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Abstract

We introduce a non-parametric approach using bootstrap-assisted correspondence analysis to
identify and validate genes that are differentially expressed in factorial microarray experiments.
Model comparison showed that although both parametric and non-parametric methods capture the
different profiles in the data, our method is less inclined to false positive results due to dimension

reduction in data analysis.



Background

As a high-throughput technique, microarray capable of simultaneously measuring mRNA levels for
thousands of genes is becoming an increasingly important tool for researchers in biomedical
science. At the same time, interpreting the large amount of data produced in microarray experiments
imposes a major challenge to bioinformaticians [1]. Among the major issues in data analysis is the
clustering of genes that are co-regulated in a biological process (for example cell cycle, treatment
response, disease development) in high dimensional microarray experiments. Many clustering
algorithms have been proposed to cluster genes using unsupervised [2-4] and supervised or
knowledge-based [5,6] approaches.

In unsupervised gene clustering, the classes are unknown a priori and need to be discovered from
the observed data. This is especially true for microarray studies using complex experiment designs
due to the intricate relationships both between and within the multiple genetic and experiment
factors including interactions which can’t be predefined. Factorial experiment design (FED),
characterized by simultaneous measurement of the effects of multiple experiment factors (the main
effects) and the effects of interactions between the factors, is an economic yet efficient complex
design popular in use in biomedical studies [7]. The nice features of FED have also made it well
accepted in microarray experiments [8-11]. At the same time, statistical methods that take into
account the experiment complexity are demanding for dealing with data produced in factorial
microarray experiments. Kerr ef al. [12] and Pavlidis [13] applied the analysis of variance model
(ANOVA) to factorial microarray data using the parametric linear regression approach by assuming
(1) normality in the log intensity of gene expressions and (2) linear relationship between log
intensity and the effects of main experiment factors and their interactions. In their approaches,
multiple replicates are required to insure model identifiability and then statistical procedures applied

to correct the significance for multiple testing.



The singular value decomposition (SVD) [14] and SVD-based multivariate statistical methods, for
example, principal components analysis [4,15] and correspondence analysis (CA) [16,17] have been
applied in analyzing multidimensional microarray time-series data. Although such exploratory
methods can be used for dimension reduction and for pattern discovery through data visualization,
validity of the clusters or the selected genes has rarely been examined [18]. By bootstrapping the
gene contributions on the reduced dimensions, we combine the resampling method with CA to
identify the various gene expression profiles and to validate the significance of the differentially
expressed genes in replicated factorial microarray experiments. We show in this paper, together
with comparison with ANOVA, how an application of our methods to a microarray study on stem
cells has helped us to find genes that are differentially regulated by the experiment factors and by
their interactions. Additional applications of the methods in biomedical studies are suggested at the

end of the discussion.

Methods

Correspondence analysis

As a multivariate data analyzing method, CA has been widely applied to process high-dimensional
data in, for example, sociology, environmental science, and marketing research. Recently, the
method has been applied to analyze microarray time-series data in cell cycle [16] and in diabetes
research [17] to look for genes displaying distinct time-course expression profiles. In microarray
experiments using a factorial design, we are actually facing a more sophisticated situation where we
are interested not only in the effects of the multiple factors but also in the effects of interactions
between them. Because FED represents a different complexity in high-dimensional microarray
experiments, we apply the SVD-based CA to identify genes that are differentially regulated due to

the experiment factors or as a result of their interactions. The idea is that main effects of the



multiple factors together with their interactions which dominate the variance in the data can be
captured by the reduced dimensions in the newly transformed data space.

Suppose in a factorial microarray experiment, there are two experiment factors A and B with p
levels in A and ¢ levels in B. Then there will be pxg hybridizations each representing an interactive
variable [19] or combination of experiment factors in the design. If, after gene filtering, we have a
total of n genes, the data can be summarized by a large nx(pxqg) matrix with n stands for the number
of rows (genes) and pxq for the number of columns (hybridizations or interactive variables). To
carry out CA, we divide each entry in the matrix by the total of the matrix so that the sum of all the

entries in the resulted matrix equals 1. We denote the new matrix by P and its elements by p;, (i
stands for the genes from 1 to n, j for the levels of factor A from 1 to p and likewise, k for the

levels of factor B from 1 to g). In matrix P, the sum of row i, p, = Zz Pk » is the mass of row i
ik

and the sum of the column representing the interactive variable A;By, p ;, = Znijk , 18 the mass of

that column. With the row and column masses, we derive a new matrix C with elements
Ci =Py — p;jk )/ p;jk where p;jk = p, P.; 1s the expected value for each element in matrix P. By

submitting matrix C to SVD, we get C =UAV" where U is the eigenvectors of CC', Vis the

eigenvectors of C'C, A is a diagonal matrix containing the ranked eigenvalues of C, 4, (I=1, 2,

....pxq). Since the total inertia »_A; equals the sum of c;, in C, the major variance in the original
!

data is captured by the dimensions corresponding to the top elements in A.
One big advantage of CA is that, with the SVD results, we can simultaneous project genes and

interactive variables into a new space with the projection of gene i on axis [ calculated as

g, =Au, /./p, where u, is the i-th row and the /-th column in U, and similarly the projection of



AjBy along axis lis h,, =Av,, /.|p ; where v, is the element in the /-th column in V that

corresponds to A;By. In practice, a biplot [20] is used to display the projections. The biplot is very
useful for visualizing and inspecting the relationships between and within the genes and the
interactive variables. In the biplot, genes projected to a cluster of interactive variables associated
with one experiment factor are up-regulated due to that factor. Especially, genes projected to a
single or standing-alone interactive variable A;B; are highly expressed as a result of interaction

between the experiment factors A and B. As the inertia along the /-th axis can be decomposed into

components for each gene, i.e. 4] = z P, g5 , we can calculate the proportion of the inertia of the -

L

th axis explained by the i-th gene as, ac, = p, g,/ A; which is the absolute contribution of the i-th
gene to the /-th axis. The sum of ac, for a group of selected genes stands for the proportion of the

total variance explained by these particular genes. If all the n genes are randomly distributed along
the axis, the null contribution (random mean) by each gene would be expected as 1/n . The random
mean contribution will be used for calculating the bootstrap p-values in the next section.
Non-parametric bootstrapping

Since the top dimensions of CA can represent effects of both the experiment factors and their
interactions, our aim is to identify the genes that make significant contributes to the dimensions.
Although, for each dimension, the gene contribution can be ranked, directly picking up the top rank
genes ignores variability in each of the estimated contributions and is thus unreliable. The bootstrap
technique was applied by Kerr and Churchill [21] to assess pattern reliability based on the estimated
error distribution in their ANOV A models applied in replicated microarray time-course
experiments. Ghosh [18] introduced the resampling method to SVD analysis of time-course data to
bootstrap the variability of the modes that characterize the time-course patterns in microarray data.

Here we combine the non-parametric bootstrapping with the correspondence analysis of factorial



microarray data to evaluate the significance of genes in their contributions to the leading
dimensions that feature the effects of main factors as well as the effects arising from their
interactions. When there are w replicates available, we randomly pick up with replacement w arrays
for each interactive variable to form a bootstrap sample of gene expression values which is of the
same size as the real sample. The bootstrap distributions of the contributions on each dimension by
each gene are obtained by repeating the bootstrapping for B times. Based on the distributions, we

obtain the bootstrap p-value for comparing the estimated contributions with the random mean as

B
p= z I(ac, <ac,)/ B where I(-) is the indicator function, ac; is the absolute contribution
t=1

estimated for each gene in bootstrap sample ¢ and ac, is the mean random contribution. Note that
since we are restrictively resampling the replicate arrays for each interactive variable, the functional
dependency among the genes are preserved in the bootstrap samples.

Clustering of significant genes

The selected significant genes can be clustered according to their observed expression profiles using
gene clustering methods [22]. The different expression patterns in the clusters can be examined to
look for genes that are differentially regulated in response to experiment factors (the main effects)
or due to their interactions. Because some genes can significantly contribute to more than one top
dimensions, the clustering is performed for all the genes that make significantly high contributions
to at least one dimension in CA. The clustering of significant genes can help to establish

biologically meaningful associations between the genes and the experiments.

Results
Application to a data in stem cell study
We use data from a microarray experiment (using Affymetrix HG-U133A 2.0 chips each containing

22,000 genes) on stem cells conducted in our lab as an example. In the experiment, two lines of



human mesenchymal stem cells (hMSC), telomerase-immortalized hMSC (hMSC-TERT) and
hMSC-TERT stably transduced with the full length human delta-like 1 (DIk1)/Pref-cDNA (hMSC-
dlk1), were treated with vitamin D to examine the effects of DIk1, vitamin D and their interaction
on hMSC growth and differentiation and to look for genes that are differentially expressed in the
process. The experiment was done using a 2x2 factorial design. Twelve hybridizations in total were
conducted with each of the four interactive variables in triplicates: hMSC-TERT untreated by
vitamin D or tert-control (designated as tC), hMSC-TERT treated with vitamin D (tD), hMSC-dlk1
untreated with vitamin D or dlk-control (dC), hMSC-dIk1 treated with vitamin D (dD). We first
normalized our raw data (at probe level) using the quantile normalization method as described by
Bolstad et al. [23]. Then we summarized the intensities for the probes in each probe-set using the
robust multi-array average approach [24] to use as the expression value for each gene. Both data
normalization and gene expression value calculation were done by the affy package in Bioconductor
(http://www.bioconductor.org) for R (http://cran.r-project.org). Finally, genes are filtered by
dropping those whose expressions failed to vary across the hybridizations or arrays (standard
deviation/mean>0.03) which resulted in 2227 genes for subsequent analyses.

The biplots from the correspondence analysis of our stem cell data is shown in Figure 1 where
projections of both the genes and the four combinatory variables (between cell lines and vitamin D
treatments, the suffix number indicates replicate) along the first dimension or axis are plotted
against that along the second (Figure 1a) and the third (Figure 1b) axes. In Figure 1 the first axis,
which accounts for 64.7% of the total variance, separates the two cell lines in the data. It is
interesting to see that both tC and tD are projected to the left panel and closely coordinated on the
first axis while both dC and dD are projected to the right although with some distance between
them. It is easy to find that the second axis (accounting for 21% of the total variance) mainly

represents the effect of vitamin D treatment in the hMSC-dlk1 cell line (Figure 1a). Unlike Figure



la, inspection on Figure 1b does not reveal any biological significance. This is understandable
because the third axis explains only 4.8% of the total variance. Since the variance in the data is
overwhelmingly dominated by the first and the second axes, Figure 1 reveals that significance in the
experiment is represented firstly by genes differentially expressed in the two cell lines, and
secondly by genes regulated in response to vitamin D treatment in the hMSC-dlk1 cell line. In
addition, note that our gene filtering procedure has left a hole in the cloud of genes in the center of
Figure 1a.

We use the described bootstrap procedure to obtain the empirical distributions of gene contribution
on the different axes and calculate their bootstrap p-values for significance inferences. By
resampling for 1000 times, we find highly significant genes (p<0.001) that contribute to the first
(274 genes) and the second (203 genes) axes. These genes explain 50.5% and 41.7% of the total
variance along each of the two axes. For a significance level of p<0.01, we have 294 genes
contributing to the first axis and 260 genes to the second axis which account for about half (51.9%
and 47%) of the total variance carried by the first two axes. The procedure detected only 4 genes
contributing to the third axis with p<0.05 but no gene with p<0.01. Figure 2 is the boxplot showing
the bootstrap distribution of gene contribution on the first (Figure 2a) and the second (Figure 2b)
axes by the selected highly significant genes (p<0.001). The distributions of the bootstrap
contribution are all well above the random contribution (1/2227=0.00045) indicated by the dashed
horizontal line. Because the genes are ranked according to their observed contributions in CA,
Figure 2 also shows that it is important to take into account the variations in gene contribution in
evaluating their significances because high rank genes tend to exhibit big variations. Figure 3a
displays expression profiles for genes highly significantly (p<0.001, 439 genes) contribute to the
first two axes. It is easy to see that genes in blocks 1 and 2 are mainly up or down-regulated in the

hMSC-TERT cell line which represents a cell line effect. Genes in blocks 3-5 are genes showing



interaction effects between the cell lines and vitamin D treatment with genes highly expressed in the
hMSC-dIk1 cell line but without vitamin D treatment (block 3), and down expressed when
administrated with vitamin D (block 4). Contrary to block 4, block 5 represents another interaction
pattern for genes highly expressed in the hMSC-dlk1 cell line with vitamin D treatment. Finally, at
the bottom of Figure 3a (block 6), we have a small cluster of genes exhibiting the main effects of
vitamin D which are up-regulated in both cell lines. It is necessary to point out that, although genes
in the upper part of block 1 are up-regulated in the hMSC-TERT cell line, their activities are
suppressed in the hMSC-dlk1 cell line conditionally on the vitamin D treatment effect which may as
well be seen as interactions. Such a situation tells us that, in practice, there may not always be a
black and white distinction between the main and the interaction effects as predefined by the linear
parametric model in ANOVA.

Comparison with ANOVA

We also analyzed the same data set using the existing parametric approach, i.e. ANOVA model,
with aim at comparing the performances of the two methods. In the analysis, we fit the expression
level of a gene (E) as a linear function of the cell line effect (C), the treatment effect (D) and their
interaction (C-D) (Pavlidis, 2003), i.e. we fit

E=u+C+D+C-D+¢

where | is the mean expression level of the gene, € is the random error. Because for each of the
2227 genes, the model independently tests the main effects and their interactions, we introduce the
false discovery rate (FDR) [25] to establish the p value threshold and to help to correct for multiple
testing. Our analysis detected highly significant genes (p<0.001) that are differentially expressed
between the two cell lines (601 genes), between the vitamin D treated and untreated groups (56
genes) and as a result of interaction effects (220 genes). The expression profiles of these genes are

shown in Figure 3b for cell line effect, Figure 3c for interaction effect, and Figure 3d for the vitamin
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D treatment effect. Although for the same significance level, we obtain much higher number of
genes in the ANOVA model, the main patterns revealed by the parametric model are captured by
our non-parametric approach with Figure 3b corresponds to blocks 1 and 2 in Figure 3a, Figure 3c
to blocks 3-5 and top of block 1 in Figure 3a, Figure 3d to blocks 6 and 5 in Figure 3a. The
correspondence in the results produced by both methods indicate that our non-parametric approach
can be used as an alternative to the parametric ANOV A model to identify differentially expressed
genes in factorial microarray experiments.

To further compare with our non-parametric approach, we calculated the total contributions of the
highly significant genes in ANOVA on the top two axes in CA. The 601 genes in Figure 3b explain
36.39% of the total variance in the first axis and 16.05% of that in the second axis. The 220 genes in
Figure 3¢ contribute to 17.02% of the variance in the first axis, 25.12% of that in the second axis
and the 56 genes in Figure 3d account for only 1.91% of the total variance in the first axis and
3.58% of that in the second axis. These results reflect that, the interaction effect in ANOVA is
represented by both the first and mainly the second axes but the cell line effect by the first axis
which is in consistency with our non-parametric approach. Note that although both methods
detected a relatively small number of genes showing a vitamin D treatment effect independent of
the cell lines, such a main effect was not revealed by the biplots in Figure 1 where both genes and
the samples are projected onto the most important dimensions. This is sensible given their very
small contributions to the major axes. To further link the ANOVA results with that from our non-
parametric approach, we examine the variations in the contribution of the highly significant genes
in ANOVA on the different dimensions of CA. In Figure 4, we show the boxplots of bootstrap
contributions (ranked according to their observed contributions in CA) on the first two axes by the
highly significant genes in the ANOV A model that show cell line effect (Figure 4a and b,

p<0.000001, 60 genes), interaction effect (Figure 4c and d, p<0.0001, 62 genes), and effect of
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vitamin D treatment (Figure 4e and e, p<0.001, 56 genes). Figure 4 reconfirms that very highly
significant genes displaying cell line effect in ANOV A mainly significantly contribute to the first
axis in CA. Meanwhile, genes estimated as showing highly significant interaction effect in ANOVA
can significantly contribute to both the first and the second axes. Moreover, genes as detected to
display the effect of vitamin D treatment mainly contribute to the second axis in CA.

It is necessary to point out that even though some of the selected genes in ANOV A make significant
contributions to the top dimensions in CA, there are also others that show only random
contributions. One obvious example is the genes detected to show significant vitamin D treatment
effect in Figure 4e and f. We think that the situation reflects the problem of false positive results in

ANOVA even after adjusting for multiple testing.

Discussion

We have presented a non-parametric approach for analyzing high-dimensional microarray data
produced in replicated factorial experiments. Application of the method to our stem cell data has
helped us to find genes that display contrasting expression profiles in the two cell lines. Our method
also detected genes turned on/off due to vitamin D treatment in the hMSC-dlk1 cell line. The results
are important in deepening our understanding in the genetic control of stem cell differentiations. As
a widely used exploratory method for visualizing multi-dimensional data, CA displays the
associations of gene expression with the effects of experiment factors as well as with the interaction
effects between the factors. In the linear regression based ANOV A model, unsupervised analysis of
FED data requires that parameters be assigned to each of the factors as well as to each of the
interaction terms which can easily run into model identifiability problem and false positive results
due to increased multiple testing. By data visualization using the biplot, CA reveals the main effects

and interactions that dominate the major variations in the data and thus results in increased
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efficiency in data analysis through dimension reduction. Although our example data is in a 2x2
factorial design, generalization of our method to more factors is just straightforward.

In the ANOVA model, parameters are assigned to stand for either the main effects or the
interactions. However, such a black-and-white assertion may not always hold in biological reality.
In Figure 3a, although genes in the upper part of bock 1 display a cell line effect (high expression in
the hMSC-TERT cell line), they are also up or down-regulated in the hMSC-dlk1 cell line but
conditional on vitamin D treatment, a situation which may reflect an interaction effect. On the
contrary, the interaction effects (up and down regulation) between hMSC-dlk1 cell line and vitamin
D treatment are clearly represented by genes in blocks 3 and 4 in Figure 3a. The example illustrates
the necessity of model-free approach in modeling biological data.

Kerr and Churchill [21] emphasized the importance of replicates in microarray experiments. In their
linear regression based ANOVA model [12], sufficient replications are needed to ensure model
identifiability and accuracy of the parameter estimates as well as to examine their model
assumptions (normality, linearity, etc). In our non-parametric approach, replicates are solely used
for assessing the distribution of gene contributions on the major dimensions that dominate the
variance in the observed data. This operating characteristic should naturally enable our method to
deal with data in high order FEDs in an efficient manner. Most importantly, in our bootstrap
resampling procedure, the inherent functional dependency among the genes is kept intact. This is
different from the ANOV A model which ignores the correlation in gene activities by testing the
genes independently.

Another nice feature in our non-parametric approach is that CA can also help to standardize the
variance in the data. Because the individual elements in matrix C which is submitted to SVD can be
viewed as the standardized residuals, the algorithm helps to compensate for the larger variance in

genes with stronger signals and the smaller variance in genes with weaker signals. This feature thus
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serves as an additional way to alleviate the intensity-dependent variance problem in microarray data
[26].

Although in this paper we focus on applying our method to analyze microarray data from complex
factorial experiments, we are planning to introduce the same approach to other types of clinical
investigations, for example, tumor classifications. In that case, the bootstrap-assisted CA could help
us to cluster the genes while associating them with the clustered tumor subclasses and moreover to
validate the differences between the tumor classes. Such practice is important because the global
gene expression profiles characterized by the significant marker genes can provide useful

information for tumor diagnosis, treatment strategies and outcome predictions.

Conclusion

Factorial experiments have the advantage of giving greater precision for estimating overall factor
effects, of enabling interactions between different factors to be explored [27]. These nice features
promote the use of FED in miroarray studies [11]. We have shown how our non-parametric
procedures can be applied to identify the clusters of genes that exhibit differential expression
profiles induced by the main factors or by interactions between the factors, and meanwhile to
validate their significances. We hope our model-free procedures introduced in this paper can serve
as an alternative to the existing ANOVA model in analyzing microarray gene expression data in

factorial design.
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Figure captions:

Figure 1. Biplots showing the projections by both genes and the interactive variables (samples) on
the first axis against that on the second (1a) and the third (1b) axes. The first axis is mainly
dominated by the variance in gene expression in the two cell lines while the second axis by the
interaction effect between vitamin D treatment and the hMSC-dIk1 cell line. However, the pattern

in the third axis is not meaningful.

Figure 2. Boxplots showing the bootstrap distributions of gene contribution on the first (2a) and the

second (2b) axes for genes whose bootstrap p-value<0.001.

Figure 3. Expression profiles for genes that significantly contribute to the first tow axes (3a)
(p<0.001) in CA and for significant genes (p<0.001) detected as displaying the cell line effect (3b),

the interaction effect (3¢), and effect of vitamin D treatment (3d) in the ANOV A model.

Figure 4. Boxplots showing the bootstrap distributions of gene contribution on the first two axes for

significant genes that display cell line effect (4a and b, p<0.000001), interaction effect (4c and d,

p<0.0001), and vitamin D treatment effect (4e,f, p<0.001) in the ANOVA model.
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