any treatment and enriched for at least 50%
malignant cells [16]. For further details see [16].

An independent validation dataset (dataset II) that contained
both in vivo samples (n = 70) and cell lines (n = 25) hybrid-
ized to Affymetrix HGU95A arrays [18] was downloaded from
the Gene Expression Atlas [41]. The gene-expression data had
previously been scaled using the GeneChip Global Scaling
algorithm to a target intensity of 200.

Three datasets were used to assess our ability to classify sam-
ples into either cell lines or tissues. Dataset III comprised 10
cell lines and 123 tissue samples [8]. Genes were matched
between U133A and HGU95A on the basis of best-match
spreadsheets from Affymetrix NetAffx [42]. Dataset IV [24]
comprised 15 cell lines and 64 tumors (mostly lymphomas)
[24]. Dataset V comprised 10 cell lines and 81 lung tumors
and normal biopsies [12] and we used UniGene identifiers to
map their genes to our Affymetrix array identifiers. Only a
limited number of genes (n = 36) of the 576 had a UniGene
match. Nevertheless, using only 36 genes most samples were
correctly classified as cell lines or tissues. The HUVEC cells of
unknown passage from dataset II and FACS-purified cells
were excluded from this classification of cell lines and tissues.

Normalization
To compare the gene-expression data generated in different
laboratories we rescaled each sample to equal global chip
intensity. The global scaling algorithm was calculated from
the positive average difference values excluding the top and
bottom 2% average difference values. A reference sample
(lung-derived cell line: NSCLC_H460) was chosen on the
basis of its average percent present and its average global chip
intensity before rescaling. All other samples were rescaled to
the equal average chip intensity as the reference sample. We

thereafter 'thresholded' the data using a ceiling of 16,000
units and a floor of 20 units.

Singular value decomposition
Singular value decomposition (SVD) is a standard method in
linear algebra and the mathematical details of SVD for gene-
expression analysis have been described in detail elsewhere
[19-21]. In brief, a gene-expression matrix (with rows of genes
and columns of arrays) after SVD is decomposed into three
matrices USVT. The left singular vectors (hereafter called
eigenarrays) are the columns of matrix U, the diagonal in S
are the singular values and the rows of VT the right singular
vectors. We projected the gene-expression pattern of each
sample into a two-dimensional SVD subspace, by measuring
the correlation between the gene expression of each sample to
the first two eigenarrays. Before SVD calculation we pre-proc-
essed the expression data for each gene independently to an
average expression level of zero and a standard deviation of
one. We used the SVD implementation in Numerical Python
(version 23.1) for Python 2.3.3.

Significance analysis of microarrays
We used the significance analysis of microrrays (SAM) [22]
available as an Excel add-in (version 1.21) to identify the
number of differentially expressed genes, as a function of the
false discovery rate (FDR). We identified statistically signifi-
cant genes at estimated FDR of zero and 1% (based on 1,000
permutations) and using a fold-change cutoff of 1.5.

Classification of gene-expression profiles
We used the genes identified as differentially expressed in
dataset I and II (n = 576) to assess whether we could classify
samples in five different datasets into either 'cell lines' or 'tis-
sues'. Dataset I and II correspond to the datasets detailed
above (table 1) and were used as initial controls. Before calcu-
lation we pre-processed the expression data for each gene
independently to an average expression level of zero and a
standard deviation of one for each dataset separately. For
each dataset, we then calculated the mean gene-expression
levels for each gene independently across all cell lines and tis-
sues, respectively. The average cell line expression profile and
tissue profile within each dataset were referred to as the 'cell
line centroid' and 'tissue centroid'. Then we calculated the
Euclidean distance (De) between each sample and the cell line
centroid and tissue centroid, respectively. We integrated the
two distances into a simple score by calculating the difference
between the Euclidean distance to the tissue centroid and cell
line centroid. Thus, samples that resemble cell lines more
than tissues would have a short Euclidean distance towards
the cell line centroid and a longer distance towards the tissue
centroid and therefore get a positive score. For all datasets a
bimodal distribution of scores was observed (see Additional
data file 2 for the distributions of scores for samples in the five
datasets). We defined a threshold for each dataset that gave
equal amounts of false positives and false negatives. Then all
scores above threshold were classified as 'cell line' and all
Genome Biology 2005, 6:R65
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scores below threshold as 'tissue'. The performance of the
classification was reported as the accuracy, that is, the sum of
the true positives and true negatives divided by the total
number of predictions for each dataset.

GO analysis
We used GoMiner [25] to analyze the lists of up- and down-
regulated genes for GO categories that were significantly sta-
tistically over-represented. We used the second generation
GoMiner program that first estimates the p-value using
Fisher's exact test and then corrects the p-values for the
multiple comparisons by estimating the FDR. We reported
only GO categories that had corrected p-values of less than
0.05.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 lists the genes
found to be differentially expressed in cell lines versus tissues
in both datasets, with corresponding gene names, probe
identifiers, SAM d scores and fold-change values. The order of
the genes in this table is identical to Figure 4. Additional data
file 2 contains a figure with a graph of the distribution of
scores for all samples in the five different datasets respec-
tively. Additional data file 3 is a high-resolution image of Fig-
ure 4 in which all sample names and gene identifiers can be
found. Additional data file 4 lists the dataset-specific GO cat-
egories downregulated in only cell lines from dataset I. These
categories were mainly of immunological processes and are
listed with corresponding statistics and GO identifiers. Addi-
tional data file 5 describes the calculations used in the discus-
sion to estimate cell composition effects on gene-expression
comparisons.
Additional Data File 1A table listing the genes found to be differentially expressed in cell lines versus tissues in both datasetsCorresponding gene names, probe identifiers, SAM d scores and fold change values are given. The order of the genes in this table is identical to Figure 4.Click here for fileAdditional Data File 2A figure with a graph of the distribution of scores for all samples in the five different datasets respectivelyA figure with a graph of the distribution of scores for all samples in the five different datasets respectively.Click here for fileAdditional Data File 3A high-resolution image of Figure 4 in which all sample names and gene identifiers can be foundA high-resolution image of Figure 4 in which all sample names and gene identifiers can be found.Click here for fileAdditional Data File 4A table listing the dataset-specific GO categories downregulated in only cell lines from dataset IThese categories were mainly of immunological processes and are listed with corresponding statistics and GO identifiers.Click here for fileAdditional Data File 5A description of the calculations used in the discussion to estimate cell composition effects on gene-expression comparisonsA description of the calculations used in the discussion to estimate cell composition effects on gene-expression comparisons.Click here for file
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