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The microbial selenoproteome of the Sargasso Sea<p>An analysis of the selenoproteome of the largest microbial sequence dataset, the Sargasso Sea environmental genome sequences, iden-tified 310 selenoprotein genes that clustered into 25 families. This included 101 new selenoprotein genes that belonged to 15 families, dou-bling the number of prokaryotic selenoprotein families.</p>

Abstract

Background: Selenocysteine (Sec) is a rare amino acid which occurs in proteins in major domains
of life. It is encoded by TGA, which also serves as the signal for termination of translation,
precluding identification of selenoprotein genes by available annotation tools. Information on full
sets of selenoproteins (selenoproteomes) is essential for understanding the biology of selenium.
Herein, we characterized the selenoproteome of the largest microbial sequence dataset, the
Sargasso Sea environmental genome project.

Results: We identified 310 selenoprotein genes that clustered into 25 families, including 101 new
selenoprotein genes that belonged to 15 families. Most of these proteins were predicted redox
proteins containing catalytic selenocysteines. Several bacterial selenoproteins previously thought
to be restricted to eukaryotes were detected by analyzing eukaryotic and bacterial SECIS elements,
suggesting that eukaryotic and bacterial selenoprotein sets partially overlapped. The Sargasso Sea
microbial selenoproteome was rich in selenoproteins and its composition was different from that
observed in the combined set of completely sequenced genomes, suggesting that these genomes
do not accurately represent the microbial selenoproteome. Most detected selenoproteins
occurred sporadically compared to the widespread presence of their cysteine homologs, suggesting
that many selenoproteins recently evolved from cysteine-containing homologs.

Conclusions: This study yielded the largest selenoprotein dataset to date, doubled the number of
prokaryotic selenoprotein families and provided insights into forces that drive selenocysteine
evolution.

Background
Selenium is a biological trace element with significant health
benefits [1]. This micronutrient is incorporated into several
proteins in bacteria, archaea and eukaryotes as seleno-
cysteine (Sec), the 21st amino acid in proteins [2,3]. Sec is
encoded by a UGA codon in a process that requires transla-
tional recoding, as UGA is normally read as a stop codon [4].
The Sec UGA codon was the first addition to the universal
genetic code since the code was deciphered in the mid-1960s

[5]. Recently, an additional amino acid, pyrrolysine (Pyl), has
been identified, which has expanded the genetic code to 22
amino acids [6,7]. Pyl is inserted in response to a UAG codon
in several methanogenic archaea, but the specific mechanism
of insertion of this amino acid into protein is not yet known.

The mechanism of selenoprotein synthesis in prokaryotes
was elucidated extensively by Böck and colleagues [8,9].
Translation of selenoprotein mRNA requires both a
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selenocysteine insertion sequence (SECIS) element, which is
a cis-acting stem-loop structure residing within selenoprotein
mRNAs [4,10], and trans-acting factors dedicated to Sec
incorporation [11]. In eukaryotes and archaea, SECIS ele-
ments are located in 3'-untranslated regions (3' UTRs) [12].
Bacterial SECIS elements differ from those in eukaryotes and
archaea in terms of sequence and structure and are located
immediately downstream of Sec UGA codons in the coding
regions of selenoprotein genes [13,14].

As UGA has the dual function of inserting Sec and terminat-
ing translation, and only the latter function is recognized by
available annotation programs, selenoprotein genes are
almost universally misannotated in sequence databases [15].
To address this problem, various computational approaches
to predict selenoprotein genes have been developed [16-21].
These programs successfully identified new selenoproteins in
mammalian and Drosophila genomes and in several EST
databases. However, due to lack of bacterial consensus SECIS
models, prediction of bacterial selenoproteins in genomic
sequences is difficult. Instead, these proteins can be identi-
fied through searches for Sec/Cys pairs in homologous
sequences [22].

We report here the use of a modified search strategy to char-
acterize the selenoproteome of the largest prokaryotic
sequencing project, the 1.045 billion nucleotide whole
genome shotgun sequence of the Sargasso Sea microbial pop-
ulations [23]. This database contains sequences from over
1,800 microbial species, including 148 novel bacterial phylo-
types. We detected all known prokaryotic selenoproteins
present in this dataset and identified a large number of addi-
tional selenoprotein genes. This approach provided a rela-
tively unbiased way to examine the diversity of selenoprotein
families and their evolution, and to analyze the composition
of the Sargasso Sea microbial selenoproteome as compared
with that in the combined set of completely sequenced
prokaryotic genomes.

Results
Identification of selenoprotein genes in the Sargasso 
Sea environmental genome database
The Sargasso Sea genomic database contains the largest col-
lection of microbial sequences derived from a single study

[23]. No genes encoding Sec-containing proteins were previ-
ously identified and annotated in this dataset. To identify
selenoprotein genes in the Sargasso Sea microbial sequences,
we used an algorithm that searches for conserved Sec/Cys
pairs in homologous sequences. This approach takes advan-
tage of the fact that almost all selenoproteins have homologs
(often in different organisms) in which Cys occupies the posi-
tion of Sec. The methodology is described in Materials and
methods and is shown schematically in Figure 1. Briefly, we
searched for nucleotide sequences from the Sargasso Sea
database which, when translated, aligned with protein
sequences from the nonredundant (NR) database such that
translated TGA codons aligned with Cys and these pairs were
flanked on both sides by conserved sequences. Each TGA-
containing sequence in the Sargasso Sea database that was
identified in this manner was further screened against a set of
filters, which analyzed for possible open reading frames
(ORFs), conservation of TGA codons, conservation of Cys in
homologs, conservation of TGA-flanking regions in different
reading frames and for redundancy. Nonredundant hits were
clustered into protein families and a second BLAST search
was performed against microbial genomes and NR databases.
Finally, all groups of hits were analyzed manually and divided
into homologs of previously known selenoproteins, new
selenoproteins and selenoprotein candidates.

This procedure identified 209 selenoprotein genes, which
belonged to ten known selenoprotein families and 101 seleno-
protein genes, which belonged to 15 new selenoprotein fami-
lies (each represented by at least two sequences) (Table 1). In
addition, we detected 28 sequences, which showed homology
neither to known and new selenoproteins nor to each other,
and these were designated as candidate selenoproteins. Con-
sidering that several known selenoproteins were also repre-
sented by single sequences (for example, glycine reductase
selenoprotein A and glycine reductase selenoprotein B), some
of these 28 candidate selenoproteins may be true selenopro-
teins. However, at present, sequencing errors that generate
in-frame TGA codons cannot be excluded and therefore, no
definitive conclusions can be made regarding these
sequences. Predicted selenoproteins, particularly those
represented by a small number of sequences, require future
experimental verification.

A schematic diagram of the search algorithmFigure 1 (see following page)
A schematic diagram of the search algorithm. Details of the search process are provided in Materials and methods and are discussed in the text.
Genome Biology 2005, 6:R37
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Figure 1 (see legend on previous page)

Query Target 

Database of the 

Sargasso Sea 

containing 811,372 

genomic sequences 

NR protein database 
containing 1,990,024 
protein sequences 

TBLASTN 

Filtering out Cys/TAG or Cys/TAA pairs, 
Identification of Cys/TGA pairs in 

homologous sequences 

38,446 Cys/TGA pairs 

Analysis of ORFs 

25,429 TGA-containing ORFs 

Conservation of TGA-flanking 

regions and non-redundancy filter 

2,131 unique TGA-containing ORFs 

Clustering 

1,045 clusters 

Analysis of Cys conservation 

331 clusters 

Classification of candidates, manual 

analysis for presence of SECIS 

elements and reclustering 

Known selenoproteins: 209 (10 families) 

New selenoproteins: 101 (15 families) 

Candidate selenoproteins: 28 
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In total, 310 known and new selenoprotein genes and 28 can-
didate selenoprotein genes were detected. All these genes
were misannotated in the Sargasso Sea dataset, because the
previously used annotation tools recognized Sec-encoding
TGA codons as terminators. Consequently, some selenopro-
tein ORFs were annotated as truncated proteins lacking
either carboxy-terminal or amino-terminal regions contain-
ing Sec, whereas other selenoprotein ORFs were missed
altogether.

Previously known selenoprotein families detected in 
the Sargasso Sea database
Our procedure detected all known prokaryotic selenoprotein
genes present in the Sargasso Sea database, which could also

be independently identified by homology searches using
known selenoprotein sequences as queries. Eight of the ten
known selenoprotein families detected in the dataset were
represented by 5-48 selenoprotein genes, whereas two fami-
lies, glycine reductase selenoprotein A (grdA) and glycine
reductase selenoprotein B (grdB), were represented by single
sequences. Interestingly, although all known selenoproteins
present in the dataset were identified, only nine of the ten
families had Cys homologs in the NR database. One
selenoprotein, grdA, did not have known Cys homologs [22].
Nevertheless, grdA was also identified because of annotation
errors, as Sec in this protein was annotated as Cys in some NR
database entries.

Table 1

Selenoprotein families identified in the Sargasso Sea database

Prokaryotic selenoprotein family Unique sequences COG/Pfam ID COG/Pfam description

Known selenoproteins (209 sequences)

SelW-like protein 48 Pfam05169 Selenoprotein W-related

Peroxiredoxin (Prx) 43 COG1225 Peroxiredoxin

Proline reductase (PrdB) 42 -

Selenophosphate synthetase 28 COG0709 Selenophosphate synthetase

Prx-like protein 22 COG0450 Peroxiredoxin-like

Thioredoxin (Trx) 11 COG3118 Thioredoxin

Formate dehydrogenase alpha chain (fdhA) 8 COG0243 Anaerobic dehydrogenases

Glutathione peroxidase (GPx) 5 COG0386 Glutathione peroxidase

Glycine reductase selenoprotein A (grdA) 1 -

Glycine reductase selenoprotein B (grdB) 1 Pfam07355 Glycine reductase selenoprotein B

New selenoproteins (101 sequences)

AhpD-like protein 27 COG2128 Uncharacterized conserved protein

Arsenate reductase 14 COG1393 Arsenate reductase and related proteins

Molybdopterin biosynthesis MoeB protein 11 COG0476 Dinucleotide-utilizing enzymes, 
molybdopterin biosynthesis

Glutaredoxin (Grx) 10 COG0695 Glutaredoxin and related proteins

DsbA-like protein 9 COG2761 DsbA-like

Glutathione S-transferase 4 COG0625 Glutathione S-transferase

Deiodinase-like protein 4 Pfam00837 Iodothyronine deiodinase

Thiol-disulfide isomerase-like protein 4 -

CMD domain-containing protein 4 Pfam02627 Carboxymuconolactone decarboxylase

Hypothetical protein 1 4 -

Rhodanese-related sulfurtransferase 3 COG2897 Rhodanese-related sulfurtransferase

OsmC-like protein 3 COG1765 Predicted redox protein, OsmC-like

DsrE-like protein 2 Pfam02635 DsrE-like

DsbG-like protein 1 COG1651 DsbG, Protein-disulfide isomerase

NADH:ubiquinone oxidoreductase 1 COG2209 NADH:ubiquinone oxidoreductase

Total 310

Classification of selenoproteins (10 previously known and 15 new prokaryotic selenoprotein families) is supported by COG or Pfam sequence 
clusters (or both) as shown in this table. The number of individual selenoprotein sequences for each family is indicated.
Genome Biology 2005, 6:R37
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Figure 2 (see legend on next page)

AhpD-like protein 
AACY01151135         1 -----NSKLTRFDRELLAVVTSISNECEYUITAHLYDLRSETEDQKLIDEVANDWKNSSL 
AACY01742486         1 --MFGKSNISRFDSELLAVVTSISNECEYUIRAHLYDLRSETDNQKLVDEIAEDWTTSSI 
AACY01062005         1 --MFGNSNISRFDSELLAVVTSISNECEYUIRAHLYDLRSETDNQKLVDEIAEDWTTSSI 
AACY01228276         1 --MFGNSNVSRFDRELLAVITSISNECEYUIRAHLYDLRSETDNQKLVDEIADNWKLSSL 
AACY01015596         1 --MWGDSKLSRFDRELLAVVTSITNECEYUIRAHLYDLRSETNDQELVDQIVEDWRSSRL 
Burkholderia cepacia      61 ALMDKPGNLSKAEREMIVVATSSVNQCQYCVIAHGAILRIRAKDPLIADQVATNYRKADL 
Mesorhizobium loti    56 DLMLGESGLSKLDREMIAVAVSSINHCYYCLTAHGAAVRQLSGDPALGEMLVMNFRAADL 
 
Arsenate reductase 
AACY01038965              1   MSKYTLYHNPRUGKSRGVVSLLNEYKINYTLVEYLKNPLDVDDVLLLSKKLGLAPGEFVR 
AACY01551167              1   MRKYVLYHNPRUGKSRGAVLLLNERNITFDVIEYLKNPLTKEEVLILAEKLGMHPGEFVR 
AACY01495759              1   MPDLVLYHNPRUGKSRGAVSLLKEKDLEFSIVEYLKTPLTKDEVLSLSKKLGMPPADFVR 
AACY01048012              1   MPDLVLYHNPRUGKSRGAVSLLKEKDLEFSIVEYLKTPLTKDEVLSLSKKLGMPPADFVR 
AACY01404476              1   MSELILYHNPRUGKSRIAVSLLNEKKINFIIIEYLKTPLSKTEILSLSEKLGRPISQFVR 
Pseudomonas putida        1   MTDLTLYHNPRCSKSRGAVELLEARGLAPTIVRYLETPPDADTLKALLGKLGIAPRQLLR 
Idiomarina loihiensis     1   MSQVTIYHNPRCSKSRQTLELLKQNDVEPEVVEYLKTPPNAAELKDILEKLGLSADQLMR 
  
Molybdopterin biosynthesis MoeB protein 
AACY01443469                 59 VFDPASGGPCYRCLYSQPPPASLVPSUAVAGVLGVLPGAVGLMQATEVIKLVLGEGLPMI 
AACY01323152                 59 VFDPASGGPCYRCLYSQPPPASLVPSUAVAGVLGVLPGAVGLMQATEVIKLVLGEGLPMI  
AACY01605093                 41 IFDPESGGPCYRCLYSEPPPAALVPSUAVAGVLGVLPGVVGLIQATEVIKLILDNGVPLK 
AACY01009056                 77 IFDPESGGPCYRCLYSEPPPAALVPSUAVAGVLGVLPGVVGLIQATEVIKLILENGVPLK 
AACY01592709                 59 IFDPESGGPCYRCLYSEPPPAALVPSUSVAGVLGVLPGVVGLIQATEVIKLILENGVPLK  
Chloroflexus aurantiacus    121 VFSARDGGPCYRCLYPEPPPPGLVPSCAEGGVLGVLPGVIGTIQATEVIKLLTGIGEPLI 
Rubrobacter xylanophilus    121 VFWAEEG-PCYRCLYPEPPPPGLVPSCAEGGVLGILPGAIGVIQATETVKLILGIGEPLI 
 

Glutathione S-transferase 
AACY01041448        1   --MTSKYHLISFVTUPWVQRAVIVLRAKNVEFEVTHITADNKPDWFLEVSPHGKVPLLMV 
AACY01726075          1   --MAKNIHLISSVTUPWVQRAVIVLRTKEVEFDVTYINLREKPDWFLKISPHGKVPVLKV 
AACY01575427             1   ---MEYPILYSFRRUPYAIRARLALSYMNIPFAIREILLKDRPKSLYDISPKGTVPVLHL 
AACY01615117           1   MEYNKYPILYTFRRUPWAIRARMALSESKITIELREISLKDRPDSLYKISAKGTVPVLQI 
Burkholderia cepacia        1   -MSTLQYHLVSHVLCPYVQRAVIVLTEKGVPFERTDVDLSNKPDWFLRISPLGKTPVLVV 
Sinorhizobium meliloti     1   --MTAQLTLISHHLCPYVQRAAIALHEKGVPFERVDIDLANKPDWFLKISPLGKVPLLRI 
 

CMD domain-containing protein 
AACY01567769                 1  MQSLFSFIVAGMREEISNVLDKRTKCLVILKTSTLNGCAYUTSHNETLGRALGFTDDIIEAI 
AACY01102305                43  AQSLFSFIVSGLREEISEILDKRIKCLVILKTSTLNQCAYUTSHNVTLGRALGFSEDLISDI 
AACY01716242                42 PELSKSMYVAWGTVFQSGVVDHKLKEVIRVQLSRAADCNYUGNVRSASAKQQGLTEELIDDG 
AACY01688758                42 PELSKSMYVAWGTVFQSGIVDHKLKEIIRVQLSRAADCNYUGNVRSASAKQQGLTEELIDDG 
Pseudomonas aeruginosa     11 SPDAYAAMLGLEKALAKAGLERPLIELVYLRTSQINGCAYCVNMHANDARKAGETEQRLQAL 
Burkholderia fungorum      11 NPAAIKALLGVEERIGKSALEKSLAELVRLRASQINGCAYCVDMHTTDARNGGETERRLATV 
 

Hypothetical protein 1 
AACY01574522          1 --VWDRALSRPQVELLASTVSALNECFYUTAAHVSLLRASSEALNSEVDLEQL-EAG--- 
AACY01433118          1 ---------------VAGRISALNECFYUTNGHAKALREGAKLAGHKVNLGAL-MNTQLD 
AACY01114593          1 ------------MEFLAARASALLGCYYUTTSHAMRLGMSGKDTGDHYNLESV-MNGNMA 
AACY01283071          1 -------------------VSSVNECFYUTSAHATMLRVSAMTTETDVDLQGVNGDAASA 
Deinococcus radiodurans     61 LVNKEGGLSNAERELLAVVVSGLNRCVYCAVSHGAALREFSGDAVKADAVAVN-WRQAEL 
Burkholderia fungorum      60 LMLKEGGLSKGEREMIVVATSAINQCLYCVVAHGAILRIYEKAPLVADQVAVN-HRKADI 
 

Rhodanase-related sulfurtransferase 
AACY01314374                  11 ENNNNKFKSQNEIESILNKQNITYEKQIATYUQGGIRAAHVFVVLKLIG-------YKNI 
AACY01110644                  82  RGKDKTFKTPEQIFEILNNAGVDPEKQIVTYUQGGIRAAHVMFVLALVSTFSPNINYDRV 
AACY01016424                  2  DRQTHLFRSEEDIKAILADNGIALDKAIYTYUQAGVRAAHANFVLQLIG-------QSEA 
Bacillus firmus         225  DGEVPYFKEASVIDQMLEEAGVTREKQIIIYCQKAERASHMYFTLRLMG-------FEHL 
Sulfolobus solfataricus    217  -PDTGEFKSVEELRRLVENVGITSDKEIITYCRIGERASHTWFVLKYLLG------YPSV 
 

OsmC-like protein 
AACY01145085                  6 TRNQFTFYSDEPERLGGDANHPAPLAYIVAGIGFULLTQLKRYASMRKVGITSAKVHVEL 
AACY01369469                  1  ----------------GENEFPAPLTYVASGIGFULLTNLKRYASMKKISIKSAQVKIEL 
AACY01451825                  1  ----WTIYSDESERIGGTGKYSPPMPMLATAIGFULLTQVARYAHMLKMEIKSGKCHVEG  
Ferroplasma acidarmanus     52  EKAKFILGADEPGILGGQGVHATPLNYLMMGVMSCFASTVAIQAAKRGIVLKKLKFKGHL 
Genome Biology 2005, 6:R37
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Several selenoprotein families had a particularly high repre-
sentation in the Sargasso Sea dataset. The most abundant
family was SelW-like, which contained 48 genes. Although
the function of this protein is unclear, a conserved CXXU
motif (Cys separated from Sec by two other residues) suggests
a redox function. In addition, this protein was previously
found to interact with glutathione, a major redox thiol com-
pound in cells [24,25]. A peroxiredoxin (Prx) family had 43
genes and was the second most abundant selenoprotein fam-
ily. Peroxiredoxins protect bacterial and eukaryotic cells
against oxidative injury [26]. Proline reductase (prdB, 42
genes) and selenophosphate synthetase (28 genes) were the
third and fourth most abundant families. The former is
involved in amino-acid metabolism and catalyzes the reduc-
tive ring cleavage of D-proline to 5-aminovalerate [27]. The
latter is a key component in prokaryotic selenoprotein bio-
synthesis [2,28]. A Prx-like protein family was represented by
22 selenoprotein sequences. It had distant homology to the
Prx family, but its predicted active site contained a thiore-
doxin-like UXXC motif instead of the TXXU motif present in
Sec-containing Prx. These five families accounted for 87.6%
of known selenoprotein sequences, suggesting importance of
their functions in the Sargasso Sea environment. Other
detected selenoprotein families included thioredoxin (Trx),
formate dehydrogenase alpha chain (fdhA), glutathione per-
oxidase (GPx), grdA and grdB.

New selenoprotein families identified in the Sargasso 
Sea database
Among 15 new selenoprotein families, 13 contained at least
two individual TGA-containing ORFs (Table 1). Although two
selenoprotein families, DsbG-like and NADH:ubiquinone
oxidoreductase, were represented by single entries, we placed
them in the new selenoprotein category because they had
been previously reported as candidate selenoproteins [22]. Of
the 15 families, 14 either contained a domain of known func-
tion or were homologous to protein families with known func-
tions, including several which were represented by multiple
sequences: AhpD-like protein (27 sequences), arsenate
reductase (14 sequences), molybdopterin biosynthesis MoeB
protein (11 sequences), glutaredoxin (Grx) (ten sequences)
and DsbA-like protein (nine sequences). Thus, these findings
implicated selenium in arsenate reduction, molybdopterin
biosynthesis, disulfide bond formation and other redox-
based processes. No functional evidence could be obtained for
one family, which was designated as hypothetical protein 1
(represented by four sequences). However, a conserved
CXXU motif was present in hypothetical protein 1, suggesting
a possible redox function. Multiple alignments of several new

selenoproteins and their Cys-containing homologs (Figure 2)
highlight sequence conservation of Sec/Cys pairs and their
flanking regions.

All new selenoproteins contained stable stem-loop structures
downstream of Sec-encoding TGA codons that resembled
bacterial SECIS elements. Representative predicted SECIS
elements found in several new selenoprotein families are
shown in Figure 3. A structural alignment of putative SECIS
elements in known and new selenoprotein genes in the Sar-
gasso Sea database (Figure 4) showed that they shared the
common features of bacterial SECIS elements (for example, a
small apical loop containing a guanosine, see Materials and
methods).

Significant overlap between eukaryotic and 
prokaryotic selenoproteomes
Among 25 known and new bacterial selenoprotein families
identified in the Sargasso Sea dataset, three families, SelW-
like, GPx and deiodinase, were previously thought to be of
eukaryotic origin. However, multiple sequence alignments
(Figure 5) and phylogenetic analyses (Figure 6) strongly sug-
gested a bacterial origin of these selenoproteins. Although
several eukaryotic sequences in the Sargasso Sea dataset were
also detected (for example, GPx homolog, accession number
AACY01485942), all SelW and deiodinase sequences and
most GPx sequences were bacterial selenoproteins. We based
this conclusion on the presence of bacterial and absence of
eukaryotic and archaeal SECIS elements in these sequences.
In addition, phylogenetic analyses of coding sequences that
flanked selenoprotein genes indicated that these contigs were
derived from bacteria (data not shown). As information about
the species present in the environmental samples is not avail-
able, analysis of SECIS elements provides a means of distin-
guishing selenoprotein sequences in the major domains of
life, as SECIS elements are different in eukaryotes, bacteria
and archaea in regard to sequence and structure [29]. Repre-
sentative bacterial SECIS elements of the three bacterial
selenoproteins and their eukaryotic counterparts are shown
in Figure 7.

Deiodinase is known to activate or inactivate thyroid hor-
mones via the reaction of reductive deiodination [30]. This
protein has previously been described only in animals and
only in the selenoprotein form. However, we identified both
Cys-containing and Sec-containing homologs of deiodinase in
the Sargasso Sea dataset (Figure 5). Bacterial deiodinase-like
proteins likely serve a different function than animal deiodi-
nases as thyroid hormones are not expected to occur in these

Multiple sequence alignments of new selenoproteins and their Cys homologsFigure 2 (see previous page)
Multiple sequence alignments of new selenoproteins and their Cys homologs. The alignments show Sec-flanking regions in detected proteins. Both 
selenoprotein sequences detected in the Sargasso Sea database and their Cys-containing homologs present in indicated organisms are shown. Conserved 
residues are highlighted. Predicted Sec (U) and the corresponding Cys (C) residues in other homologs are shown in red and blue background, respectively. 
Sequence alignments were generated with ClustalW and shaded by BoxShade v3.21.
Genome Biology 2005, 6:R37
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Figure 3 (see legend on next page)
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organisms. Deiodinases possess a variation of the thioredoxin
fold [31], which is known for redox functions. It is possible
that bacterial deiodinase-like proteins also serve a redox
function.

SelW and GPx homologs were recently detected in some bac-
teria, but the number of these sequences was small and their
origin not clear [22]. Detection of a large number of SelW and
GPx selenoprotein sequences in the Sargasso Sea allowed us
to perform phylogenetic analyses (Figure 6), which suggested
that at least some members of these families evolved inde-
pendently in bacteria and eukaryotes.

In addition, we identified five eukaryotic selenoproteins:
SelM, SelT, SelU, GPx and methionine-S-sulfoxide reductase
(MsrA). Except for GPx, these families were represented by
single selenoprotein genes. No bacterial SECIS elements were
found in these genes. In SelM and SelT sequences, typical
eukaryotic SECIS elements were present in 3' UTRs as
detected by SECISearch [16], whereas GPx, MsrA and SelU
sequences did not extend enough to test for presence of
SECIS elements in 3' UTRs. However, the MsrA and GPx
sequences were most similar to plant proteins, suggesting
that the two proteins also were of eukaryotic origin. In addi-

tion, eukaryotic GPx sequences could be distinguished by the
presence of introns.

Previous analyses of selenoprotein sets in the three domains
of life revealed that bacterial and archaeal selenoproteomes
significantly overlap, whereas eukaryotes had a different set
of selenoproteins [15,20]. The only exception was seleno-
phosphate synthetase, but as it is involved in Sec biosynthe-
sis, this protein must be maintained in organisms that utilize
Sec. However, our finding of additional selenoproteins in Sar-
gasso Sea organisms revealed a significant overlap between
prokaryotic and eukaryotic selenoproteomes.

Differences in selenoprotein sets in the Sargasso Sea 
database and completely sequenced prokaryotic 
genomes
An exhaustive search of Sargasso Sea selenoproteins against
260 completely sequenced prokaryotic genomes revealed that
these selenoproteins were present in a limited number of
genomes, which contrasted with the widespread occurrence
of their Cys-containing homologs (Table 2). Although the size
of the Sargasso Sea dataset and the combined set of 260
prokaryotic genomes were similar, the two datasets differed
in regard to both number and distribution of selenoprotein
genes present in these databases. The Sargasso Sea dataset

Predicted bacterial SECIS elements in representative sequences of some new selenoprotein familiesFigure 3 (see previous page)
Predicted bacterial SECIS elements in representative sequences of some new selenoprotein families. Only sequences downstream of in-frame UGA 
codons are shown. In-frame UGA codons and conserved guanosines in the apical loop are shown in red. AhpD-like protein, AACY01418594; Arsenate 
reductase, AACY01238341; Glutaredoxin, AACY01002222; DsbA-like protein, AACY01178397; Hypothetical protein 1, AACY01574522; Rhodanase-
related sulfurtransferase, AACY01016424; OsmC-like protein, AACY01145085; DsrE-like protein, AACY01486889.

Alignment of SECIS elements present in Sargasso Sea selenoproteinsFigure 4
Alignment of SECIS elements present in Sargasso Sea selenoproteins. The Sargasso Sea dataset includes 10 known selenoprotein families and 15 new 
families. SECIS elements in representative members of these families were manually aligned on the basis of primary sequence and secondary structure 
features.
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Known selenoproteins 
SelW-like      UGA AAUUAUAGACCUCAA  U  UUGAGC   AGUUG  GCUCAG     UCGC   UUGAAAAUAAAU 
Peroxiredoxin     UGA AUUAAGGAAG   C  UUGCGG   .GUU   CCGUAA     UA   UUUACCAAGAAUUUAU 
Proline reductase    UGA GGCCUCUGC    A  ACCAGAC   GGUCG  GUCUGGU     CCA   GCGUGAAAUC 
Selenophosphate synthetase  UGA GCAGCA    AAA  CUCAGUCC   GGUC   GGGCUGCAG     AAUC   UGCUGGAUAAA 
Prx-like protein    UGA CCC     AAAUGC ACCCUUC   AGUUA  GAGGGGU     AUAGGAA  GCAU 
Thioredoxin     UGA GGCCCUUGUA   GAAUGU UUGAGC   AGGU   GCUCAA     UGAA   GUGACUCAACAAUA 
Formate dehydrogenase   UGA CACUCCCCAA   C  GGUAGCAA   .GUC   UUGCUCC     AACAU  UUGGGCGCGGU 
GPx       UGA GGCCUGACGCC   CC  AGUACACA   GGUC   UGUGUGCU     CUAGAAAAACAAA 
GrdA       UGA ACU     UC  UGC    UGGA   GCA      AU   GGACCUGGAAAAC 
GrdB       UGA CCCGUCUGC    C  ACCAGAC   CGUGA  GUCUGGU     U   GCCCGACACUU 
 

New selenoproteins 
AhpD-like protein    UGA AUAAGAGCACAUUUAUAUG A  UCUCC   GGUC   GGAGACA     G   AUAAUCAAAAAUUAG 
Arsenate reductase    UGA GGUAAAAGUAGAUCUGCUUU GCA  GUUGCUG   CGUGA  CAGCAAU     AUUGA  ACCUCAAAUA 
MoeB protein     UGA UCAGUUGCGG   GUG  UCCUGGG   CGUG   CUCCCGGGA     G   UUGUUGGACUGAUACAGG 
Glutaredoxin     UGA UCGACAUGCAAAA   AGA  CAAAAG   AGUUA  CUUUUG     CAAAAUAA  UUUUGACAUCGUUGACAGA 
DsbA-like      UGA CCCUUUUGU    UAC  GUUGCCACC   .GUA   GGUGGAAC     C   GCAGUUUUA 
Glutathione S-transferase  UGA CCAUACGCAA   UAC  GAGCUA   .GGC   UAGCUC     UAUC   UUACAUGA 
Deiodinase-like    UGA CCACCAUUUCG   AAAA  CAGGC   CGUGC  GCCUG     AA   UGAAAUCUA 
Thiol:disulfide isomerase-like UGA ACUUGGUG    CG  AUCGCU   UGGAU  AGCGAU     ACAUA  CACUGAUGAAA 
CMD domain-containing protein UGA ACCAGCCACAA   UGA  AACGCUC   GGUC   GAGCGUU     AG 
Hypothetical protein 1   UGA ACGGCGGC    CCACGUA UCGUUGCUC   CGUGC  GAGUAGCGA     A   GCCCUGAAUU 
Rhodanase-related    UGA CAGGCUGG    AG  UGCGUGC   .GGC   GCACGCA     AA   CUUUGUUC 
OsmC-like protein    UGA CUACUU    ACACAAC UGAAGCG   .GUA   CGCUUCA     AUGAGAA  AAGUAGG 
DsrE-like protein    UGA GGGGGCU    GCGCA GAGGCAC   .GUG   GUGUCUC     AGAA   AGUGAUCUGAUUG 
DsbG-like protein    UGA      CCGU  UUUGUGCGAGAUCUGUCA .GUU   UGAUAGAUGAUUUGUUGGCAAA  AU 
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Figure 5 (see legend on next page)

Deiodinase 
AACY01185238                   1  ------------------FGSYTUPPFREQAGRLNEIYRELQDSTEFCCVYIKEAHPLDG 
AACY01143874                   1  ---------MRGKTVALSFCSYTUPPFRKQAVRLNEIYQKYKHQVEFFTIYIREAHPSDG 
AACY01552292                29  –EWEELSTYWKEKTTIIEFGSITUSECALAAPGFDKLVEEFGDKFNFVFIYTREAHPGEK 
AACY01373286                   1  ---------------VIIFGSYTUGPFSREAGRLQKAYETYGKKADFYWVYIREAHPLG- 
AACY01477921                   4  EKTVKLSKKYAKKPVVLTFGSYTCPPFRRSLEGMEAVYQTHKKDCHFLFIYVKEAHASDG 
AACY01770344                30  ---EISLSDYKDKWLVLETGSLTCPMFVKNINPLRDVKAKHP-DVEFLVIYVREAHPGSR 
Homo sapiens              110  ATCHLLDFASPERPLVVNFGSATUPPFTSQLPAFRKLVEEFSSVADFLLVYIDEAHPSDG 
Pan troglodytes           110  ATCHLLDFASPERPLVVNFGSATUPPFTSQLPAFRKLVEEFSSVADFLLVYIDEAHPSDG 
Sus scrofa                110  AECHLLDFANPERPLVVNFGSATUPPFTSQLPAFSKLVEEFSSVADFLLVYIDEAHPSDG 
Rattus norvegicus         107  AECHLLDFACAERPLVVNFGSATUPPFTRQLPAFRQLVEEFSSVADFLLVYIDEAHPSDG 
Mus musculus              107  AECHLLDFASAERPLVVNFGSATUPPFTRQLPAFRQLVEEFSSVADFLLVYIDEAHPSDG 
Xenopus laevis            109  GKCHLLDFASSERPLVVNFGSATUPPFISQLPAFSKLVEEFSSVADFVLVYIDEAHPSDG 
Danio rerio               104  -QCHLLDFESPDRPLVVNFGSATUPPFISQLPVFRRMVEEFSDVADFLLVYIDEAHPSDG 
Oncorhynchus mykiss       109  DECRLLDFESSDRPLVVNFGSATUPPFISHLPAFRRLVEEFSDVADFLLVYIDEAHPSDG 
Oreochromis niloticus     104  -KTSISKYLKGNRPLVLSFGSCTUPPFMYKLDEFKQLVKDFSDVADFLVIYIAEAHSTDG 
Gallus gallus             102  -MQHLFSFMRDNRPLILNFGSCTUPSFLLKFDEFNKLVKDFSSIADFLIIYIEEAHAVDG 
 
GPx 
AACY01468206                   1  -----------------------------MLVVNVASQUGLTSQNYKELVQLDNKYEN-- 
AACY01010183                   1  --------MK---SITGDDVNLSTYSGQFCLIVNVASAUGLTP-QYAGLRTLHNETDD-- 
AACY01190440                   1  --------MT---SITGEEIAFSEYKEQALLIVNLASQUGLTP-QYTGLCALEKQRDD-- 
AACY01764391                   1  --------------------------------VNVASLUGKTSQWYKELVALHKELGHRG 
AACY01045369                   1  VDSLYDLTLS----QYGEPRALRDFRGKVVVVVNVASEUALANANYAALRSMREKYRDDG 
Treponema denticola             1   -MGIYNYTVK---DSLGNDFSFNDYKDYVILIVNTACEUGLTP-HFQGLEALYKEYRDKK 
Chlamydomonas reinhardtii     37  TSSTSNFHQLSALDIDKKNVDFKSLNNRVVLVVNVASKUGLTAANYKEFATLLGKYPATD 
Bos taurus                    38  ARSMHEFSAK---DIDGRMVNLDKYRGHVCIVTNVASQUGKTDVNYTQLVDLHARYAECG 
Canis familiaris             22  AQSMHEFSAK---DIDGREVNLDKYRGFVCIVTNVASQUGKTDVNYTQLVDLHARYAESG 
Homo sapiens                  38  ARSMHEFSAK---DIDGHMVNLDKYRGFVCIVTNVASQUGKTEVNYTQLVDLHARYAECG 
Rattus norvegicus             38  ARSMHEFSAK---DIDGHMVCLDKYRGCVCIVTNVASQUGKTDVNYTQLVDLHARYAECG 
Mus musculus                  38  AASMHEFSAK---DIDGHMVCLDKYRGFVCIVTNVASQUGKTDVNYTQLVDLHARYAECG 
Sus scrofa                   38  ARSMHEFSAK---DIDGHMVNLDKYRGYVCIVTNVASQUGKTEVNYTQLVDLHARYAECG 
Gallus gallus                 11  ATSIYDFHAR---DIDGRDVSLEQYRGFVCIITNVASKUGKTAVNYTQLVDLHARYAEKG 
Danio rerio                  10  AKSIYEFSAI---DIDGNDVSLEKYRGYVCIITNVASKUGKTPVNYTQLAAMHVTYAEKG 
Oryza sativa                    7   ATSVHDFTVKGVQDASGKDVNLSTYKGKVLLIVNVASQCGLTNSNYTELSQLYEKYKVQG 
Nicotiana sylvestris            8   PQSIYDFTVK---DAKGNDVDLSIYKGKVLIIVNVASQCGLTNSNYTDLTEIYKKYKDQG 
Arabidopsis thaliana          48  EKSVHDFTVK---DIDGNDVSLDKFKGKPLLIVNVASRCGLTSSNYSELSQLYEKYKNQG 
Drosophila melanogaster       61  AASIYEFTVK---DTHGNDVSLEKYKGKVVLVVNIASKCGLTKNNYEKLTDLKEKYGERG 
Caenorhabditis elegans        28  HGTIYQFQAK---NIDGKMVSMEKYRDKVVLFTNVASYCGYTDSNYNAFKELDGIYREKG 
Pseudomonas syringae            2   SENLLSIPVT---TIKGEQKTLADFSGKALLVVNTASQCGFTP-QYKGLEKLWQDYRDQG 
AACY01485942 (eukaryotic GPx)  1  --------------------NFSDLKGKVVLIENTASLUGTTVRDFTQVRI--------- 
 

Sel W   
AACY01033454                  1   ------MDISIAYCNEUNYLPRAASMASNILEKFGNGITSLTMIPSSGGVYEVTKNNN-- 
AACY01049565                  1   ------MKISIEYCNSUNYLPRASRMAADLLDKYGNSITNFSLIPSSGGVYEVMKNDQ-- 
AACY01177805                  1   ------MEIKLEFCVVUNYTPRAVSTVEDILEKYGQEVESIDLIPTSGGKFEFYLNGE-- 
AACY01074352                  1   ------MEIKLEFCVVUNYTPRAVSTVEDILEKYGQEVESIDLIPTSGGKFEFYLNGE-- 
AACY01201052                  1   ------MEIKLEFCVVUNYTPRAVSTVEDILEKYGQEVESIDLIPTSGGKFEFYLNGE-- 
AACY01482385                  1   ------MKISIEYCNVUNYLPKASSLEKYLKGKYD---VEIELISSGGGVFEVCLEDK-- 
AACY01792432                  1   ------MLLSIKYCSVUNYLPHASSLEASLKLHFET--LQVKLISSGGGIFEVTLNSE-- 
AACY01802944                  1   ------MRTRITYCVQUNYEPMAVSLAEKLKTSLK---LETDLIEGRNGIFDVELSGK-- 
AACY01094643                  1   ------MRTRITYCVQUNYQPMAVSLAEKLKTSLK---LETDLIKGSNGIFDVELDGN-- 
AACY01555107                  1   ------MKVSIEYCVQUNYKPRAASLAAQLQKTFN---AETSLIKVGGGDFVVYVDSV-- 
AACY01543828                  1   ------MEIRITYCGIUNYLPKAQVVASELKRNFTDINVELVKGSGGVFDVVLLGDGYNE 
AACY01475618                  1   ------MKLHIEFCERUNYRPQFEQLAQSLENKFPDIEVLGNQN----REFRIGSFEITY 
AACY01091026                  1   --MEGKVQLEITYCVPUQHHATATWMANEFFRAYG-PDAAITISPRGQGIMEVFLDGEK- 
Campylobacter jejuni           1   -----MMKVKIAYCNLUNYRPQAARVAEELQSDFKDVEVEFEIG--GRGDFIVEVDGKVI 
Sus scrofa                     1   ----MGVAVRVVYCGAUGYKSKYLQLKKKLEDEFP-GRLDICGEGTPQVTGFFEVLVAG- 
Ovis aries                   1   ----MAVVVRVVYCGAUGYKPKYLQLKKKLEDEFP-SRLDICGEGTPQVTGFFEVFVAG- 
Homo sapiens                  1   ----MALAVRVVYCGAUGYKSKYLQLKKKLEDEFP-GRLDICGEGTPQATGFFEVMVAG- 
Rattus norvegicus              1   ----MALAVRVVYCGAUGYKPKYLQLKEKLEHEFP-GCLDICGEGTPQVTGFFEVTVAG- 
Mus musculus                   1   ----MALAVRVVYCGAUGYKPKYLQLKEKLEHEFP-GCLDICGEGTPQVTGFFEVTVAG- 
Danio rerio                    1   ----MTVKVHVVYCGGUGYRPKFIKLKTLLEDEFP-NELEITGEGTPSTTGWLEVEVNG- 
Chlamydomonas reinhardtii      1   ---MAPVQVHVLYCGGUGYGSRYRSLENAIRMKFPNADIKFSFEATPQATGFFEVEVNG- 
Xenopus tropicalis              1   ----MSVSIVVEYCEPCGFKSHYEELASAVLEEFP----DVTIDSRPGGTGAFEIEING- 
Vibrio vulnificus              1   ---MLKAKIEIYYCRQCNWMLRSTWLSQELLHTFSEEIASITLYPDTGGRFEIHCNDE-- 
Mesorhizobium loti             1   MSETPLPAIRITYCTQCQWLLRAGWMAQELLSTFGTDLGEVTLVPGTGGVFTISCNDV-- 
Methylococcus capsulatus       1   ----MNNRVEILYCTQCRWLLRATWMTQELLTTFDQEIGELTLKPGTGGLFEVWVNGK-- 
Genome Biology 2005, 6:R37
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was three times richer in selenoproteins than the prokaryotic
genomes, suggesting that the environment of the Sargasso
Sea generally favors evolution and maintenance of selenopro-
teins. Presumably, the Sargasso Sea organisms take advan-
tage of a relatively constant supply of selenium in sea water
and have increased their demand for this trace element,
whereas the dependence of the organisms with completely
sequenced genomes on selenium is mixed as selenium may be
a limiting factor in some environments. Six previously known
selenoproteins were not detected in the Sargasso Sea data-
base (Table 2). This is likely because these selenoproteins pri-
marily occur in archaea. Archaea accounted only for a small
fraction of the Sargasso Sea organisms [23].

In addition, the abundance of particular selenoprotein genes
in the Sargasso Sea dataset and in the 260 microbial genomes
was quite different. Particularly surprising was the small
number of formate dehydrogenase genes in the Sargasso Sea
database [32]. Previous analyses of completely sequenced
prokaryotic genomes found that this protein was present in
essentially all organisms that utilized Sec, and its occurrence
was by far more common than any other selenoprotein [22].
However, in the Sargasso Sea environment, the utilization of
this protein was limited. This might be related to the aerobic
nature of microbial species that reside near the surface of the
Sargasso Sea (where the environmental samples were col-
lected for sequencing).

We also observed that in the previously analyzed prokaryotic
genomes, more than half of selenoproteins were metal-bind-
ing proteins, in which Sec coordinated molybdenum,
tungsten or nickel [22]. In contrast, the Sargasso Sea seleno-
proteins were primarily thiol-dependent peroxidases and oxi-
doreductases; metal-coordinating selenoproteins were
represented exclusively by formate dehydrogenase and
accounted for less than 4% of all detected selenoproteins.
These data suggested that the previously characterized
genomes did not represent the general composition of
prokaryotic selenoproteomes.

Although the two sets of selenoproteins (Sargasso Sea and the
completely sequenced prokaryotic genomes) were different,
the majority of detected selenoproteins showed scattered
occurrence. Indeed, the Sec-containing forms of proteins
were rare compared to homologous Cys-containing forms,
which were widespread. It appears that that most detected
selenoproteins evolved recently from Cys-containing
homologs in organisms, which already had the system for Sec
insertion. It can be predicted that as searches of additional
prokaryotic sequence datasets identify new selenoprotein

genes, many of these will be present in only a small number of
species. At present, Sec evolution is not fully understood, but
it is clear that Sec/Cys interchanges are possible in both direc-
tions depending on the need for particular redox properties
and on the restriction imposed by the dependence of species
on the trace element selenium.

Most selenoprotein families serve redox functions
Further analysis of both Sargasso Sea and completely
sequenced prokaryotic genomes revealed that essentially all
selenoproteins with known function were redox proteins,
which used Sec either to coordinate redox-active metals or for
thiol/disulfide-like redox catalysis. Among 25 selenoprotein
families detected in the Sargasso Sea, 14 (194 selenoprotein
sequences, 62.6%) were homologs of known thiol-dependent
redox proteins (Table 3), and most other proteins were
candidate redox proteins. Many of the Sargasso Sea seleno-
proteins contained a UXXC redox motif. The analogous
CXXC motif is present in a variety of thiol-dependent redox
enzymes [33-35], but it is also common in metal-binding pro-
teins. The catalytic activity of UXXC-containing selenoen-
zymes is expected to be higher than that of its Cys-containing
homologs [2,36]. In addition, several selenoproteins had
other candidate redox motifs [34], such as UXXS (arsenate
reductase), TXXU (peroxiredoxin and NADH:ubiquinone
oxidoreductase), UXXT (glutathione peroxidase) and CXXU
(AhpD-like protein [37], SelW-like protein, CMD domain-
containing protein and hypothetical protein 1).

Discussion
Whole-genome shotgun sequencing projects have been
applied extensively to determine genomic sequences of a
variety of organisms, and recently this approach was used to
sequence the microbial community of the Sargasso Sea. Many
of the Sargasso Sea organisms represent phyletic groups pre-
viously not known or poorly characterized, including organ-
isms that could not be isolated from the microbial community
or be cultured [23]. Identification of selenoprotein genes in
such a large prokaryotic dataset may help understand the role
of selenium in this microbial community and by analogy in
other organisms, including humans.

Previous functional information on selenoproteins has been
derived largely from wet-lab experiments. More recently, sev-
eral in silico approaches that identify full sets of
selenoproteins in organisms provided powerful new tools for
determining identities of selenoproteins as well as their
expression characteristics and functions [16-20,38]. Most of
these methods were based on searches for SECIS elements. As

Multiple alignments of deiodinase, GPx and SelWFigure 5 (see previous page)
Multiple alignments of deiodinase, GPx and SelW. Conserved residues are highlighted. Predicted Sec (U) in selenoproteins and the corresponding Cys (C) 
residues in homologs are shown in red and blue background, respectively. Sequence alignments were generated with ClustalW and shaded by BoxShade 
v3.21.
Genome Biology 2005, 6:R37
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Figure 6 (see legend on next page)
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Sec is typically located at enzyme active centers, and most
selenoproteins had homologs in which Cys replaced Sec, a
SECIS-independent strategy was also developed that allowed
searches for Sec/Cys pairs in homologous sequences [21,22].

In the present study, we used a similar procedure, but supple-
mented it with additional filters to improve performance. All
known prokaryotic selenoprotein families present in the Sar-
gasso Sea genomic dataset were identified by this approach
(209 genes that clustered into ten prokaryotic selenoprotein
families). In addition, 101 sequences that belonged to 15 new
selenoprotein families were identified. Thus, our study has
approximately doubled the list of known prokaryotic seleno-
protein families and generated the largest selenoprotein data-
set to date.

On the basis of the presence of SECIS elements specific to
major domains of life, we could determine the origin of
detected selenoproteins (that is, bacterial, archaeal or eukary-
otic). All ten known and 15 new prokaryotic selenoprotein
families had predicted bacterial SECIS elements. Interest-
ingly, both selenoprotein forms and Cys-containing
homologs of thyroid hormone deiodinase, a protein previ-
ously thought to be restricted to the animal kingdom and
present exclusively in the selenoprotein form, were identified
in prokaryotes. The detected deiodinase-like proteins were
prokaryotic as they contained bacterial SECIS elements.

Detection of prokaryotic deiodinase-like proteins and several
other bacterial selenoproteins thought to be restricted to
eukaryotes suggests a revision of the view that eukaryotic and
prokaryotic selenoproteomes do not overlap. Although this
idea was consistent with the previous selenoprotein analyses,
at least four selenoprotein families are now known that occur
in both prokaryotes and eukaryotes: SelW, GPx,
selenophosphate synthetase and deiodinase. We also
detected homologs of five additional eukaryotic selenopro-
teins, but the absence of bacterial SECIS elements, presence
of eukaryotic SECIS elements or introns, and homology to
eukaryotic proteins argued that these selenoproteins were
eukaryotic in origin.

Surprisingly, sets of selenoproteins in the Sargasso Sea data-
base and in the combined set of 260 completely sequenced
prokaryotic genomes were quite different in regard to both
identities and number of selenoprotein genes. The Sargasso
Sea dataset was rich in selenoprotein genes, most of which
were homologs of known thiol-dependent redox enzymes. In
contrast, the proportion of selenoprotein genes in completely

sequenced prokaryotic genomes was approximately three
times lower, and the majority of detected genes used Sec for
metal coordination. Thus, even with the availability of 260
genomes, the roles of selenium in nature are just beginning to
be understood. For example, our current analysis of the Sar-
gasso Sea dataset implicated selenium in arsenate reduction,
molybdopterin biosynthesis, sulfurtransferase function and
other processes, which were not known to be dependent on
this trace element.

We also observed common features in the two sets of seleno-
proteins. For example, most of the detected selenoproteins
had a large number of Cys homologs. The scattered occur-
rence of selenoproteins in both datasets suggests a highly
dynamic nature of Sec evolution. As long as the system for Sec
insertion is maintained, Sec may appear when required by the
changing environment and disappear when this requirement
recedes. Thus, the analysis of selenoproteomes and the com-
pensatory sets of Cys-containing proteins provides a unique
model system to examine evolutionary forces to a changing
environment.

Materials and methods
Sequence databases and resources
The whole-genome shotgun sequence database of the Sar-
gasso Sea was obtained from the National Center for
Biotechnology Information (NCBI) ftp server with the project
accession number AACY00000000 [39]. Unlike
conventional sequence entries, only the unassembled single-
tons and individual singletons were deposited in order to
accurately reflect the diversity in the sample and to allow
searches across the entire sample within a single database.
The Sargasso Sea database contained 811,372 genomic
sequences, which corresponded to a total of 1.045 billion
nucleotides.

The NR protein database was downloaded from the NCBI ftp
server [40]. This dataset contained 1,990,024 protein
sequences (667,623,348 amino acids). Blast programs [41]
were also obtained from the NCBI ftp server [42]. We used the
2.2.9 version of this program.

To enable selenoprotein searches automatically, we devel-
oped a set of programs as discussed below. A UNIX/LINUX
platform was used. The entire search process was performed
on a Prairiefire 128-node, 256-processor Beowulf cluster
supercomputer at the Research Computing Facility of the
University of Nebraska - Lincoln.

Phylogenetic analyses of deiodinase, GPx and SelW protein familiesFigure 6 (see previous page)
Phylogenetic analyses of deiodinase, GPx and SelW protein families. Selenoproteins are shown in red and Cys-containing homologs in green. The 
phylogenetic trees were generated by ClustalW and represented by Treeme.
Genome Biology 2005, 6:R37
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Figure 7 (see legend on next page)
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Comparison of bacterial and eukaryotic SECIS elements in deiodinase, GPx and SelW protein sequencesFigure 7 (see previous page)
Comparison of bacterial and eukaryotic SECIS elements in deiodinase, GPx and SelW protein sequences. (a) In bacterial SECIS elements, only sequences 
downstream of in-frame UGA codons are shown and the conserved features (in-frame UGA codon and conserved G in the apical loop) are highlighted in 
red. (b) In eukaryotic SECIS elements, conserved features (quartet, AA in the apical loop or bulge and an A preceding the quartet) are shown in blue. 
Bacterial elements are from deiodinase-like protein, AACY01143874; GPx, AACY01190440; and SelW-like protein, AACY01475618. Eukaryotic elements 
are from deiodinase, NM_000792, Homo sapiens; GPx, X68314, H. sapiens; SelW, AY221261, Danio rerio.

Table 2

Comparison of selenoproteins identified in the Sargasso Sea database and in the combined set of completely sequenced prokaryotic 
genomes

Prokaryotic selenoprotein family Sequences in the Sargasso Sea database Sequences in completely sequenced prokaryotic 
genomes

Selenoprotein Cys homolog Selenoprotein Cys homolog

Known selenoproteins detected in the Sargasso Sea dataset

SelW-like protein 48 7 4 20

Peroxiredoxin 43 Widespread* 1 Widespread

Proline reductase PrdB 42 1 1 5

Selenophosphate synthetase 28 23 16 22

Prx-like protein 22 4 2 6

Thioredoxin 11 Widespread 2 Widespread

Formate dehydrogenase alpha chain 8 Widespread 40 Widespread

Glutathione peroxidase 5 Widespread 1 Widespread

Glycine reductase selenoprotein A 1 0 5 0

Glycine reductase selenoprotein B 1 1 5 2

New selenoproteins detected in the Sargasso Sea dataset

AhpD-like protein 27 Widespread 0 Widespread

Arsenate reductase 14 Widespread 0 Widespread

Molybdopterin biosynthesis MoeB protein 11 Widespread 0 Widespread

Glutaredoxin 10 17 1 Widespread

DsbA-like protein 9 Widespread 0 Widespread

Glutathione S-transferase 4 Widespread 0 Widespread

Deiodinase-like protein 4 6 0 0

Thiol-disulfide isomerase-like protein 4 Widespread 0 Widespread

CMD domain-containing protein 4 14 0 5

Hypothetical protein 1 4 7 0 5

Rhodanase-related sulfurtransferase 3 Widespread 0 Widespread

OsmC-like protein 3 10 0 17

DsrE-like protein 2 3 1 9

DsbG-like protein 1 Widespread 1 Widespread

NADH:ubiquinone oxidoreductase 1 Widespread 0 Widespread
Genome Biology 2005, 6:R37
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Identification of Cys/TGA pairs in homologous 
sequences
Each Cys-containing sequence in the NR protein database
was searched against the Sargasso Sea database of nucleotide
sequences for possible TGA-containing hits using TBLASTN.
E-value cutoff was set to 10.0. TBLASTN output for each pro-

tein sequence was parsed and Cys/TAA or Cys/TAG pairs
were filtered out. Only local alignments, in which Cys in a
query sequence was aligned with TGA in the nucleotide
sequence from the target Sargasso Sea database, were further
analyzed. As Sec is typically located in enzyme active sites,
additional filters were added. Specifically, local alignments

Known selenoproteins not detected in the Sargasso Sea dataset

Formylmethanofuran dehydrogenase 0 Widespread 4 Widespread

F420-reducing hydrogenase alpha subunit 0 4 4 Widespread

F420-reducing hydrogenase, delta subunit 0 1 3 Widespread

Methylviologen-reducing hydrogenase 0 3 3 Widespread

Heterodisulfide reductase 0 0 4 23

HesB-like protein 0 2 7 2

Total 310 105

*Widespread, occurrence in more than 40 sequences in the Sargasso Sea database or more than 40 in organisms in the combined set of completely 
sequenced prokaryotic genomes.

Table 3

Thiol-dependent redox selenoproteins detected in the Sargasso Sea database and their predicted redox motifs containing Sec (U)

Selenoprotein family Redox motif Individual sequences

Known redox proteins

Peroxiredoxin TXXU 43

Proline reductase PrdB UXXC 42

Prx-like protein UXXC 21

UXC 1

Thioredoxin UXXC 11

Glutathione peroxidase UXXT 5

AhpD-like protein CXXU 27

Arsenate reductase UXXS 14

Glutaredoxin UXXC 10

DsbA-like protein UXXC 9

Thiol-disulfide isomerase-like protein UXXC 4

OsmC-like protein UXXT 3

DsrE-like protein UXXC 2

DsbG-like protein UXXC 1

NADH:ubiquinone oxidoreductase TXXU 1

Candidate redox proteins

SelW-like protein CXXU 48

CMD domain-containing protein CXXU 4

Hypothetical protein 1 CXXU 4

Table 2 (Continued)

Comparison of selenoproteins identified in the Sargasso Sea database and in the combined set of completely sequenced prokaryotic 
genomes
Genome Biology 2005, 6:R37
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were discarded if they contained more than two stop codons
(including TGA, TAA and TAG), two stop codons of which one
was not TGA, or two TGA codons with one aligned to a non-
Cys residue. A total of 38,446 local redundant alignments
(also designated as Cys/TGA pairs) were identified which cor-
responded to 19,410 proteins in the NR protein database.

Analyses of ORFs, conservation of TGA-flanking 
regions and redundancy
For each TGA-containing sequence in the local alignment set,
regions upstream and downstream of the TGA were analyzed
to identify minimal ORFs with the assumption that in-frame
TGA coding for Sec must be inside predicted ORFs. If stop
codons were encountered closer to TGA codons than candi-
date start codons (ATG or GTG), such TGA-containing
sequences were discarded. Conservation of TGA-flanking
regions in all 6 reading frames was also analyzed with
BLASTX and screened against a database of conserved
domains using RPS-BLAST. These criteria were also used to
filter out false positive hits. Finally, redundant sequences
were removed. These filters reduced the set to 2,131 unique
TGA-containing candidate ORFs.

Clustering of TGA-containing sequences
To cluster protein sequences into different protein families or
groups, the pairwise alignment tool in the BLAST program
package, BL2SEQ, was used. 1,045 clusters were obtained
with 1 to 63 sequences in each cluster.

Cysteine conservation and selenoprotein classification
Considering that Cys/TGA pairs in most false-positive hits
were not expected to be conserved, whereas conservation was
expected for true-positive Cys/Sec pairs, all clusters were
automatically searched against NCBI NR and microbial data-
bases using BLASTX and TBLASTX. Each predicted ORF
containing an in-frame TGA was considered further only if at
least two corresponding Cys-containing homologs were
detected and the proportion of TGA/Cys pairs in the set of
homologs was greater than 50%. This procedure resulted in
331 clusters containing 1,072 ORFs.

All 331 clusters were analyzed for the presence of potential
bacterial SECIS elements immediately downstream of the
TGA codons using mfold [43] or RNAfold [44] programs. In
addition, candidate SECIS structures were screened against a
bacterial SECIS consensus model [45]. The presence of
archaeal or eukaryotic SECIS elements was tested using
SECISearch [20,22]. The occurrence of SECIS elements spe-
cific for each domain of life was one criterion to determine
protein origin. Phylogenetic analyses and the occurrence of
introns were also used as criteria for designating proteins as
bacterial, archaeal or eukaryotic.

A simple classifier was developed to divide clusters that con-
tained bacterial SECIS-like structures into three groups:
known selenoproteins, new selenoproteins and selenoprotein

candidates. Except for known selenoproteins, clusters con-
taining at least two different sequences with conserved in-
frame TGA codons were considered as new selenoproteins.
Clusters containing only one sequence were considered
selenoprotein candidates because of the possibility of a
sequencing error causing an in-frame TGA. Finally, clusters
that could be aligned such that their TGAs also aligned, were
joined into larger clusters.

Additional data files
The complete set of predicted selenoprotein sequences with
annotations (accession number, protein name, ORF location
and in-frame TGA location) is available as a text file (Addi-
tional data file 1) with the online version of this paper and at
[46].
Additional File 1A complete set of predicted selenoprotein sequences with annota-tions (accession number, protein name, ORF location and in-frame TGA location)A complete set of predicted selenoprotein sequences with annota-tions (accession number, protein name, ORF location and in-frame TGA location)Click here for file
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