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Abstract

The sequences of two giant viral genomes, Mimivirus and a polydnavirus, have recently been
published. Mimivirus has the largest known viral genome and encodes an unprecedented number
of proteins, whereas the polydnavirus genome has an extremely low coding density and does not
encode DNA-replication proteins. These and other unusual features challenge the way we view
the evolution and definition of viruses.
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If an alien landed on Earth and studied the biology here, it

might justifiably conclude that viruses run the planet. They

are numerically the most abundant biological entities [1],

and they are profoundly important in shaping the ecology

and evolution of just about every species on Earth [2]. Yet

viruses are not considered to be alive by most biologists,

and they have arguably fallen by the wayside in the

genomics revolution [3]. The recent publication of the

genome sequences of two unusual viruses, however, high-

lights the wealth of information that remains to be discov-

ered through viral genomics. Here, we discuss Mimivirus

[4] and Cotesia congregata Bracovirus [5] (CcBV) and the

interesting questions they raise concerning the biology and

evolution of viruses. 

Both Mimivirus and CcBV are classified as double-stranded

DNA (dsDNA) viruses, and some of their features are sum-

marized in Table 1. Mimivirus was discovered in amoebae [6],

and it has a cycle of viral transmission and replication that is

typical of many dsDNA viruses (Figure 1a). Its name is derived

from ‘mimicking microbe,’ in reference to the bacterium-like

appearance of its large particle (400 nm in diameter) and its

Gram-positive staining. Mimivirus has the largest known

viral genome (1.18 megabase-pairs) and encodes an

unprecedented number of components of the transcriptional,

translational and replication machinery, many of which have

not previously been identified in viruses [4]. In addition, the

genome encodes a large number of genes associated with

metabolic pathways. Although the size and content of the

Mimivirus genome might rival those of some obligate intra-

cellular prokaryotes, it still appears to be absolutely depen-

dent on its host cell for synthesis of proteins. 

CcBV differs from Mimivirus and other viruses in many

fundamental aspects. As a member of the Polydnaviridae,

the transmission and replication cycle of this Bracovirus is

unconventional [7]. The Polydnaviridae - pronounced

polyd-na-viridae by the research community and named

after the unique segmented structure of the packaged

genome - consists of two subgroups, Bracoviruses and

Ichnoviruses, which associate with braconid and ichneu-

monid wasps, respectively [7]. These wasps are parasitoids

(parasites that kill their hosts) that attack caterpillars and

are of particular interest for their use as biological control

agents. In the wasp host, polydnaviruses exist in a benign

state, integrated into the wasp genome as a provirus. Ampli-

fication of segments from the provirus and production of

virions (particles containing viral DNA encased within a

capsid) occurs only in the ovaries of a female wasp, and

virions are co-injected with eggs during parasitization of

caterpillars. The viral particles are replication-deficient in

both hosts; the virus can increase in number only through

genome amplification in wasp ovaries but is transmitted

from wasp to wasp by vertical transmission of the provirus.

Viral gene expression in caterpillars interferes with the latter’s

immune response and developmental cycle, promoting



survival of the parasitoid and therefore of the provirus.

Thus, polydnaviruses depend on vertical transmission in a

tripartite relationship that includes both mutual and para-

sitic symbioses.

The genome of CcBV - whose wasp host is C. congregata -

totals 568 kilobase-pairs (kbp) and is composed of 30 circles

ranging in size from about 5 kbp to 40 kbp [5]. Although the

cumulative genome size of CcBV would place it in the category

of a giant virus, segments appear to be packed into individual

capsids, with several capsids being enveloped by a single

membrane [7] (Figure 1b). In contrast to the high coding

density of most viruses, the CcBV genome encodes very few

proteins, and the smallest segment consists entirely of non-

coding DNA [5]. Almost 70% of the protein-coding genes are

predicted to contain introns dependent on spliceosomal exci-

sion; it is unusual for viruses to have introns. This high rate of

intron prediction remains to be confirmed by cDNA sequence

data, however. About 40% of the proteins with assigned func-

tions fall into four gene families: protein tyrosine phos-

phatases, inhibitors of NF-�B, cystatins and cysteine-rich

proteins; these proteins may modulate the responses of

lepidopteran caterpillars to infection. In contrast with

Mimivirus and other viruses, the CcBV genome contains very

few recognizable homologs of components of the transcrip-

tional, translational and replication machinery, although it

does encode a homolog of the chromatin protein histone H4. 

Mimivirus is the sole member of Mimiviridae and is classified

as a nucleocytoplasmic large DNA virus (NCLDV) [6] on the

basis of the presence/absence pattern of ‘core’ genes

defined for NCLDVs [8]. By contrast, the viral origins of

polydnaviruses are less certain. It has been hypothesized

from virion morphology that bracoviruses may be related to

baculoviruses [7,9], but only three genes in the CcBV genome

are similar to genes found in free-replicating viruses, two to a

baculovirus and one to an ascovirus [5]. Thus, even though we

have a genome sequence the origin of bracoviruses remains

unclear. Many genes that are typical of viruses are absent from

the CcBV genome and may have been transferred to the wasp

genome, as is the case for a gene coding for a major structural

protein in Campoletis sonorensis Ichnovirus [10]. 

Inferring viral phylogenies is often difficult, as high rates of

viral evolution make it difficult to identify conserved genes

between viruses. The ultimate origin of viruses - where

viruses should be placed on the Tree of Life [11] - is even

more vexing. Many theories abound [2,12-14]: that they

evolved before the first cells; that because they infect all

domains they arose from cellular life before the last univer-

sal common ancestor; or that they evolved from cells at a

later point in evolution. In principle, it should be possible to

distinguish among these theories through careful genome

analysis. For example, if viruses have a separate origin from

‘living’ organisms, their gene content should overlap very

little, if at all, with that of bacteria, archaea and eukaryotes.

In contrast, if viruses evolved from a bacterial parasite, their

content should resemble bacteria more than that of archaea

and their genes should branch in evolutionary trees with

genes from bacteria, as is the case for organelles [15].

But there are several complications in determining viral

origins. First, it is possible that different types of viruses arose

independently. Second, and more confounding, there has

unquestionably been gene flow between viruses and their

hosts, which means that any one gene might not reflect the

phylogeny of the virus itself. The authors of the Mimivirus

genome sequence paper [4] try to address this by making a

concatenated alignment of multiple genes shared by

Mimivirus and living organisms. They report that the viral

genes branch as a sister group to the eukaryotes, potentially

identifying Mimivirus as the basal member of a major branch

on the Tree of Life. But in a separate phylogenetic analysis of

the RNA polymerase �’ subunit (one of the proteins used in

the concatenated analysis and also encoded in other

NCLDVs), Mimivirus did not group with the NCLDVs. The

ramifications of this conflict are still unclear: is Mimivirus an

NCLDV that acquired many of its genes through lateral trans-

fer, although differences in codon usage between viruses and

amoebae would indicate otherwise? Is it a sister-group to the

eukaryotes and not an NCLDV, despite the presence of

NCLDV core genes? Resolving such questions will have to wait

until other members or close relatives of Mimiviridae are

discovered and their genome sequences analyzed.
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Table 1

Characteristics of Mimivirus and CcBV and their genomes

CcBV CcBV 
(in caterpillar  (in wasp 

Feature Mimivirus host) host)

Genome size (base-pairs) 1,181,404 567,670 NK

Genome structure Linear 30 closed Provirus 
circles (linear)*

G + C composition (%) 28.0 33.95 NK

Coding density (%) 90.5 26.9 NK

Number of genes 1,262 156 NK

Genes containing introns 4† 107 NK

Genes with assigned function 298 42 NK

Obligate intracellular parasite Yes Yes No‡

Viral DNA replication in host Yes No No*

Virion assembly in host Yes No Yes

Transmission via virion Yes No No*

Viral gene expression dependent Yes Yes Yes
on host cellular machinery

NK, not known; *circles are produced from amplified proviral DNA in
female wasps at the time of egg laying, resulting in vertical transmission;
†genes contain self-splicing introns; ‡ CcBV is not pathogenic to the wasp
host and exhibits a mutualistic association with it (see text for details).



As CcBV has very few features associated with other viruses,

and its coding content and gene structure resemble that of

the wasp host more than that of viruses, Espagne et al. [5]

raise questions about the viral ancestry of bracoviruses. They

propose that bracoviruses may have evolved from mobile

DNA that acquired the ability to be packaged into capsids

(perhaps from a virus); the existence of remnants of trans-

poson and retrovirus-like elements in the CcBV genome

provides additional support for such an argument.

Genome sequencing and phylogenetic analysis of additional

polydnaviruses, their proviral sequences, and genes associ-

ated with virion formation will be required to shed light on

the question of whether bracoviruses are the product of

reductive viral evolution or not.

Mimivirus expands our definition of viruses quantitatively to

accommodate bigger genomes and larger particle size.

Although Raoult et al. [4] point out that Mimivirus has more

components of the cellular machinery than any other virus,

in our opinion it does not yet seem to stretch the definition

of viruses in any fundamental way. It is just a more compli-

cated virus. By contrast, CcBV appears to differ qualitatively

from many definitions of a virus (Table 1), but it could still

be classified as a highly defective one. Clearly, these two

viruses present some interesting problems regarding viral

phylogeny and classification that remain to be resolved.

Considering the importance of viruses in evolution, we

believe that we need to direct more effort to systematically

characterize the genomes and biology of diverse viruses, as

this will further our understanding of how and where they fit

into the Tree of Life [11]. 
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Figure 1
The transmission and replication cycles of Mimivirus and CcBV.
(a) Mimivirus. At the beginning of the life cycle, 1, the virus enters the
amoeba; 2, the viral genome is released; 3, viral proteins are expressed and
whole virus genomes are replicated; 4, viral genomes are packaged into
capsids; 5, viral particles are released from the amoeba. The grey circle
represents the nucleus. (b) CcBV. Steps 1-3 take place in specialized
ovarian cells of the wasp: 1, the provirus integrated in the wasp genome is
amplified; 2, amplified viral DNA is packaged into capsids; 3, several capsids
are enveloped by membrane(s); 4, the wasp oviposits eggs (only one is
shown) and virions into a caterpillar; 5, viral gene expression promotes
survival of the wasp progeny (such as the larva shown), but virions do not
replicate; 6, the wasp larva (oval) emerges from the caterpillar and
metamorphoses into an adult, and the caterpillar dies.
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