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Abstract

Background: Cellular functions are regulated by complex webs of interactions that might be
schematically represented as networks. Two major examples are transcriptional regulatory
networks, describing the interactions among transcription factors and their targets, and protein-
protein interaction networks. Some patterns, dubbed motifs, have been found to be statistically
over-represented when biological networks are compared to randomized versions thereof. Their
function in vitro has been analyzed both experimentally and theoretically, but their functional role
in vivo, that is, within the full network, and the resulting evolutionary pressures remain largely to be
examined.

Results: We investigated an integrated network of the yeast Saccharomyces cerevisiae comprising
transcriptional and protein-protein interaction data. A comparative analysis was performed with
respect to Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii and Yarrowia lipolytica, which
belong to the same class of hemiascomycetes as S. cerevisiae but span a broad evolutionary range.
Phylogenetic profiles of genes within different forms of the motifs show that they are not subject
to any particular evolutionary pressure to preserve the corresponding interaction patterns. The
functional role in vivo of the motifs was examined for those instances where enough biological
information is available. In each case, the regulatory processes for the biological function under
consideration were found to hinge on post-transcriptional regulatory mechanisms, rather than on
the transcriptional regulation by network motifs.
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Conclusion: The overabundance of the network motifs does not have any immediate functional
or evolutionary counterpart. A likely reason is that motifs within the networks are not isolated,
that is, they strongly aggregate and have important edge and/or node sharing with the rest of the
network.
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Background

Global interaction data are synthetically structured as net-
works, their nodes representing the genes of an organism and
their links some, usually indirect, form of interaction among
them. This type of schematization is clearly wiping out impor-
tant aspects of the detailed biological dynamics, such as local-
ization in space and/or time, protein modifications and the
formation of multimeric complexes, that have been lumped
together in a link. Given these limitations, an important open
question is whether the backbone of the interaction network
provides any useful hints as to the organization of the web of
cellular interactions. A first observation in this direction is
that the topology of biological interaction networks strongly
differs from that of random graphs [1]. In particular, when
transcriptional regulatory networks are compared to rand-
omized versions thereof, some special subgraphs, dubbed
motifs, have been shown to be statistically over-represented
[2,3]. An example of a motif composed of three units is the
feed-forward loop, its name being inherited from neural net-
works, where this pattern is also abundant.

Transcription factors often act in multimeric complexes and
the formation of these plays a crucial role in the regulatory
dynamics. In order to capture at least part of those effects,
transcriptional networks may be integrated with the protein-
protein interaction data that have recently become available
[4-7]. An example is provided by the mixed network con-
structed in [8]. The network is mixed in the sense that it
includes both directed and undirected edges, pertaining to
transcriptional and protein-protein interactions, respec-
tively. The motifs for the mixed networks were investigated in

[9].

The dynamics of motifs has been thoroughly investigated in
vitro and in silico, that is, in the absence of the rest of the
interaction network and of additional regulatory mechanisms
[10-12]. For instance, the feed-forward loop has remarkable
filtering properties, with the downstream-regulated gene
activated only if the activation of the most-upstream regula-
tor is sufficiently persistent in time. The motif essentially acts
as a low-pass filter, with a time-scale comparable to the delay
taken to produce the intermediate protein. Furthermore, the
same structure is also found to help in rapidly deactivating
genes once the upstream regulator is shut off. Overabundance
of motifs and their interpretation as basic information-
processing units popularized the hypothesis of an evolution-
ary selection of motifs [2,13].

In electrical engineering circuits, an abundant structure is
likely to correspond to a module that performs a specific func-
tional task and acts in a manner largely independent of the
rest of the network. The point is moot for biological networks.
A recent remark is that some of the motifs found in transcrip-
tional networks are also encountered in artificial random net-
works [14,15], where no selection is acting. However, the lists
of motifs do not entirely coincide for the two cases [16]. A vis-
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ually striking fact is that essentially none of the motifs exists
in isolation and that there is quite a great deal of edge-sharing
with other patterns (see [17] for the network of Escherichia
coli). The function of the motifs might then be strongly
affected by their context. The use of genetic algorithms to
explore the possible structures that perform a given func-
tional task has in fact shown a wide variety of possible solu-
tions [18].

It is therefore of interest to address the issue of the functional
role of the motifs in vivo, that is within the whole network,
and examine the ensuing evolutionary constraints. In the fol-
lowing, we shall show that the instances of the network motifs
are not subject to any particular evolutionary pressure to be
preserved and analyze the biological information available on
the pathways where some instances of motifs are found.

Results

List and annotation of network motifs

The first step in the analysis of network motifs is their identi-
fication, as described in detail in Materials and methods. The
patterns whose number of counts in the real network is found
to significantly deviate from the typical values found in the
randomized ensemble of the network are shown in Figure 1 (a
generic representation of all the three-gene patterns inde-
pendently of their statistical significance is given in Addi-
tional data file 1). The order of the patterns which we have
examined are n = 2 and n = 3, where n is the number of genes
of the pattern (see Materials and methods for the case of self-
interactions).

The list includes the purely transcriptional feed-forward loop,
investigated in [10-12], and its version augmented with a pro-
teic interaction [9]. The overall list is quite similar to that
found in [9], with the only exception of proteic self-interac-
tions, which were not taken into account. General informa-
tion on the motifs is obtained by looking at the biological
processes, molecular functions and cellular components for
which the genes found in occurrences of Figure 1 motifs have
been annotated (see Additional data files 1 and 2).

Let us first remark that the various instances of the motifs
account for 25% of all the genes annotated as transcription
factors in the MIPS/FunCat and GeneOntology (GO) data-
bases. The annotations obtained using the former database
indicate that 34% of the genes involved in motifs are anno-
tated as involved in transcriptional regulation and 31% in
direct control of transcription; and that 51% of the genes have
their products localized within the nucleus.

These values should be compared to 5% of all the genes anno-
tated for transcriptional control in either GO or FunCat and
30% of nuclear localization for all annotated genes. Another
relevant remark is that transcription factors are found at 93%
and 11%, respectively, of the nodes with an outgoing and an
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Types of motifs of order n = 2 and n = 3 for the mixed transcription and protein-protein network. The motifs shown here are those whose abundance
patterns in the real network of the yeast Saccharomyces cerevisiae strongly deviate from the typical values found in randomized versions thereof. The green
directed links with arrows represent transcriptional links, while two dashed lines with contacting circles represent an undirected protein-protein

interaction.

ingoing transcriptional link. That is, indeed, the expected
behavior for genes in a transcriptional network. These results
witness the coherence of the transcription and the protein-
protein interaction datasets used for finding the motifs and
the published annotations.

As for the function of the genes composing the network
motifs, the list of the most represented biological processes,
as annotated in the MIPS database, is as follows: 50% of the
genes are involved in metabolism, 34% in transcription, 21%
in cell cycle and DNA processing, 12% in interaction with the
cellular environment (10% in cellular sensing and response),
10% in cellular transport and 9% in rescue/defense.

As shown clearly in Figure 2, motifs are generally combined
into larger interaction sub-networks. Among the 504
instances of motifs in Figure 2, only four occur in isolation
whereas all the others share genes and/or edges. This is also
clear when we consider that only 256 different genes compose
the 504 motif instances; 1,487 different genes would be pos-
sible if the instances were disjoint. Shared edges and/or genes
and those forms of interactions not included in our database
are likely to strongly affect the function of the motifs, raising

the issue of their role in vivo. This will be the subject of the
analysis presented in a further paper.

Phylogenetic profiles of network motifs

To ascertain the presence of any special evolutionary pressure
acting to preserve over-represented patterns, we have per-
formed a protein comparative analysis between Saccharomy-
ces cerevisiae and the four hemiascomycetes Candida
glabrata, Kluyveromyces lactis, Debaryomyces hansenii
and Yarrowia lipolytica, recently sequenced in [19]. The fact
that the four organisms share many functional similarities
with S. cerevisiae and yet span a broad range of evolutionary
distances, comparable to the entire phylum of chordates,
makes them ideal for protein comparisons. Details of the
sequence comparisons are reported in Materials and
methods.

Previous evolutionary studies on the motifs have explored the
presence of common ancestors in different instances of the
motifs. The upshot was that the various instances are not
likely to have arisen by successive duplications of an ancestral
pattern [20]. Here, we consider a different statistic based on
the phylogenetic profiles [21] of the genes within the motifs.

Genome Biology 2005, 6:R35

R35.3

-
o
®
e
I
o
o
-
I
4
0
8
8
[o]
>




R35.4 Genome Biology 2005, Volume 6, Issue 4, Article R35 Mazurie et al. http://genomebiology.com/2005/6/4/R35

/
= ‘A—’-\\ //
COX6 DAL81 L GLN3
7 FAL IS~
NS 23 D A
KN ] v »
y
1 = NCR
'/
=Ll /] .
POL1 4 P
<IN T/ W
T )
A.
,
‘
_—
(e J« =X 4 =
4\’"'- ! o] o]
i
\\Va
ETH \ SSAT
S\l .
N =
SRS
'YKRO75C ”‘/")A ’)ﬂ\t‘\\. PDC1 REC102
A e B —
CRZ‘

7 ‘ \i\\‘- PDR -

AN
‘ '
[Ace2_|
Y

Figure 2

Motif occurrence in yeast. The network graph of the occurrences of motifs for S. cerevisiae illustrates the fact that most of the motifs are not found in
isolation and are part of larger aggregates. Green, pure transcriptional regulation of the target gene by the regulatory gene product protein; red,
transcriptional regulation and protein-protein interaction of the two partners; dashed line, pure protein-protein interaction. The pathways that will be
examined in detail are shaded.

Genome Biology 2005, 6:R35



http://genomebiology.com/2005/6/4/R35

0.4
0.35+
g —
2 0.31
©
2 0.251
G
- 0.2
(0]
N
© 0.151
£
S 0.1
0.05+
0- T T T T
0 1 2 3 4
Fragility of interaction pattern
Figure 3

Phylogenetic profiles of interaction patterns. Normalized histograms of
the evolutionary fragility of interaction patterns belonging to the following
three classes are shown: instances of network motifs (red); generic
patterns of interacting genes, irrespective of their abundance (black);
patterns composed of genes taken at random (white). The five possible
values (in increasing value 0 to 4) of the evolutionary fragility are reported
on the abscissa. A small fragility value indicates that all the genes
composing the interaction patterns tend to co-occur in the other
genomes compared and point to evolutionary pressure acting to preserve
the interaction pattern.

The profiles are constructed considering an ensemble of
organisms and looking at the co-occurrences in the compared
organisms of the genes composing the interaction pattern.
This is quantified by the evolutionary fragility, F; (as defined
in Materials and methods), of the interaction pattern i. A
small value for the fragility indicates that the genes compos-
ing the pattern tend to co-occur in the other compared organ-
isms, hinting at an evolutionary pressure to preserve the
pattern and at its functional importance. We shall compare
the statistics of the evolutionary fragility for different classes
of interaction patterns, thus providing a test of the evolution-
ary significance of the criterion of overabundance used to
identify network motifs.

Specifically, in Figure 3 we report the normalized histograms
of the evolutionary fragilities F; for three different classes of
interaction patterns composed of three nodes: patterns which
are instances of the motifs; all the interaction patterns, irre-
spective of their abundance; and patterns composed of genes
taken at random. There are 481 instances of motifs in a total
number of 9,962 patterns involving three nodes. Subtracting
the 481 from the overall ensemble does not modify the con-
clusions drawn from Figure 3. The histogram for genes taken
at random is clearly different from the other two, as expected.
The point of interest to us here is that there is no statistically
significant difference between the first two classes of pat-
terns, as quantified by a y2 test, which gives 32 = 4.454 and a
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one-tailed probability 0.348. This clearly supports the
hypothesis that the series of data for the two histograms are
drawn from the same distribution. The conclusion of our
comparative analysis is that instances of network motifs
undergo no special evolutionary pressure as compared to a
generic interaction pattern.

Function in vivo of realizations of the motifs

Biological information currently available is not sufficient to
ascertain the function in vivo of all the occurrences of the
motifs previously found. Some of them are, however, placed
within well studied pathways and, in particular, a few of them
are located at the interface between two blocks, one responsi-
ble for conveying a signal and the other for processing it. Two
examples are the sub-networks methionine synthesis (MET)
and nitrogen catabolite repression (NCR), shown shaded in
Figure 2 and in more detail in Figure 4. The former, which is
involved in methionine synthesis, receives a signal from the
concentration of S-adenosylmethionine (AdoMet), a final
metabolite of the sulfur amino acid pathway, and controls
genes encoding enzymes involved in the pathway. The sub-
network NCR, involved in nitrogen metabolism, receives a
signal through the protein Glngp, which is made available
when nitrogen-rich sources are depleted, and controls genes
encoding enzymes and transporters able to exploit alternative
sources.

The importance of these pathways has made detailed biologi-
cal information on their functions available. The interface
location of the identified instances of the motifs raises the
hope that they might be implicated in the dynamics of the
information processing and, in particular, that the time-filter
properties mentioned above might be exploited to control the
time-response processing of the external signal. Ascertaining
this behavior was our motive for investigating the detailed
functioning of each of the pathways. We report here the prin-
ciples of the core regulatory mechanisms involved in the cho-
sen pathways, referring the reader to the cited literature for a
detailed treatment. Here we are interested in identifying the
possible role of motifs in biological functions.

The methionine pathway

Sub-network MET in Figures 2 and 4a shows the interaction
graph for the cluster of interacting genes centered on CBF1,
MET4 and MET28. The graph includes three motifs of type
I1.2, five of type III.5 and one of type II1.7 (see Figure 1 for
motif types). The methionine biosynthesis network has been
thoroughly investigated [22-25] and a detailed biological
model of the pathway is now available. Cbfip, Met4p and
Met28p form a heterotrimer that activates target genes of the
sulfur pathway (MET genes). Inside the complex, only Met4p
has direct transcriptional action, with Cbfip being involved in
chromatin rearrangement and Met28p tethering the complex
to the DNA. The MET genes are activated by the complex, but
are repressed when one of the final metabolites of the path-
way, AdoMet, increases. Two loops drive the dynamics of
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Figure 4 (see previous page)

Outlines of the pathways studied. (a) Methionine (MET); (b) nitrogen catabolite repression (NCR); (c) pseudohypal growth/mating (HYPE); (d) regulation
of early meiotic genes (CCYCLE); (e) pleiotropic drug resistance (PDR). The sub-networks enlarged from Figure 2, with the identified motifs within the
pathway drawn from the interaction databases, are shown on the left (colors and conventions are the same as in Figure 2). A schematic representation of
the regulation mechanisms for the same pathways, based on the present experimental knowledge as discussed in the text, is shown on the right. Full lines
represent transcriptional regulation, dashed lines non-transcriptional regulation, and wavy lines transformations and syntheses. Arrowheads, positive

regulation; lines ending in a terminal bar, negative regulation.

complex availability, sketched in Figure 4a. One is a positive
loop: the Met4p complex regulates the transcription of
MET28, its product stimulating the tethering of the complex
to DNA. This loop is responsible for the increase of the
dynamic response when the intracellular AdoMet concentra-
tion is low (the transcription of MET4 is constitutive). The
other is a negative loop: Met4p controls its own fate by
regulating the transcription of MET30. The product of the lat-
ter is an ubiquitin ligase, which triggers the degradation of
Met4p when AdoMet increases. This loop is expected to con-
trol high detrimental accumulation of AdoMet.

Note that the latter post-transcriptional mechanism is, by
definition, not captured by the network, which is limited to
transcriptional regulations. Furthermore, an intrinsic limita-
tion of network structures should be noted: the three proteins
Cbf1p, Met4p and Met28p always act as a complex. This infor-
mation does not unambiguously emerge from the topology of
the network (Figure 4a, left), as the topology is also compati-
ble with the three proteins acting separately. In conclusion,
the key features of the methionine synthesis pathway do not
seem to hinge on transcriptional regulation via the motifs
instances shown in Figure 4a.

Nitrogen catabolite repression (NCR) system

The NCR system shown in Figures 2 and 4b is used by the cell
to control the synthesis of proteins capable of handling poor
sources of nitrogen. NCR-sensitive genes are not activated
when rich sources are available, whereas they get expressed
when only poor sources are left. Two II.1 and one I1.4 motifs
are embedded in this system.

DEH1 and DALS8o are part of the GATA gene family and are
known transcriptional repressors, regulating nitrogen cat-
abolite repression via their binding to the GATA sequences
upstream of NCR-sensitive genes. For several targets, the two
repressors are in competition with Glngp and Gatip, which
are transcriptional activators binding the same sequences.

The accepted mechanisms of NCR are as follows ([26-28] and
see Figure 4b). First, in the presence of rich nitrogen sources
(ammonia and/or glutamine), Gln3p and Gat1ip are seques-
tered in the cytoplasm and can activate neither NCR-sensitive
genes nor DEH1 and DALS8o. The consequence of the low con-
centration of GIn3p in the nucleus is a low-level expression of
DEH1, DAL80o and NCR-sensitive genes. Second, when poor
sources only are available (such as urea, prolin, or GABA),
GIngp and Gatip are released into the nucleus. The former

activates GAT1 and the two proteins together activate NCR-
sensitive genes. After a delay (due to the time taken for tran-
scription and translation), Dal8op and Deh1p are expressed
and competitively inhibit these same genes.

Interesting dynamic behavior takes place during a transition
from rich to poor nitrogen sources, when the cell must cast
about for alternative sources, which implies the synthesis of
new proteins. The amount of these proteins synthesized must
be sufficient to ensure utilization of the new sources but,
because of the depletion of nutrient sources, they should not
be too high. NCR-sensitive genes are therefore activated only
for the limited period of time when Gln3p and Gatip are
present but Dal8op and Deh1p are not. The negative feedback
of DALS8o on its activator GAT1 is the mechanism ensuring
that oscillatory behavior.

To summarize, the role of the motifs identified in the NCR
system is not evident and the entire mechanism of the NCR,
within the model currently accepted on the basis of the
present knowledge, can be described without any reference to
them.

Pseudohyphal growth/mating MAPK system

The sub-network HYPHE in Figure 2 and Figure 4c is formed
by one motif of type III.5, involving the two genes STE12 and
TEC1. These genes both code for a transcription factor and are
located downstream of the mitogen-activated protein kinase
(MAPK) signal transduction pathway that controls both the
pseudohyphal growth of the yeast and its mating response to
pheromones. These signal transductions constitute a striking
example of a signaling pathway shared by two different sig-
nals and yet responding specifically to each of them. It is
therefore the object of detailed investigation and much data
are available [29]. The phenomenology of the regulatory
process is summarized as follows: in response to pherom-
ones, Ste12p binds specifically to the pheromone response
elements (PRE) of genes involved in the mating process;
under conditions of starvation, a heterodimer composed of
Tec1p and Ste12p binds to genes involved in pseudohyphal
growth.

The fact that STE12 regulates TEC1 raises the possibility that
the switch between the two shared pathways of response to
pheromones and pseudohyphal growth be realized by the
instance of the feed-forward III.5 motif in the HYPHE sub-
network. However, there is quite clear evidence that this is
not the case, the most direct indication being provided in
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[30], where it is shown that the level of expression of TEC1
does not correlate with pseudohyphal growth. Recent work
indicates that the switch is instead realized via post-transcrip-
tional phosphorylation effects, controlled by the two kinases
Fus3p and Kssip, and affecting the multimerization of
Ste12p. Fus3p and Kssip constitute the final layer of the
MAPK system and are differentially activated in the two path-
ways (see, for example [31]).

Regulation of early meiotic genes

The sub-network around IME1 in Figure 2 and Figure 4d is
made of one II.1, two II1.5 and one III.6 motifs and is impli-
cated in the activation of early meiotic genes. The process of
regulation of entry into meiosis and the early activation of the
relevant genes has been studied in great detail and is summa-
rized in [32]. In short, the meiotic pathway in yeast is initiated
by the expression and activation of IME1, which serves as the
master regulatory switch for meiosis [33]. Expression of
IMET1 requires the integration of a genetic signal, indicating
that the cell is diploid, and a nutritional signal, indicating that
the cell is starved. The point of interest here is to ascertain if
the processing of these signals takes place at the transcrip-
tional level by the instances of the motifs in the sub-network.
This does not seem to be the case. The information processing
is rather implemented by alternative routes and the picture of
the interactions shown on the sub-network CCYCLE in Figure
2 and Figure 4d (left) appears to be insufficient and
misleading.

The repression of IME1 by RME1 has a major role in cell-type
control, and IME1 expression does not involve the regulation
of RME1 by the complex Ume6p-Sin3p, as suggested by the
sub-network CCYCLE in Figure 2. This is realized through the
cell-type specific a1 and « 2 proteins, which combine in dip-
loid cells and bind specifically to sites in the promoter of
RMET1 to repress its expression [32,33].

The integration of the nutritional signal is processed by both
IME1 and IME2 and is considerably more complex than cell-
type regulation, its main steps being reviewed in [34]. For
instance, the IME1 promoter has at least 10 separate regula-
tory elements. IMEz2 is also regulated by several distinct sig-
nals, integrated at a single regulatory element, the upstream
repression site URS1, which is bound by the Ume6p tran-
scription factor under all conditions tested. The activation of
IME1 and IME2 depends on the multimerization of Ume6p
with several other proteins regulated either positively or
negatively by at least two kinases, Rim11p and Rim15p. Other
non-transcriptional mechanisms of gene control (such as tar-
geted degradation) appear also to be involved in the regula-
tion of this process [35]. The motifs in the sub-network
CCYCLE fail to capture the complexity of these interwoven
interactions.

http://genomebiology.com/2005/6/4/R35

Pleiotropic drug resistance (PDR) system

The PDR system is used by the cell to counter the action of a
broad spectrum of toxic substances; by activating membrane
efflux pumps and modifying the membrane composition, the
concentration of these substances is then decreased. Two
genes, PDR1 and PDR3, encode homologous transcription
factors [36,37], which drive multidrug resistance by activat-
ing genes involved in active transport and lipid metabolism
[38,39].

The corresponding sub-network (named PDR in Figure 2 and
4e) is composed of eight motifs of type II1.1 (so-called feed-
forward loops) and one of type IL.1, showing a star-like con-
figuration with PDR1 and PDR3 in a central position.

In vivo, those two genes have apparent functional redun-
dancy: they target the same genes and the deletion of either
PDR1 or PDR3 does not significantly affect the PDR system;
an effect is only shown when both are deleted [40,41]. How-
ever, these two factors are used in response of two different
cell signals: PDR3 is sensitive to mitochondrial activity,
whereas PDR1 is not [42-44]. Conversely, PDR1 deletion
mutants are quite drug-hypersensitive, whereas PDR3
mutants are not [41].

In addition to this distinct response of PDR1 and PDR3 to cel-
lular signals, the regulation link between them is weak, and
no proof of cooperativity for the regulation of their targets
was highlighted.

It the PDR sub-network, the III.1 motifs formed by PDR1,
PDR3 and their common targets are apparently not exploited
by the cell because PDR1 and PDR3 are not obligatorily active
at the same time and the prerequisites for the specific dynam-
ics of feed-forward loops are not fulfilled (sufficient regula-
tion of PDR3 by PDR1 and cooperativity on the common
targets).

Discussion

The motivating idea behind most discussions on motifs is the
possibility of capturing the essential logic of genetic regula-
tion by a small set of interaction circuits performing some
specific functional tasks. While this hypothesis is, in princi-
ple, experimentally testable, experimental and theoretical
work has hitherto considered essentially motifs in isolation,
that is, excised from the biological environment in which the
motifs' instances are embedded.

We studied in detail the role of motifs in the case of the best-
documented genetic sub-networks and biological functions
where such motifs are found. In most cases, motifs do not
seem to have a central regulatory role in the biological proc-
esses associated with each occurrence. The list of examples
where enough biological information is available is, of course,
limited, and further examples may subvert this picture. At the
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moment, it is a fact that all the examples studied highlight the
high level of integration of different regulatory mechanisms
acting altogether. Reception and processing of cellular signals
cannot be reduced to transcriptional regulation and protein-
protein interaction switches. Other mechanisms such as
phosphorylation, triggered degradation, protein sequestra-
tion and transport, and higher-order multimerization are
central to the logic of the sub-networks. Disentangling infor-
mation-processing circuits made of transcription reactions
and interactions between transcription factors from the
whole cellular environment does not seem to be possible for
the cases considered. A qualitative impression surmised from
the visible aggregation and nesting of the motifs with the rest
of the network is that a 'pure' modular functional behavior is
not very likely to occur. This impression is not limited to S.
cerevisiae: in previous work [17], other researchers have
shown that a similar aggregation of structural motifs occurs
for a simpler organism, E. coli, suggesting some degree of
generality.

Some comments on structuring interaction data in the form
of topological networks are worth making. The graph is
indeed an abstraction constructed from available databases
and its meaning is influenced by several factors. For instance,
the graph is a static projection of possible interactions. The
analysis of regulatory processes varying in space and time
requires additional information not usually included in the
topology of biological networks. Indeed, the very representa-
tion in the form of a unique network entails the integration in
space and time of the interactions taking place during the cel-
lular lifetime. Some of the patterns of interaction might then
be spuriously due to a projection effect, whereas they actually
take place at different times and/or locations within the cell.
This is occurring, for example, in the PDR system: PDR1 and
PDR3 at the base of the eight I11.1 motifs respond to different
signals and control their outputs independently (no coopera-
tion on the common targets). These motifs appear in the net-
work because different conditions at different times were
projected onto the same plane.

Furthermore, the patterns in the network may be a direct con-
sequence of the data models in the current databases, and
incorrectly represent the biological context. Transitory mac-
romolecular associations like protein complexes and interac-
tions between a whole protein complex and a target are
indeed missed, and at most represented as individual links
between each component and the target. This is what occurs
with the Met4p/Met28p/Cbfip heterotrimer, which appears
in the network as three independent interacting components
together with three III.5 motifs that do not actually exist.

The NCR system is an interesting example where motifs are
clearly identified and seem unambiguous. However, to the
best of our knowledge they do not play any significant role. In
particular, the role of the mutual interactions between
DALS8o0 and DEH1 (sustaining a II.4 motif) is not clear. An
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intriguing hypothesis is that the presence of the interactions
might be traced back to the strong sequence similarity
between DAL80 and DEH1. The products of both these genes
form homodimers and inhibit their own expression. The pres-
ence of the motif might then be due to a recent duplication
event, which has therefore preserved the interactions.

Divergent evolution seems also to be the origin of the appear-
ance of motifs in the PDR system. In this case, the two diverg-
ing genes PDRi1i and PDR3 have acquired different
independent functions. The motif instance that they form
together is the apparently unexploited consequence of their
common origin.

Conclusion

The results presented here indicate that the statistical abun-
dance of network motifs has no evident counterpart at the
evolutionary and in vivo functional level. Occurrences of net-
work motifs have indeed been shown to possess the same evo-
lutionary fragility; that is, when different organisms are
compared, the genes composing the motif have similar co-
occurrence profiles as genes in interaction patterns with a
normal abundance.

The point seems to be confirmed by the analysis of the func-
tional role of examples of the motifs occurrences. These are
located at the interface between two blocks - one responsible
for the reception of a signal and the other for its processing -
and have been selected because detailed biological informa-
tion on those pathways is available. The number of cases is
limited, but in none of them are the major steps of signal
information processing taking place at the transcriptional
level through the implementation of the motifs. Alternative
routes involving post-transcriptional regulation and intracel-
lular compartmentalization seem to be exploited for this
purpose.

These results naturally bring up the issue as to the actual role
of the motifs. Some occurrences have been shown to arise
spuriously from the representation of the interaction data in
the form of a network and the ensuing projection effects in
space and/or time. It seems, however, fair to assume that
those effects should be limited to a few cases. The metabolic
costs of producing proteins and the fact that some of the
motifs instances examined are active in conditions of starva-
tion make it likely that proteins encoded by genes composing
these motifs do play a role. What is however quite clear from
Figure 2 and our analysis is that the great majority of motif
occurrences are in fact embedded in larger structures and
entangled with the rest of the network. Only a small minority
is isolated and likely to perform a specific functional task that
does not depend on the context.

This clustering is important as it indicates that the choice of
the null model used to gauge the statistical importance of the
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abundance of interaction patterns might be delicate. Indeed,
the higher-order context is not taken into account in the ran-
domization process used to generate the null model networks,
and we have shown that this is manifestly not a choice ensur-
ing a strong evolutionary and (in vivo) functional signifi-
cance. Accounting for the various layers of organization of
biological networks seems crucial to correctly identify the
functional elements responsible for the information process-
ing that allows living cells to cope with their highly variable
environmental conditions.

Materials and methods

Datasets

The transcriptional regulatory network used for the analysis
is the one constructed and investigated in [45]. It was pre-
ferred to the more extended one derived from ChIP-chips
data in [46] as the fraction of links where the regulatory role
of the various interactions is documented is higher for the
former. The protein-protein interaction data in the Database
of Interacting Proteins (DIP [47]) are a large collection of
both two-hybrid and TAP-tag data. The resulting network has
476 nodes, 905 directed transcriptional edges and 221 undi-
rected protein-protein edges.

Identification of motifs and network randomization
The detection of n-node network motifs is performed along
lines similar to those used in [2]. The method exhaustively
scans the neighborhood of all the links in the network to
search for the motif of interest, and then purges the list for
repeated patterns.

Randomized versions of the network are generated as follows.
Links are swapped as in the Markov-chain algorithm used in
[48], that is, two links between the couples of nodes (X,Y;)
and (X,Y,) are replaced by (X,Y,) and (X,Y,). In our case,
where the links might be transcriptional or protein-protein
interaction, the links that are swapped must be of the same
type. This procedure is guaranteed to preserve the single-
point connectivity at each node of the network.

As for the randomization procedure for n = 3 motifs, we want
to avoid the possibility that higher-order motifs spuriously
inherit statistical significance from lower orders. In other
words, the randomized network ought to have the same sta-
tistics for all the patterns of order n = 2 as the real network.
This is ensured by converging a simulated annealing, where
the elementary steps are the swappings of the links previously
described. The transition probabilities are weighted accord-
ing to the difference:

2| Czg‘and _cireal |

where the sum runs over all the patterns of order n = 2 and the
c; values denote the number of patterns in the two types of
networks.

http://genomebiology.com/2005/6/4/R35

Statistically significant patterns are those where the number
of counts has a low probability to be observed in the ensemble
of networks obtained by randomization. Specifically, we

require that the observed number of counts ¢/*', has a one-
tailed probability:

p(clFand > cireal) <0.01

- or the opposite inequality if the pattern is under-repre-
sented in the real network - to occur in the randomized
ensemble. The probabilities are estimated from a Monte-
Carlo sampling of 10,000 trials of the randomized ensemble
distribution and the results are sensitive neither to the
number of trials nor to the thresholds chosen. The probability
distribution functions are often found to deviate from a Gaus-
sian curve and the one-tailed probabilities are therefore
directly measured from the normalized histograms without
relying on z-scores.

Note that patterns involving self-interactions are somewhat
special, as their order n, which controls the type of random
networks they should be compared to, does not coincide with
their number of genes. For example, a single gene self-inter-
acting is treated as an n = 2 pattern. The reason is that a sen-
sible way of assessing the significance for this pattern is by
having a fixed number of total proteic links and studying the
fraction of them that are self-interactions. In other words,
self-interactions are swapped throughout the randomization
procedure with proteic links between two distinct proteins
and their order is therefore n = 2.

Sequence comparisons

BLAST searches were performed using BLASTP 2.2.6 [49]
with the BLOSUM 62 matrix and affine gap penalties of 11
(gap) and 1 (extension). Putative orthologs were inferred
from the primary sequence and keeping only bidirectional
best hits to reduce the effect of the high number of paralogs in
yeast genomes. Tables of bidirectional best hits were con-
structed by identifying the pairs of proteins in the two organ-
isms compared which are the reciprocal best alignments. The
significance of the alignments was quantified by the BLAST e-
values and different thresholds were considered, ranging
from 10-1to 10710, Their choice does not affect the results pre-
sented in the body of the paper.

Evolutionary fragility of interaction patterns

Let us consider all the interaction patterns, indexed by i, com-
posed of interacting genes of S. cerevisiae and each one of the
other four hemiascomycetes, indexed by . The boolean vari-
able f; for the pattern i is taken equal to zero if the genes com-
posing the pattern are all present/absent in the other
organism ¢ and is unity otherwise. Presence/absence is
measured by using the list of bidirectional best hits discussed
in the previous section. The selective pressure to preserve the
pattern i is quantified by the fragility:
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The two extreme cases are F;= 0 and F; = 4 (the number of
organisms compared). The two cases correspond to the genes
composing the pattern co-occurring in all or none of the
compared organisms, respectively. As an additional example,
consider the case where the three genes composing an inter-
action pattern are all present in C. glabrata, K. lactis and D.
hansenii (which are evolutionarily closer to S. cerevisiae) but
one (or two) of them is absent in Y. lipolytica. The corre-
sponding value of the fragility is F; = 1.

Additional data files

Additional data are available with the online version of this
paper. Additional data file 1 is a figure showing general three-
gene patterns. Additional data file 2 is a table showing motif
occurrences. Additional data file 3 is a table showing func-
tions of the genes in motif occurrences.
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