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A ChIP-chip data analysis tool<p>ChIPOTle is a new software tool designed specifically for the analysis of ChIP-chip data.</p>

Abstract

ChIPOTle (Chromatin ImmunoPrecipitation On Tiled arrays) takes advantage of two unique
properties of ChIP-chip data: the single-tailed nature of the data, caused by specific enrichment but
not specific depletion of genomic fragments; and the predictable enrichment of DNA fragments
adjacent to sites of direct protein-DNA interaction. Implemented as a Microsoft Excel macro
written in Visual Basic, ChIPOTle uses a sliding window approach that yields improvements in the
identification of bona fide sites of protein-DNA interaction.

Rationale
Interactions between proteins and DNA facilitate and regu-
late many basic cellular functions, including transcription,
DNA replication, recombination, and DNA repair. For exam-
ple, the process of transcription is regulated by a class of pro-
teins referred to as transcription factors, which often bind to
specific DNA sequences upstream of gene coding regions.
This control mechanism allows cells to respond to develop-
mental or environmental signals by using the same transcrip-
tion factor to coordinate expression of many genes.
Therefore, it is of interest to determine where regulatory pro-
teins of this and other types are bound to the genome.

The genomic-binding location of transcription factors can be
determined using chromatin immunoprecipitation (ChIP)
followed by detection of the enriched fragments by DNA
microarray hybridization. This procedure, also known as
ChIP-chip, has been reviewed extensively [1-5]. To appreciate
the unique properties of the data generated by the ChIP-chip
procedure, it is useful to review briefly the main points of the
experimental procedure (Figure 1).

After growing the cells of interest under the desired condi-
tions, chromatin is usually cross-linked with formaldehyde to
preserve sites of interaction between proteins and DNA. The
cross-linked chromatin is then sheared by sonication or enzy-
matic digestion. Shearing creates a population of chromatin
fragments of varying size, generally ranging from 200 to
1,000 base-pairs. The protein of interest, along with the DNA
associated with it, is then isolated by using an antibody spe-
cific to that protein or by affinity purification utilizing an
epitope or affinity tag fused to the protein. The ChIPed DNA
is then purified. Because yields from most samples are low,
amplification is often required. DNA fragments enriched in
the procedure are then detected by comparative hybridization
to a DNA microarray. Standard technical recommendations
common to all microarray experiments (for example, the
need for dye swaps) apply equally to ChIP-chip experiments.
The result of the hybridization allows one to identify which
segments of the genome were bound by the protein of interest
during immunoprecipitation.

The interpretation of data generated by a ChIP-chip experi-
ment is in many respects similar to interpretation of
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traditional gene expression microarrays, but it differs in two
important ways. First, in traditional expression experiments,
each element on the microarray measures the abundance of
RNA molecules of a fixed length. (Note that we shall use the
term 'arrayed elements' hereafter to describe DNA fragments
that are deposited on the surface of the array; the term 'probe'
is sometimes used by others.) In contrast, with ChIP-chip
experiments each element measures the abundance of a pop-
ulation of fragments of various lengths due to the effects of
chromatin shearing. As a consequence, arrayed elements rep-
resenting genomic regions both at the binding site and near
the binding site will detect enrichment (Figure 2).

Depending on the method and degree of chromatin shearing,
and the resolution of the arrayed elements, this effect pro-
duces a 'peak' of signal centered over the binding site, which
may span several arrayed elements representing genomically
adjacent DNA. This 'neighbor effect' is not an expected prop-
erty of noise or other spuriously high ratio measurements,
and thus is a source of information that can be used for
analysis.

The second difference in the interpretation of ChIP-chip and
traditional gene expression data is that in expression experi-
ments, the data are two-tailed and roughly symmetric. That

is, there is biological significance associated with both low
and high ratio measurements, and these measurements often
occur with similar frequencies. In contrast, the measure-
ments derived from ChIP-chip experiments arise as a mixture
of two distributions. The first corresponds to the population
of genomic fragments specifically enriched by the ChIP, and
the second corresponds to the remaining population of
genomic DNA that is not ChIP enriched and therefore repre-
sents background, or noise. The observed distribution of the
log2 ratios is therefore asymmetric about zero, with a distinct,
positively oriented skew (Figure 3a). The left-hand side of the
distribution (the negative log ratios) is approximately Gaus-
sian, but the positive log ratios exhibit a heavier non-Gaus-

A summary of the ChIP-chip procedureFigure 1
A summary of the ChIP-chip procedure. See the text for details.
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The neighbor effect and calculation of P valuesFigure 2
The neighbor effect and calculation of P values. (a) After ChIP, purified 
DNA fragments bound by the protein of interest will be of various lengths. 
(b) Actual log2 ratios reported by arrayed elements for Rap1p binding to 
promoter region of RPL1B (array element 'A') from the Rap1p binding 
dataset reported by Lieb and coworkers [13]. Arrayed element 'A' 
contains the actual site of protein-DNA interaction, and so this spot will 
have the highest ratio (red = high positive ratio; yellow = low ratio; green 
= negative ratio). Arrayed elements 'B' (RPL1B open reading frame [ORF]) 
and 'C' (MRM2 ORF), which are within about 1 kilobase (kb) of the binding 
site, are also enriched above noise. Arrayed element 'B' has a higher ratio 
then spot 'C', because the binding site is located closer to element 'B'. The 
arrayed elements 'D', 'E', 'F', and 'G' are too far from the binding site to be 
enriched. (c) Using a 1 kb window with a 0.25 kb step, the value of each 
window is plotted. The location of each window is defined by its central 
coordinate. (d) The P value of each window is plotted. The Bonferroni 
corrected P values were calculated based on the observed data, which had 
a log2 background standard deviation of 0.32 with 21,208 comparisons. 
Note that the window with the smallest P value (about 10-30) does not 
correspond to the highest window average. This is due to the fact that the 
most significant window contains three arrayed elements (A, B, and C), 
whereas the windows with the highest average contain only two elements 
(A and B). In this case, the center of the window with the highest P value is 
located about 80 bases from the actual binding site.

Binding site

Enr
ich

ed
 fr

ag
m

en
ts

Distance from binding site (kb)

3

1
2

0
-1

A BC DE F

00.511.52 0.5 1 1.5 2 2.52.5

G

Lo
g 

 r
at

io
2

(a)

(b)

(c)

(d)

B
on

fe
rr

on
i 

co
rr

ec
te

d 
p-

va
lu

e

1

10
-4

10-18

10
-22

10
-26

10
-30

W
in

do
w

a
ve

ra
ge 1

2

0

Genome Biology 2005, 6:R97



http://genomebiology.com/2005/6/11/R97 Genome Biology 2005,     Volume 6, Issue 11, Article R97       Buck et al. R97.3

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

sian tail. For the vast majority of ChIP-chip experiments, the
genomic regions of biological interest will be confined to the
positive side of the distribution, and the negative log ratios
will arise solely from fragments that are considered to be
background. Under the additional assumption that the distri-
bution of unenriched fragments is symmetric about zero, we
can estimate the distribution of background ratios using only
the observed negative log ratios as a guide [6].

The type of microarray used in a ChIP-chip experiment
affects how the data can be analyzed. Two array designs are
typically used for ChIP-chips: tiled or promoter-specific
arrays. Promoter-specific arrays generally contain a single
arrayed element to represent each regulatory region of inter-
est. These arrays are valuable when binding is known to be
confined to regulatory sequences close to transcriptional start
sites of the selected genes [7], but they become less powerful
when binding is not as well characterized or is spread over a
large genomic area. The other type, namely tiled arrays, are
best suited to ChIP-chip. The term 'tiled array', or sometimes
'tiling-path array', refers to arrays containing DNA fragments
designed to cover large genomic regions or whole chromo-
somes with few or no gaps between arrayed elements [8,9].
Tiled arrays are advantageous because they do not require
prior knowledge of potential binding targets, and they allow
one to utilize the 'neighbor effect' in data analysis.

In this report we describe ChIPOTle (Chromatin Immuno-
Precipitation On Tiled arrays), software created expressly for
the analysis of ChIP-chip data obtained using tiled arrays,
which allow us to exploit both the 'single-tail' and 'neighbor
effect'. ChIPOTle uses a sliding window approach to identify
potential sites of enrichment, and then estimates the signifi-
cance of enrichment for a genomic region using a standard
Gaussian error function. ChIPOTle is delivered as a Microsoft
Excel macro written in Visual Basic, which should facilitate
widespread adoption and provide a platform for custom
applications. Before ChIPOTle, to our knowledge the only
publicly available program designed expressly for ChIP-chip
data analysis was PeakFinder [10]. ChIPOTle offers several
improvements, including accurate and powerful P value esti-
mation and improved usability. ChIPOTle is available online
(Additional data file 1) [11].

The ChIPOTle algorithm
ChIPOTle first sorts the arrayed elements by genomic loca-
tion. To find potential areas of ChIP enrichment, a window of
user-defined size (default 1 kilobase) is then moved stepwise
(user-defined step size; default 0.25 kilobase) along the tiled
region. At each step the average log2 ratio for the window is
calculated by taking the simple average of all ratios reported
by arrayed elements that overlap with the window to any
degree. The average is unweighted, and therefore it is not
dependent on the proportion of the element within the win-
dow; it depends only on whether it is present or absent. The
window is then moved unidirectionally along the chromo-
some by the step size and the same calculation is repeated for
each distinct window, until the end of the chromosome is
reached. The arrayed elements need not be evenly spaced or
of equal lengths. ChIPOTle can be used with any genome.

As described in more detail below, the resulting sliding win-
dow averages can be represented as a graph, with genomic
position on the horizontal axis and average log2 ratio on the

Characteristics of ChIP-chip dataFigure 3
Characteristics of ChIP-chip data. (a) A quantile-quantile plot (QQ plot) 
for one representative Rap1p ChIP-chip experiment (red) against Gaussian 
distribution with a standard deviation of 0.35 and a mean of 0 (black bars). 
The upper and lower bounds of the black dashed line represent extreme 
values for 10,000 simulated Gaussian distributions with the above 
parameters. For Rap1 about 92% of the data fit the Gaussian distribution. 
The top 8% is skewed away from the simulated data. (b) A sliding window 
analysis for yeast chromosome VI produced by ChIPOTle for four Rap1p 
replicates [13]. Window size is 1 kilobase (kb) with 0.25 kb step size. The 
Rap1p binding sites are identified with arrows.
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vertical axis. In this way, genomic binding locations are rep-
resented as a series of peaks (Figure 3b). Averaging the log2

ratios of elements in a window accounts for the neighbor
effect, because the peak generated by a spuriously high signal
will be reduced by averaging its value with the ratios of neigh-
boring elements, which are very unlikely also to be high
purely by chance.

ChIPOTle assigns a P value to the average log ratio within
each window, under the null hypothesis that the observed log
ratios are independent, identically distributed, and random
variables, having a Gaussian distribution with a mean of zero.
The variance of the observations is estimated by the average
sum of the squared negative log ratios. Under the null hypoth-
esis, the distribution of the average log2 ratio within each win-
dow is again Gaussian, with mean zero and variance equal to
the variance of a single log ratio divided by the number of ele-
ments in the window. Thus, the nominal P value for a window
with average ratio w can be calculated using the standard
error function (ERF) as follows:

where σ is the standard deviation for the background distri-
bution and n is the number of microarray elements used in
the window. The P values reported by ChIPOTle are corrected
for multiple comparisons using the conservative Bonferroni
correction. As an alternative to using a Gaussian distribution
for the background, ChIPOTle can estimate the P value for a
region using a permutation-based approach (Additional data
file 2).

Using ChIPOTle
Detailed instructions for the installation and use of ChIPOTle
are available in the read-me file that accompanies the pro-
gram (Additional data file 2). Once ChIPOTle has been cor-
rectly added to the Excel Add-Ins menu or opened manually,
a new menu option will appear in the Excel Tools menu.
ChIPOTle must be run from an active Excel spreadsheet con-
taining five columns: the name of each arrayed element, chro-
mosome name, start coordinate in base-pairs, end coordinate
in base-pairs, and the log2 ratio from the ChIP-chip experi-
ment(s). The ratio values supplied to ChIPOTle can be a sin-
gle measurement from a single experiment or an average,
weighted average, or median of ratio values calculated from
multiple replicates. When using data from multiple repli-
cates, before combining the data each array must be appro-
priately normalized to remove systematic nonbiological
effects that might otherwise influence the results [1]. For sin-
gle channel experiments, pseudo-ratios must be created
before using ChIPOTle. Pseudo-ratios may be created by
dividing the intensity value at each arrayed element by the
median intensity value for all arrayed elements.

Through a dialog window, ChIPOTle will ask for the location
of each data column. The user will also be prompted to pro-
vide the window size, step size, and the desired technique for
determining peak significance. For the latter parameter, the
user can choose (1) a simple peak height cutoff; (2) assume a
Gaussian background distribution for calculation of window
average P values; or (3) estimate the background distribution
for calculation of window average P values via a permutation-
based simulation. If option 1 is selected then the user is
prompted to enter the peak height; for option 2 the user is
prompted to provide the significance P value cutoff; and for
option 3 the user is prompted to provide the number of simu-
lations and the significance P value cutoff to be used in the
permutation analysis. Any region with a P value lower then
the selected cutoff will be recorded and summarized in the
"Significant Regions" and "Peaks" worksheets.

Parameter optimization
As described above, ChIPOTle has three important user-
defined parameters: P value cutoff, window size, and step
size. These parameters will affect the output, and can be
adjusted according to the experiment and the array design.
The P value cutoff should be set at a level that produces a false
discovery rate with which the user is comfortable. The "Sig-
nificant Negative Regions" sheet provides an empirical esti-
mate of the number of false-positive findings for the selected
P value cutoff, and so the user can use this information to esti-
mate the false-positive rate and adjust the P value cutoff (see
below). The numbers of acceptable false-positive and false-
negative findings will vary depending on the goals of the
study.

The next parameter to set is window size. Ideally, for a given
protein-DNA interaction, one would like to capture the maxi-
mal amount of ChIP signal associated with a single binding
event, and none of the noise, in a single window. Therefore, in
most ChIP-chip experiments the window size should be
adjusted to approximately the average shear size of the chro-
matin. The average shear size is suggested because the size of
the window must be balanced against making it so large that
noise from adjacent genomic regions is included in the meas-
urement, and against making the window so small that data
from adjacent spots is excluded, diminishing the power of
windowing to utilize the neighbor effect. Although this
parameter is largely independent of array platform or array
resolution, slightly smaller windows may be more effective on
higher resolution arrays.

Optimization of step size depends on both the array resolu-
tion and the window size. The step size should be adjusted
such that it is less than half of the array resolution, with array
resolution defined as the distance between the start of one
arrayed element and the start of the next. Thereby, the meas-
urement recorded at each arrayed element will be used in the
calculation of at least three windows, ensuring that every

P ERF w
nwindow = − 





( )1 1
σ
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arrayed element has the opportunity to be centered under a
peak. Window size is also an important factor because some
overlap of windows is desirable in order to detect peaks at
unknown locations. Taken together, we suggest setting the
step size to the maximum value that is both less than half of
the array resolution and less than or equal to one-quarter of
the window size. For very high-resolution arrays (less than
about 50 base-pairs), step sizes smaller than the array resolu-
tion may not improve results.

ChIPOTle output
ChIPOTle creates several output sheets with the following
names: SummarySheet, Significant Regions, Significant Neg-
ative Regions, Chromosomes aveP, Peaks, and Description.
The SummarySheet contains all the input data used to run
ChIPOTle, now sorted by chromosome and start coordinate.
For each window that meets the significance criteria specified
by the user, the Significant Regions sheet contains the follow-
ing: chromosome assignment, center coordinate, number of
independent arrayed elements within each window, and
names of the arrayed elements that comprise the window.
Significant Negative Regions is similar to Significant Regions,
but instead it contains all of the windows that meet the signif-
icance criteria but are sign-flipped. The number of windows
reported in this sheet can be used as an estimate of the
number of false-positive findings expected for the selected or
estimated cutoff. Chromosome aveP contains the names of
the arrayed elements that comprise each window, and the
chromosome, center coordinate, and value of all windows,
regardless of whether they meet the significance criterion.
The values from this sheet, for example, were used to make
Figure 3b.

The data written to the "Peaks" sheet are similar to those
reported in "Significant Regions", except that all neighboring
windows meeting the significance criteria are collapsed into a
single peak. Therefore, a peak is defined as any window with
a P value that meets the significance criterion defined by the
user and all neighboring windows that also meet the signifi-
cance criteria. In this sheet, each peak is listed in order of its
occurrence along the chromosome, along with the highest
window for each peak, highest raw log2 ratio for any element
within the peak, start coordinate of the peak, the width of por-
tion of the peak above the significance cutoff, 'array density'
of the peak, and the P value for that peak. The array density
value is defined as the average number of arrayed elements
used to calculate the window values for all windows that com-
prise the peak. Therefore, the array density value provides an
estimate of the number of actual raw data measurements that
underlie each peak.

The last sheet, Description, contains a summary of the
ChIPOTle execution parameters, which include the date and
time, the selected window size, the step size, the significance
method chosen and corresponding parameters, the number

of significantly enriched peaks, and the total number of
windows.

Properties of ChIP-chip data
A plot of the sliding window values generated by ChIPOTle for
a Rap1p ChIP-chip reveals two important characteristics of
this type of data (Figure 3b). The first is an absence of deep
negative peaks. In ChIP-chip experiments, negative log ratios
are not caused by specific depletion of genomic fragments but
by noise. Therefore, after averaging with neighboring
genomic elements, their window average will tend to be small.
The second is the presence of tall positive peaks that extend
well above background.

Comparing ChIPOTle with other techniques 
used to analyze ChIP-chip data
We compared ChIPOTle with three other analysis techniques
commonly used to analyze ChIP-chip experiments: the single
array error model (SAEM) [6,7,12], percentile rank analysis
[13], and PeakFinder (smoothing settings: n = 5, rounds = 7)
[10]. All four techniques were used to analyze four biological
replicates (experiments 5, 6, 8, and 9) from the Rap1p binding
dataset in yeast reported by Lieb and coworkers [13]. To com-
pare the power of the four techniques quantitatively, they
were judged by their ability to identify the 127 promoters of
the ribosomal protein genes (RPGs) as targets of Rap1p bind-
ing. As a group, these promoters are known targets of Rap1p,
and almost all contain consensus Rap1p-binding sites [14]. By
using this functionally defined set, we avoided using any par-
ticular ChIP dataset to define our 'gold standard'. The targets
identified by each technique were sorted by P value
(ChIPOTle and SAEM), median percentile rank (percentile
rank), or ySmooth value (PeakFinder). We then used receiver
operator characteristic (ROC) plots to show how true posi-
tives (sensitivity) were captured in relation to false positives
(specificity) for all values output by each method (Figure 4a).
The power of each technique was then quantitated as the area
under the ROC curve (AUC). An analysis technique that
selected targets randomly would have an AUC of about 0.5;
higher values are better (maximum = 1).

In using the Rap1p ChIP-chip data to identify the promoters
of RPGs, all of the techniques worked well, but ChIPOTle
(Figure 4a, black line; AUC = 0.963) performed considerably
better then the other techniques (SAEM: AUC = 0.906, per-
centile rank AUC = 0.897; PeakFinder: AUC = 0.838). The
95% confidence interval for each AUC value (Figure 4b) was
estimated by bootstrap resampling of RPG occurrence and
enrichment value as measured in each technique (P value,
percentile rank, or ySmooth) [15].

We next compared the ability of ChIPOTle, SAEM, and Peak-
Finder to identify accurately the RPG promoters from a ChIP-
chip hybridization to a single microarray. This analysis
Genome Biology 2005, 6:R97
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cannot be performed with the percentile rank analysis
because this technique requires experimental replicates. We
analyzed each individual experiment independently and
determined the average true-positive rate versus the false-
positive rate (Figure 4c). All three techniques performed
extremely well, but ChIPOTle (AUC = 0.885) outperformed
both SAEM (AUC = 0.835) and PeakFinder (AUC = 0.833). In
addition, ChIPOTle produced higher AUC values than both
SAEM and PeakFinder for each individual experiment (data
not shown).

Discussion
ChIPOTle is a Microsoft Excel macro that is designed for use
in the analysis of data from ChIP-chip experiments.
ChIPOTle exploits the unique characteristics of ChIP-chip
data, including enrichment of DNA genomically adjacent to
sites of protein-DNA interaction, and the single-tailed nature
of the data, to define peaks of enrichment and their signifi-
cance. ChIPOTle is very quick and easy to use. The user is
prompted to select the five columns containing their data and

Figure 4
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Comparison of ChIPOTle with other ChIP-chip analysis approachesFigure 4
Comparison of ChIPOTle with other ChIP-chip analysis approaches. (a) 
ChIPOTle, the single-array error model (SAEM), median percentile rank, 
and PeakFinder were used to analyze the same four Rap1p ChIP-chip 
replicates reported by Lieb and coworkers [13], and judged by their ability 
to determine enrichment of ribosomal protein gene (RPG) promoters. 
The binding site for Rap1p is found in most (>90%) RPG promoters [14], 
which represent approximately half of Rap1p's total in vivo targets. 
Receiver operating characteristic (ROC) curves summarize the power of 
each technique and are equivalent to a plot of the true-positive rate 
(fraction of ribosomal promoters) versus the false-positive rate (fraction 
of all genomic elements other than ribosomal promoters). Each technique 
is judged by means of the area under the ROC curve (AUC). An AUC 
value of 0.5, corresponding to a diagonal ROC curve, is expected by 
chance, whereas a value of 1.0 indicates a technique that predicts targets 
perfectly. ChIPOTle (AUC = 0.963) outperformed the other techniques 
tested here (SAEM: AUC = 0.906; median percentile rank: AUC = 0.897; 
and PeakFinder: AUC = 0.823). When comparing ChIPOTle with 
PeakFinder, we used the default settings for smoothing (n = 5 [11-point] 
smoothing with 7 rounds). In addition, we attempted to optimize the 
settings by trying varying levels of smoothing, including 7-point and 13-
point, which produced similar results. Rap1p's strongest binding sites are 
located at the telomeres, which are not included with our defined 'true 
positive' set of RPG promoters. Therefore, the false-positive rate will be 
somewhat inflated, which will decrease the AUC for all techniques. This is 
reflected in the ROC curves by the low true-positive rate at the extreme 
left of the plot. (b) The 95% confidence interval for the AUC for each 
analysis technique was estimated by bootstrap resampling of RPG 
occurrence and enrichment value (1,000 iterations) as measured in each 
technique (P value, percentile rank, or ySmooth). Boostrapping of raw data 
was not practical because of inability to automate all four analysis 
methods. (c) ROC curves comparing ChIPOTle, SAEM, and PeakFinder 
with respect to their ability to identify enrichment of RPG promoters 
from a single experiment. The average true-positive rate (fraction of 
ribosomal promoters) versus false-positive rate (fraction of all genomic 
elements other than ribosomal promoters) for the four individual 
experiments is plotted. The three techniques performed extremely well, 
but ChIPOTle (AUC = 0.885) outperformed both SAEM (AUC = 0.835) 
and PeakFinder (AUC = 0.833).
Genome Biology 2005, 6:R97
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the significance technique to be used. The program then
returns the genomic regions that were enriched by the ChIP
according to the data and the specified statistical parameters.
In its current implementation, ChIPOTle is restricted in func-
tionality by the limitations of Excel worksheets to 65,536
rows by 256 columns. Therefore, if the dataset of interest is
derived from an array containing more then 65,536 unique
elements or if the total number of windows generated exceeds
5.5 million, then the data will have to be separated into sub-
sets (for example, individual chromosomes) if they are to be
analyzed using ChIPOTle.

As currently implemented, the significance analysis in
ChIPOTle is carried out under the assumption that the log2

ratios of the arrayed elements are independent and Gaussian
distributed, with mean zero and common variance. Under
this assumption, a nominal P value may be assigned to each
window using the standard Gaussian cumulative distribution
function, or an appropriate bound having closed form. Multi-
ple comparisons can then be addressed via a Bonferroni cor-
rection or through an estimated false-discovery rate. In either
case, the tail behavior of the Gaussian distribution will have a
strong effect on the corrected P values.

As a more conservative alternative to the Gaussian approach,
one could derive nominal P values from each window using a
null distribution with heavier tails than the Gaussian. A natu-
ral choice, consistent with the observed histogram of log2

ratios, is a t-type distribution. Formally, one may adopt the
null hypothesis that the observed log2 ratios are independent
and distributed as cT, where c is a positive scaling factor and
T has a standard t distribution with v degrees of freedom. In
order to obtain nominal P values, one then needs estimates of
c and v, and bounds on the probability that a sum of inde-
pendent t-distributed random variables exceeds a threshold.
Estimates of c and v can be obtained through moment-based
methods. Suitable probability bounds with good small-sam-
ple properties are currently under investigation.

ChIPOTle, while using novel approaches, identifies a set of
sites similar to that defined by other techniques (PeakFinder,
SAEM, and percentile rank analysis) used for analysis of data
from ChIP-chip experiments. However, the use of a sliding
window allows ChIPOTle to identify enriched regions more
accurately, especially after only one experiment. This is useful
because when one is performing a ChIP-chip experiment for
the first time with a new protein or antibody, it is often diffi-
cult to determine whether the ChIP was successful, especially
for a protein with an undefined binding pattern. The ability to
determine binding sites correctly using fewer replicates will
be very important for larger, more complex genomes. Com-
plete high-density tiled arrays for mammalian genomes
require many arrays for each experiment, meaning that per-
forming the ideal number of replicates can be prohibitively
expensive. In mammalian systems, instead of performing all
of the replicates of a ChIP-chip experiment on whole-genome

arrays, preliminary experiments using whole-genome arrays
can be used to find likely targets. Once these likely targets are
identified, the array could be redesigned to include all pro-
spective targets and appropriate controls on a single array. In
addition to its utility as a general ChIP-chip analysis tool,
ChIPOTle will make prescreening more accurate and will
enhance the power and accuracy of this approach.

Additional data files
The following additional files are included with the online
version of this paper: The Excel Add-In ChIPOTle v 1.0 (Addi-
tional data file 1), a pdf file containing detailed instructions
for the installation and use of ChIPOTle (Additional data file
2), and an Excel file containing the Rap1p binding data used
to make the comparisons between the different techniques
(Additional data file 3).
Additional data file 1An Excel Add-In ChIPOTle v 1.0An Excel Add-In ChIPOTle v 1.0.Click here for fileAdditional data file 2A PDF file containing detailed instructions for the installation and use of ChIPOTleA PDF file containing detailed instructions for the installation and use of ChIPOTle.Click here for fileAdditional data file 3An Excel file containing the Rap1p binding data used to make the comparisons between the different techniquesAn Excel file containing the Rap1p binding data used to make the comparisons between the different techniques.Click here for file
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