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Abstract

Background: Invasive bacteria are known to have captured and adapted eukaryotic host genes.
They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely
related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host
tissues, share almost none of their colonization genes. The protease inhibitor o,-macroglobulin
provides a major metazoan defense against invasive bacteria, trapping attacking proteases required
by parasites for successful invasion.

Results: Database searches with metazoan o,-macroglobulin sequences revealed homologous
sequences in bacterial proteomes. The bacterial a,-macroglobulin phylogenetic distribution is
patchy and violates the vertical descent model. Bacterial a,-macroglobulin genes are found in
diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes,
deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with
bacterial a,-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as
hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial o,-
macroglobulins, indicating that bacterial o,-macroglobulin is a colonization rather than a virulence
factor.
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Conclusions: Metazoan o,-macroglobulins inhibit proteases of pathogens. The bacterial
homologs may function in reverse to block host antimicrobial defenses. o,-macroglobulin was
probably acquired one or more times from metazoan hosts and has then spread widely through
other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like
bacterial a,-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical
peptidoglycan transglycosylase, PBPIC, that does not function in vegetative peptidoglycan
synthesis. We suggest that YfhM and PBPIC are coupled together as a periplasmic defense and
repair system. Bacterial a,-macroglobulins might provide useful targets for enhancing vaccine
efficacy in combating infections.
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Background

The broad-spectrum protease inhibitor a,-macroglobulin
(a,M) and the complement factors C3, C4 and C5 belong to a
gene family present in all metazoans ranging from corals to
humans. These large (approximately 1,500 residue) proteins
all undergo proteolytic processing and structural rearrange-
ment as part of their role in host defense. The family is char-
acterized by a unique thioester motif (CXEQ; single-letter
amino-acid code), and a propensity for multiple conforma-
tionally sensitive binding interactions [1], which define their
functional properties. The highly reactive thioester bond is
buried inside the molecule in the native protein, protected
from precocious inactivation [2]. Upon proteolytic cleavage,
the thioester bond becomes exposed and can then mediate
covalent attachment to activating self and non-self surfaces,
in the case of complement factors, or covalent or noncovalent
crosslinking to the attacking proteases in the case of a,Ms [3].
The proteolytic activation of these proteins also mediates
interactions with receptors.

In contrast to complement factors, which are activated by
specific 'convertase' protease complexes, o,Ms have an acces-
sible bait' region with target sites for many proteases. The
rearrangement of a,M that follows cleavage of the bait region
entraps the attacking protease in a cage-like structure, hin-
dering protein substrates from reaching the protease active
site [4]. In this way, exported proteases that are essential for
parasitic infections can be rendered ineffective by o,M
entrapment [5-7]. Protease-reacted o,M is then cleared from
circulation by binding to the receptor CD91, triggering endo-
cytosis. In addition, a,Ms bind cytokines and growth factors
and regulate their clearance and activity [8,9].

Vertebrate complement factors C3, C4 and Cs5 are part of an
activation cascade that leads to the assembly of the mem-
brane-attack complex and lysis of the pathogen. Binding of C3
also targets pathogens for phagocytosis. Proteolytic activa-
tion of all three complement proteins yields anaphylatoxins
(cleaved amino-terminal fragments) which are recognized by
specific receptors and activate the inflammatory response at
the site of infection. In contrast to a,Ms, complement factors
also possess a carboxy-terminal domain extension, the netrin
or NTR module (PFAM:PFo01759) [10]. Some members of the
complement/a,M family (for example, C5 and ovostatin)
have lost the thioester motif.

No a,M-related proteins have been found in any eukaryotes
outside metazoans. Within the Metazoa, representatives have
been found in all species examined, with a so-called 'C3-like’'
protein sequenced from the cnidarian Swiftia exserta
(SWISS-PROT acc:Q8IYP1). There is no information from
sponges as yet. We may speculate that the gene family evolved
in an early metazoan in response to challenge from invasive
microorganisms exploiting the new niche provided by the
interstitial spaces and body cavities. The more derived role of
the complement factors, together with their extra netrin
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domain, suggests that they arose by gene duplication from an
ancestral a,M-like gene. Apart from vertebrates, a,M-group
proteins have been most actively studied in arthropods. The
horseshoe crab Limulus has a plasma a,M that is a compo-
nent of an ancient invertebrate defense system; it is able to
inhibit a wide range of proteases as well as to modulate
plasma cytolytic activity [11]. Limulus a,M forms tetramers,
binding covalently across the multimers rather than to the
attacking proteases, but still traps these in a cage-like struc-
ture after proteolytic activation [12]. In dipteran insects,
there are multiple a,M homologs, the thioester-containing
proteins (TEPs). The TEP genes have been amplified by a
process of tandem duplication into linked multigene families.
Drosophila melanogaster has six TEP genes, whereas the
mosquito Anopheles gambiae has 15 [13]. It is thought that
the impressive expansion of TEP genes in the mosquito might
be linked to the parasitic challenge provided by its blood-
sucking lifestyle [13]. The first characterized TEP in mosqui-
toes, TEP1, binds to and promotes phagocytosis of bacteria
[14]. TEP1 also binds to Plasmodium berghei and mediates
its killing [15]. Thus the complement/a,M protein family is
part of an innate immune system in metazoans that long pre-
dates the immunoglobulin-based immune system of verte-
brates, yet remains vital for combating parasites in all animal
lineages examined.

While reviewing the distribution of o,M/TEP proteins from
invertebrates [16], we conducted BLAST searches of the pro-
tein databases and were surprised to discover a number of
bacterial sequences with BLAST E-values indicating homol-
ogy with a,M. Given the absence of a,Ms in all non-metazoan
eukaryotic lineages, it immediately seemed clear that hori-
zontal gene transfer (HGT) of a,Ms must have occurred
between metazoans and bacteria. But which way? Here we
summarize the evidence for numerous horizontal transfers
between bacterial lineages and discuss some biochemical and
medical implications of the finding.

Results

Our BLAST2SRS server provides the species in the BLAST
output page: this is useful for quick visual surveys of the tax-
onomic distribution of a protein family. A BLAST2SRS search
with human a,M unexpectedly listed an entry (SWISS-PROT
accession number Q9Xo079) with E-value 2.3e-8 from Ther-
motoga maritima, a thermophilic eubacterium. With a
length of 1,538 residues, a signal sequence and a matching
CxEQ motif, there was no doubt that this was a genuine a,,M
homolog. Numerous other bacterial sequences with lower E-
values but obvious topological equivalence were also listed:
for example, Escherichia coli YthM (P76578) at 5.8e-5; Pseu-
domonas putida AAN66197 at 1.3e-4; Rhizobium meliloti
Q92VA6 at 5.0e-3. Profile searches with a metazoan o,M
alignment and subsequently with an alignment of the
stronger bacterial hits revealed a number of additional, highly
diverged homologs, some lacking the CXEQ. For example, E.
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(a)

Species Accession Range * . ok kK L.

Human ooM P01023 961-986 NTQONLLOMPYGCGEQNMVLFAPNIYV
Ecoli yfhM P76578 1176-1201 ¥IKELKAYPYGCLEQTASGLFPSLYT
Salty Q8ZN46 1168-1193 YIRELKAYPYGCLEQTTSGLFPALYT
Pholu NP:928670 1199-1224 ¥IRELYAYPYGCLEQTISGLYPSLYS

Psepu Q88QC4 1155-1180 QIRALQAYPYGCLEQTTSGLYPSLYA
Psesy Q87VUO0 1171-1196 QIRALKAYPYGCLEQTASGLYPSLYA
Xanax Q8PNC8 1154-1179 ALQGALEYPYGCAEQTTSKGYAALLL
Xylfa Q9PDX7 1155-1180 VLQGVFEYPYGCAEQTASKGYAALWL
Borpe Q7VVC2 1217-1242 LVDGLLTYPYGCTEQTISAAIPWVLI
Borpa Q7W7E7 1217-1242 LVDGLLTYPYGCTEQTISAAIPWVLI
Rhime Q92VA6 1356-1381 LLMTLDRYPYGCAEQTTSRALPLLYL
Agrtu Q8UON1 1358-1383 LVMMLDKYPYGCAEQTTSRALPLLYV
Rhilo Q98K29 1369-1394 LLMTLDRYPYGCAEQTTSRAMPLLYV
Caucr Q9A2J0 1210-1235 IAVALQR PYGCTEQLVSAAYPLLYA

Desde ZP:00129550 1276-1301 LLRWLDRYPY¥GCLEQTASRAMPLLYL

Sheon NP:715708 1417-1442 LSAYLESYPHACTEQLVSKSVPALVL
Riccn Q92HD6 1430-1455 FKDFLDNYPYGCTEQLISQNFANILL
Fusnu EAA24785 1154-1179 LIKSLLDYPYICLEQISSKGMAMLYI
Helhe AAP77331 1366-1391 RLKWLIRYPYGCIEQTTSSVLPQLFL

Cythu ZP:00120024 1335-1360 NLSYLIGYPYGCIEQTTSRAFPQLYL
Magma ZP:00053598 1400-1425 GLDSLLLYPFGCTEQRISLARAGIGT

Ruler 1....... 1B Ee8 005 ZIOFP Y
Species Accession L ¥
Ecoli yfhM P76578 ------------ MKKLRVAACMLMLALAGCDNNDNAPTAV
Salty Q8ZN46 ------------ MKHLRVVACMIMLALAGCDNNDKTAPTT
Pholu NP:928670 MNQGQFWQQPGINKCYLAVILAFLLMLSGCDQSDSTDNKQ
Psepu Q88QC4 ------------ MFNKGLLLACALALLSACDSSTPGKPAP
Psesy Q87VU0  ------------ MLNKGLFLACALALLSACDSSTPDKPAP
Xanax Q8PNC8 ----- MMRSGTRRMLLWAVLLVVAIGAVACKRNESGQOLPA
Xanca Q8PBTO0 ----- MISSGVRRMLLWVVLLTVALGSVACKRNESGQLPT
Xylfa Q9PDX7 ----- MLRPLVRGWIPRAVLLLTVAFSFGCNRNHNGQLPQ
Desde ZP:00129550 -MTSSARLVSACRVFLCAMLFAALAVLAGCGSDTEERSDR
Pasmu Q9CMZ1 -------- MNKQYFLSLFSTLAVALTLSGCWDKKQDEANA
Fusnu EAA24785 --------- MKKILKLVFILSLLIIAFVACKKDKEKQQTD
Helhe AAP77331 ----MRYLCYIWKFFVFFGFIYVSTFLTACSDNKFVESYT
Cythu ZP:00120024 --------- MLSSIKTLTACCLFMLCLAACSKKNVIEIKE
Anasp Q8YM40 -------- MIIRVCIRCFIVLTLVLGIGGCNFFGINSGRE

Figure |

Sequence alignments. (a) Alignment detail of YfhM group bacterial a.,-
macroglobulin sequences from bacterial proteomes plus human a,-
macroglobulin (a,M), centred on the conserved CxEQ thioester motif.
(b) Alignment of selected bacterial a,-macroglobulin signal peptides
possessing the conserved cysteine (C) residue. Signal peptides require a
run of hydrophobic residues preceded by a positively charged residue.
Cleavage is at the small (glycine (G)/alanine (A)) residue terminating the
signal peptide (marked by a dot). Aminoacylation of lipoproteins occurs in
the inner membrane at a C (marked by *) directly following the signal
peptide. An aspartate residue (D) after the C acts as a retention signal to
the inner membrane in E. coli, preventing lipoprotein transfer to the outer
membrane [17,18]. Alignments are color-coded using the Clustal X
defaults [66]. Blue denotes conserved hydrophobicity, as in the signal
peptide, while a strongly conserved C is colored pink. Accession numbers
are SWISS-PROT or NCBI genomes (NP, finished genome; ZP, provisional
assignment in unfinished genome). Species names follow the SWISS-PROT
convention.

coli has a second divergent homolog, YfaS (P76464). It is
noteworthy that not a single instance of an archaeal o,M
sequence could be found. Thus a,M-like sequences are
restricted to eubacteria and metazoans. No function has been
experimentally ascribed to any of the bacterial a,Ms (bact-
a,Ms).

Bacterial o,-macroglobulin sequences

Figure 1a shows an alignment of the segment spanning the
CxEQ motif for a representative set of bacterial o,M
homologs. Not all bact-o,Ms possess the CxEQ motif. Using
E. coli as the reference, YfhM is the archetype of a large group,
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mostly with the thioester motif, and YfaS is the archetype of a
smaller, diverged group always lacking the motif. The
sequences of the YfThM group are sufficiently divergent that
accurate alignment proved time-consuming, but was
achieved over almost the whole sequence length, other than
the highly variable amino termini. We did not attempt to align
together the YfhM and YfaS groups and the metazoan o,Ms.
This would only be useful if the trees would be informative,
but the high divergence between the groups precludes accu-
rate alignment, leading to unreliable tree calculation. (In
future, given more YfaS sequences and o,Ms from more
metazoan lineages and a solved three-dimensional structure
to guide alignment, this might be worth revisiting.) One fea-
ture apparent in many of the aligned YfhM sequences is a con-
served cysteine directly following the signal peptide (Figure
1b), indicating palmitoylation. The presence of an aspartic
acid residue following the palmitoylated cysteine has been
shown in E. coli to dictate sorting to the inner membrane
[17,18], in which case YThM will be found in the periplasmic
space, attached to the inner membrane. Given the CxEQ
motif, covalent trapping of proteases in the periplasmic space
seems to be the most likely function (whether the covalent
links are to the trapped protease or between the o.,,M multim-
ers, as in the horseshoe crab Limulus [12]). The YfaS group of
bact-a,Ms lack a palmitoylable cysteine, so may be secreted,
while absence of the CXEQ motif indicates the molecular
function must be different, at least in part, though this does
not, of itself, rule out protease entrapment, as in chicken
ovostatin which also lacks the reactive thioester motif [19].

Genomic context of bacterial a,-macroglobulins

A survey of completely sequenced bacterial genomes was
undertaken to establish which lineages possessed bact-a.,Ms
and which did not. Representative results are summarized in
Figure 2. It is clear that there is a highly inconsistent correla-
tion of bact-a,M possession and phylogenetic relationship,
except for very closely related species.

Bact-a,Ms are absent from the full proteomes of the following
anciently diverged free-living species: the hyperthermophilic
chemolithoautotroph Aquifex aeolicus, the thermophilic pho-
tolithoautotroph Chlorobium tepidum, the cyanobacteria
Synechocystis, Synechococcus and Prochlorococcus, all fir-
micutes including Bacillus subtilis, all actinobacteria includ-
ing Streptomyces coelicolor, the B-proteobacterium
Nitrosomonas europaea and the 3-proteobacterium Geo-
bacter metallireducens. Furthermore, possession of bact-
a,M is inconsistently represented within clades such as the
proteobacteria, spirochetes and cyanobacteria. This is well
illustrated by the two species of Helicobacter, one exploiting
the acidic stomach and the other the very different environ-
ment of the liver: only the latter has a bact-a,M. The H.
hepaticus genome lacks essentially all the proposed H. pylori
virulence factors and is believed to possess a quite different
set, adapted to its hepatobiliary habitat [20]. The irregular
phylogenetic correlation suggests that bact-a,Ms are
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. Life- .
Species style Genomic context
—— Magnetospirillum magnetotacticum F —>—n—
—— Caulobacter crescentus F —»>—n— Lifestylesl . Homologs
alpha ——— Agrobacterium tumefaciens P —»>—— F= Free-ll\.nng ) - gg\gc
L Rhizobium meliloti S - O = Organic residue ; other
——— Rickettsia prowazekii P >/ G = Gut bacterium = yfaA
L— Rickettsia conorii P -/ C= Comrrllerwsal = yfaT
— Bordetella pertussis P > S = Symbiotic = yfaQ
—— Ralstonia metallidurans P —»>—— P = Pathogenic = yfaP
—— Neisseria meningitidis P oM Present
beta —— Chromobacterium violaceum F,P <1
: oM Absent
——Nitrosomonas europaea F
—— Ralstonia solanacearum P —Q—— 1
—— Burkholderia fungorum P,S T
—— Yersinia pestis P —»>——
—— Pasteurella multocida PC ——//——
E;‘;i‘;gaae”a \— Salmonelia typhimurium P -
—— Escherichia coli GCP —m—m»— —T—» 1
——— Shigella flexneri P —>—»— —T— 1
—— Pseudomonas fluorescens O,F —A1>
—— Pseudomonas aeruginosa F,P —T1—
gamma [ Pseudomonas putida FS —»—»—
——  Xylella fastidiosa P >/
—— Xanthomonas axonopodis P >
——— Xanthomonas campestris P —»— T
—— Haemophilus influenzae P
L—— Vibrio cholerae P
delta Desulfovibrio desulfuricans FS = -
—|: Geobacter metallireducens F
—— Helicobacter hepaticus P —>—»—
epsilon [ Helicobacter pylori P
—— Wolinella succinogenes C,0
L—— Campylobacter jejuni P
Fusobacteria Fusobacterium nucleatum CP -—-m»»—
Bacteroidetes Bacteroides thetaiotamicron GC —-»—»—
\Planctomycetes  gpoqopireliula baltica F,0 >
M': Bacillus subtilis F
Streptococcus pneumoniae P
—— Mycobacterium tuberculosis P
Actinobacteria L Bjfijopacterium longum G,C,0
——— Streptomyces coelicolor F
—— Anabaena spp. FS —a—
Cyanobacteria| ____ |Nostoc punctiforme FS —am»—
——— Synechocystis spp. F
—— Treponema pallidum P
Spirochetes | | eptospira interrogans P >
Borrelia burgdorferi P
| Deinococcus-Thermus Deinococcus radiodurans F,O0 —»—
Thermotogae Thermotoga maritima F >
Chiorobi Chlorobium tepidum F
Aquificae Aquifex aeolicus F

Figure 2 (see legend on next page)
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Figure 2 (see previous page)

Phylogenetic distribution of bacterial a.,-macroglobulin homologs (a.,M). Pink, species that possess bacterial a,-macroglobulin genes; yellow, species
without bacterial o,-macroglobulin genes. Shared genomic context is indicated for genes found to co-occur with bacterial a,-macroglobulin genes.
Because bacterial phylogeny has many uncertainties, the tree is simplified into multiple nodes representing three levels of divergence. There is little
phylogenetic consistency for bacterial o,-macroglobulin possession. Colonizing proteobacteria are overwhelmingly expected to have a bacterial a,-
macroglobulin gene, although exceptions occur, notably Helicobacter pylori, Vibrio cholerae and Neisseria meningitidis. No examples of bacterial o,-
macroglobulin genes have been found in colonizing Gram-positives in the Firmicutes or Actinobacteria, which include such major infectious clades as
streptococci and mycobacteria. Anabaena is a facultative plant symbiont, while other free-living cyanobacteria (here represented by Synechocystis) lack
bacterial a,-macroglobulin. Thermotoga maritima, Magnetospirillum magnetotacticum and Caulobacter crescentus are the only species possessing bacterial o,-
macroglobulin for which no apparent connection exists with niches linked to exploitation of higher eukaryotes. Genome context of bacterial c.,Ms is based
on automated STRING annotation [21], supplemented by re-analysis of individual genomes. Double slanted bars between genes indicate that they are not
tightly linked. Bacterial o.,-macroglobulins make up two distinct groups typified by the E. coli genes yfhM and yfaS. The members of the yfhM group (on the
left side of the figure) almost always co-occur with pbpC and are often, but not always, found adjacent to and on the same strand as one another in an
operon configuration. Members of the yfaS group (grouped on the right side of the figure), when present in - or y-proteobacteria, are linked to four
other gene families. All their predicted gene products also possess signal peptides, but are otherwise of unknown function. In other taxa, members of the
yfaS group of bacterial a,-macroglobulins are either unassociated with any of these gene families (planctomycetes and deinococci), or linked to a member

of just one of the families (thermotogae).

"lifestyle' genes, affecting which niches a bacterium is able to
exploit. Although an association with colonization seems
clear (Figure 2), there is a strong bias in bacterial genome
sequencing in favor of pathogenic species: this currently pre-
cludes a statistical assessment and might create a misleading
phylogenetic perspective.

The STRING server [21] was used to check for neighboring
genes that persistently co-occur with bact-o,Ms. Using either
yfhM or yfaS as seed, STRING reported two conserved gene
sets that are widely found with bact-o,Ms. The results are
summarized in Figure 2. The yfhM group always co-occurs
with pbpC, which encodes penicillin-binding protein 1C
(PBP1C). The gene topology is almost always consistent with
pbpC and yfhM being in the same operon (or co-transcribed
from a bidirectional promoter, as in Anabaena). The more
strongly an operon structure is conserved across species, the
more likely are the encoded proteins to have associated func-
tions [22]. Moreover, products of conserved gene pairs very
often associate physically [23]. Therefore, if YThM is involved
in colonizing or pathogenic lifestyles, so should be its partner.
PBP1C is a paralog of the periplasmic cell-wall biosynthesis
proteins PBP1A and PBP1B, though with the addition of a car-
boxy-terminal non-enzymatic domain of approximately 100
residues (PFAM:PF06832). The PBP1A and PBP1B peptidog-
lycan synthases each have two enzymatic domains, an amino-
terminal transglycosylase and a carboxy-terminal transpepti-
dase (reviewed in [24]). Although it possesses the two enzy-
matic domains, studies have shown that PBP1C does not
substitute for these proteins in cell-wall biosynthesis during
vegetative growth [25]: indeed deletion of pbpC has a weak
phenotype not affecting cell viability in the laboratory,
although the number of peptide crosslinks is increased [25].
The transpeptidase domain in PBP1C is thought not to bind to
most of the B-lactams that inhibit the paralogous enzymes,
nor to be a functional transpeptidase [25]. One curious find-
ing is that, in vitro, PBP1C accounts for 75% of transglycosy-
lase activity, yet is responsible for only 3% of de novo
peptidoglycan biosynthesis in the cell [25]. As PBP1C does not

substitute for the biosynthetic enzymes, a possible role would
be in emergency repairs to the peptidoglycan, where its effi-
cient transglycosylase activity would be appropriate.

The yfaS group of bact-o,Ms is likewise usually found in a
candidate operon, at least within the proteobacteria (Figure
2), in this case with four other gene families, defined by the E.
coli yfaA, yfaQ, yfaP and yfaT genes. All these genes have sig-
nal sequences and their encoded proteins are expected to be
secreted or periplasmic, but, otherwise, sequence analysis has
yielded no clues to their function. It is possible that all the
encoded proteins function to disrupt or resist host defenses.
The YfaS-like bact-a,,Ms of the free-living and highly diver-
gent Thermotoga, Deinococcus and Rhodopirellula (none of
which is known to be invasive) are not found associated with
most of these other genes.

Microarray expression data

The STRING server was also used to check for any significant
coexpression of yfhM, yfaS and other members of the two
candidate operons, using E. coli data from the Stanford
microarray database [26]. All the genes associated with those
for bact-o,Ms are present in the experiments included in the
STRING database, and are expressed at levels significantly
above background. However, none of the genes exhibits coor-
dinated variation in expression levels either with each other
or with any other genes in the E. coli genome under the con-
ditions investigated.

Calculation of sequence trees

An initial rough tree calculated from an alignment of yfhM
family sequences gave strong indications that several hori-
zontal transfers had occurred among the available set. As
yfhM is always found together with pbpC, indicating that the
paired genes should have a shared phylogenetic history, a
quick check of the PBP1C tree was also done. The two trees,
which provide controls for each other's topologies, were very
similar, indicating that the apparent HGTs were unlikely to be
artifacts. Therefore, we undertook a more careful
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(a) Yersinia pestis
0.6 Pasteurella multocida

Rick ia conorii

0.
L ——————— Shewanella oneidensis
0.96 Desulfovibrio desulfuricans

Caulobacter crescentus
Agrobacterium tumefaciens
Rhizobium meliloti

Rhizobium loti

Bradyrhizobium japonicum
Salmonella typhimurium
Escherichia coli

Photorhabdus luminescens
Pseudomonas syringae
h Pseudomonas putida
- \————Bordetella pertussis

Xylella fastidiosa
Xanthomonas axonopodis

Helicobacter hepaticus
4|_—‘—Fusobacterium nucleatum
0.74 Cytophaga hutchinsonii
Magnetospirillum magnetotacticum
Ralstonia metallidurans
|: Chromobacterium violaceum
Leptospira interrogans
Trichodesmium erythraeum
—LFsIoc punctiforme
0.94L Anabaena sp. Ho2,

(b) 0.92 Yersinia pestis
0-453_|E Pasteurella multocida
Shewanella oneidensis

Rick ia conorii

Desulfovibrio desulfuricans
Caulobacter crescentus

0_<)£|_— Agrobacterium tumefaciens
Rhizobium meliloti

Rhizobium loti

0.72

Bradyrhizobium japonicum

Salmonella typhimurium

Escherichia coli

0.92 Photorhabdus luminescens

Pseudomonas syringae

Pseudomonas putida

Bordetella pertussis
0.95 | EX ylella fastidiosa
1 Xanthomonas axonopodis

Helicobacter hepaticus

0.72 Fusobacterium nucleatum

Cytophaga hutchinsonii

Magnetospirillum magnetotacticum

Ralstonia metallidurans
4,—:hromobacterium violaceum
Leptospira interrogans

Nostoc punctiforme
4' 0.2
Anabaena sp. =

Alpha-proteobacteria Delta-proteobacteria

Beta-proteobacteria Epsilon-proteobacteria

Gamma-proteobacteria Cyanobacteria

Not shared between trees

Fusobacteria

Spirochetes Links to several taxa

Bacteroidetes

Figure 3

Trees calculated from amino-acid sequence alignments. (a) The YfhM group of bacterial a,-macroglobulins; (b) the PBP | Csthat always co-occur and are
usually found adjacent in the same operon. As shown by the key, branches are color-coded by taxon for easy visualization of phylogenetic inconsistencies.
All branches have Bayesian posterior probabilities of 1.0 (that is, are completely stable during resampling) unless otherwise indicated. Three branches not
shared between the trees are indicated by dotted lines: all other branches are congruent. The roots of the trees are not known, so the time vector of
deep internal branches is not clear. See Materials and methods for details of the tree calculation.

phylogenetic analysis with a view to improving the phyloge-
netic signal-to-noise ratio and using a method that is less
prone to rate variation artifacts than neighbor-joining.

Alignments were reviewed and edited by hand, then proc-
essed to remove especially noisy segments, as outlined in
Materials and methods. Trees were calculated with MrBayes,
a Bayesian resampling protocol that is now widely adopted
[27]: MrBayes approaches the quality of maximum-likelihood
methods while being quicker to calculate (though still compu-
tationally demanding). Results of the tree calculations are
presented in Figure 3. The two trees differ by only three
branch placements, indicating that the topologies are mostly
sound, except for a few branches with low support (low poste-
rior probabilities). As the calculated trees are unrooted, the
ordering of the deepest branches cannot be mapped onto
time.

Fitting the observed tree topologies to the vertical
descent model

The number of ancestral genes required to explain an
observed tree topology can be determined by embedding the
sequence tree within a species tree. We prepared a species
tree for the bacterial species in Figure 3 such that currently
uncertain affinities were assigned in favor of the observed
trees: this will provide a minimum estimate of ancestral gene
number. The sequence tree topology was embedded into the
bacterial species tree using GeneTree [28]. The reconciled
tree required six gene-duplication events and 29 lineage-spe-
cific deletions. The last common ancestor (LCA) of the full set
had a minimum of three genes, the LCA of the proteobacteria
had four genes, while the LCA of the a/B-proteobacteria had
six genes. The tree reveals a tendency for increasing gene
number over time when vertical descent has strictly occurred.
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The problems of the vertical descent model are manifold.
First, all sequenced extant genomes have single copies of the
yfhM/pbpC genes, yet vertical descent shows a progression
toward increasing gene number over time. This requires late
but fully independent massive gene loss to have occurred in
all lineages. Second, the observed robust sequence tree topol-
ogies would require a clear affinity between cyanobacteria
and spirochetes, an affinity that has hitherto gone entirely
unnoticed in the field of bacterial phylogeny. Third, the
number of events (gene duplications and deletions) found to
be required under a model of vertical descent is based on a
species tree chosen to minimize this number (see Materials
and methods.) As the species tree used is unlikely to be accu-
rate in places where bacterial phylogeny is unresolved, the
number of such events required under a vertical descent
model is probably greater than described (and hence, corre-
spondingly less likely.)

Although bizarre evolutionary scenarios can always be
invoked, the given tree topologies are difficult to explain
solely by vertical descent from a common ancestral
eubacterium.

Horizontal transfers of the yfhM and pbpC gene
couplet

Difficulties in accounting for the observed YthM and PBP1C
trees disappear if it is assumed that a number of horizontal
gene transfers have occurred. Vertical transmission then only
occurred among some sets of quite closely related bacteria.
There are four deeply diverged sets within the tree, which will
be discussed in turn.

The major proteobacterial grouping

Of the 22 proteobacterial species sampled, 18 are exclusively
grouped together in the two trees. The species are all plant or
animal pathogens and symbionts - even the anaerobic sulfate-
reducing Desulfovibrio desulfuricans is a symbiont of deep-
sea hydrothermal vent polychete worms [29]. Sub-branches
compatible with vertical descent are present for five a-proteo-
bacteria including Agrobacterium tumefaciens and for seven
y-proteobacteria including E. coli. For bact-o,M and PBP1C
to have existed in proteobacteria before the o/y split, these
gene sequences would have to be evolving more slowly than in
other parts of the tree. It is more likely that the genes spread
via HGT through these groups some time ago and then have
been vertically inherited (at least in part). The remainder of
the grouping consists of unambiguous HGT, although the
direction of transfer is not always clear-cut. The B-proteobac-
terium Bordetella pertussis has acquired the genes from a y-
proteobacterium. The &-proteobacterium D. desulfuricans
has acquired the genes from an a-proteobacterium. An out-
lier set of o~ and y-proteobacteria, including Rickettsia
conorii and Yersinia pestis, indicate two further transfers,
but in this case the order of the transfers is not determined.
Therefore to create the topology of this grouping, a minimum
of four unique horizontal transfers has occurred.
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The bacteroidete/fusobacterial s-proteobacteria grouping

This group consists of three unrelated taxa which exploit
niches related to the animal digestive system. The g-proteo-
bacterium Helicobacter hepatica colonizes mouse liver ducts,
Fusobacterium species colonize the teeth, Bacteroides thetai-
otamicron (not shown on the tree owing to an incomplete
bact-a,M sequence) is a major gut bacterium, while a second
bacteroidete, Cytophaga hutchinsonit, exploits cellulose-rich
animal waste. Horizontal transfer into the e-proteobacterium
H. hepaticus is clear-cut, as it is isolated on the trees from all
other proteobacteria, whereas other Helicobacter lack these
genes. Another transfer has occurred between fusobacterial
and bacteroidete lineages, but the direction is not clear. A
third HGT is likely to have originally introduced the genes
into these lineages but cannot be formally assigned without a
root.

The isolated Magnetospirillum a-proteobacteria branch
Magnetospirillum magnetotacticum bact-a,M and PBP1C
are deeply diverged from all other species, including other a-
proteobacteria. This positioning away from its relatives indi-
cates that HGT occurred into the Magnetospirillum lineage.
The strong divergence from other sequences may indicate
that the sequence has undergone rapid evolution. This latter
point may be addressed in future if the branch becomes pop-
ulated by some closer relatives.

The cyanobacterial/spirochete/ f-proteobacteria grouping

This branch consists of three very unrelated taxa: cyanobac-
teria facultatively symbiotic with plants, spirochetes patho-
genic to metazoans and a pair of closely related genera of p-
proteobacteria that each include free-living, symbiotic and
pathogenic forms. The deepest diverged in the group are the
Anabaena-like symbiotic cyanobacteria. The economically
significant Anabaena-Azolla symbiosis provides the nitrogen
fixation that fertilizes paddy fields [30]. As other free-living
cyanobacteria, such as Synechococcus, lack these genes, HGT
into this lineage is very likely. The isolation of the Ralstonia
and Chromobacterium clade from other proteobacteria also
indicates HGT into their lineage. HGT for Leptospira (the
causal agent of leptospirosis) is also indicated, as other spiro-
chetes such as Borrelia burgdorferi (the causal agent of Lyme
disease) and Treponema pallidum (the causal agent of syph-
ilis) lack these genes. Thus, this set of genes that are clearly
grouped together by molecular phylogeny, yet are found
within very diverse taxa, appear to have been transmitted
three times.

Discussion

Sifting the evidence for bacterial HGT

There is increasing evidence that HGT has had - and contin-
ues to have - a major role in the adaptation of organisms,
especially prokaryotes, to exploiting new environments. Nev-
ertheless, it is often hard to demonstrate HGT, and there is
considerable confusion about how to do so. The default
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hypothesis should remain vertical transmission unless there
is good evidence for HGT. The over-hasty assignment of
recent bacterial-to-vertebrate gene transfers, solely on the
basis of BLAST E-values [31], has been firmly refuted [32,33].
Such premature HGT assignments have been surveyed and
used to provide guidelines for evaluating HGT [34,35]. Some-
times the evidence is clear-cut, as when adaptive genes are
carried on phage, plasmid or transposon. Inconsistent phylo-
genetic distribution may be evidence for HGT but must be
carefully balanced against gene-loss models, recognizing that
the two processes are not mutually exclusive. Phylogenetic
trees only provide good evidence for HGT when branching is
robust and clearly delimited by appropriate outgroups: the
HGT must carry a diagnostic molecular evolutionary signal.

One of the best paradigms for investigating recent and ongo-
ing HGT in parasitic prokaryotes is the y-proteobacterium
Vibrio cholerae, which acquired pathogenicity late in
recorded history. Free-living Vibrio species are common,
harmless aquatic microorganisms. The first recorded cholera
pandemic occurred in 1817, the sixth and seventh occurred
recently enough to be investigated with modern molecular
techniques, and the eighth is probably underway now (see
[36] for details). The basic pathogenicity genes ctxAB, which
encode cholera toxin, lie within the genome of the filamen-
tous phage CTX¢ [37]. Other pathogenicity gene 'islands’
include the toxin-co-regulated pilus, needed for colonization,
and the VSP-1 and VSP-2 islands, which appeared in strains
of the seventh pandemic and are suggested to have been inte-
gral to that event [38]. The recent 0139 serotype arose by
wholesale replacement of the pre-existing gene cluster encod-
ing lipopolysaccharide O side-chain synthesis, yielding an
outer surface with a different architecture, less susceptible to
pre-existing immunity [39]. Thus, pathogenic V. cholerae
continues to adapt to the invasive lifestyle, to a large extent
through HGT-mediated acquisition of new capabilities,
including, but not limited to, better avoidance of host
defenses. Although many of the functions encoded by the
genes within pathogenic islands are not understood, their
absence from the free-living Vibrio species is good evidence
that they have been incorporated, and then conserved,
because of a direct or indirect role in enhancing virulence.
Even though it is a y-proteobacterium, the genomic sequence
data show that V. cholerae has not (re-)acquired a bact-o.,M
gene. At least, not yet.

HGT of a,-macroglobulin among colonizing bacteria

Our unexpected finding that o,-macroglobulins, hitherto
only known from metazoans, are widely present in eubacte-
rial genomes has provided one of the most clear-cut examples
of widespread HGT between extremely divergent bacterial
taxa that can be monitored by molecular phylogenetic
approaches. We have been able to infer a minimum of 11 inde-
pendent HGTs for the major yfhM group among 27 sequences
tested. Because this group always coexists with a second gene,
pbpC, shared evolutionary history means the trees are con-
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trolled for topological consistency, so that the assignment of
HGT is not in doubt. This work does not address an earlier
evolutionary history preceding the link-up of this gene pair.

It is striking that all four deeply diverged groups in the trees
include proteobacterial species. This alone clearly indicates
that HGT has occurred. Because this is the most heavily
researched Dbacterial taxon and provides most of the
sequenced genomes, it is not yet clear whether other taxa will
also show multiple independent acquisitions of bact-a,M and
pbpC. Currently, the trees show a minimum of 11 independent
HGT events, even if the originating (but unknown) taxon
were represented here. A twelfth HGT is indicated if bact-o.,M
was originally captured from a metazoan (or vice versa).
Extensive gene loss is also likely to have contributed to the
phylogenetic distributions in Figure 2, particularly amongst
the a-,B-, and y-proteobacteria, where possession seems the
default yet both vertical and horizontal transmission occur.
Quite possibly, a cycle of gain-loss-gain has repeatedly
occurred as strains adapt between colonization and free-liv-
ing environments. The role of gene loss cannot be quantified
with current data, but this may become possible in the future
with more comprehensive genome coverage.

Where pathogenic bacteria and their eukaryotic hosts share
related genes that appear to be transferred from one to the
other, it is believed that the direction is overwhelmingly from
the eukaryote to the bacterium. The failure to find phyloge-
netic evidence for bacterium-to-vertebrate gene transfers is
consistent with this direction [32,33]. We expect that bact-
a,M was transferred from a metazoan host to a pathogenic
bacterium, but this is not yet demonstrable and remains sup-
position. Given a simple early metazoan, where the germ cells
would not be physically isolated from any bacterial infection,
one can see how selection could act to fix a bact-a,M gene
transferred in the opposite direction, if bact-a,M was origi-
nally bacterial. This issue may become resolvable in future
given much more extensive phylogenetic coverage.

Bacterial o,-macroglobulin in apparently free-living
bacteria

Many bacterial taxa contain a plethora of strains adapted for
free-living, symbiotic and pathogenic lifestyles. Examples
include the Ralstonia and Anabaena genera adapted to
plants, Escherichia and Treponema adapted to animals and
pseudomonads adapted to both. Many free-living bacterial
strains are also facultative colonizers. This creates some diffi-
culty in cataloguing genes that are adapted to colonizing
niches versus free-living: it is rarely certain whether an
apparently free-living species never colonizes a higher organ-
ism, or is not part of a continuum of strains frequently
exchanging lifestyle genes. Given this caveat, we reviewed all
the currently completed genomes of bacteria that are not in
any way known to have close associations with higher eukary-
otes. The available set of Gram-positive bacterial genomes
stand out as never possessing a bact-o,M gene (see below).
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Only three apparently free-living Gram-negatives (Magnet-
ospirillum, Caulobacter and Thermotoga) have bact-a,,Ms
while seven (Aquifex, Chlorobium, Synechocystis, Synechoc-
occus, Prochlorococcus, Nitrosomonas and Geobacter) do
not. Thus this crude estimate would suggest that possession
of a bact-a,M gene is associated with colonization, not as a
core colonization factor, but as an accessory that enhances fit-
ness for the colonization environment. Further, it may imply
that the three 'free-living' species possessing a bact-a,,M gene
have undocumented facultative symbiotic capabilities with
higher eukaryotes.

Usage of host a,-macroglobulin by invasive Gram-
positive bacteria

The Gram-positive firmicutes and actinobacteria stand out as
always lacking bact-o,M genes (Figure 2). However, certain
Gram-positives have found a more direct way to take advan-
tage of o,M proteins. Pathogenic Streptococcus pyogenes
directly co-opt host a,M for defense against host proteases
through the cell-surface proteins GRAB and protein G
[40,41]. As Gram-positive bacteria do not possess an outer
membrane, defensive strategies are likely to differ from those
of Gram-negatives. Invasive Gram-positives are found to coat
themselves in a selected set of host proteins to obstruct host
defenses. Streptococcal GRAB mutants that are unable to
bind o,M have attenuated virulence [40]. It seems remarka-
ble that prokaryotes have evolved two totally independent
strategies to take advantage of a,,M. On the one hand, Gram-
positives are able to use the host's own protein, on the other,
Gram-negatives have acquired their own gene. The clear
implication is that a,M functionality has a wide and general
significance spanning many bacterial taxa.

Bacterial a,-macroglobulin YThM/PBPIC: a second line

of defense?

The lipopolysaccharide (LPS) layer of the outer membrane of
Gram-negative bacteria provides a first line of defense. The
outer membrane barrier is sufficient to prevent the enzyme
lysozyme from lysing Gram-negative bacteria in culture [42].
Under attack from host immunity and antimicrobial peptides
[43], LPS can be disrupted or stripped away - for example,
when released into the circulation, it can lead to septic shock
[44] - leaving the peptidoglycan cell wall and inner mem-
brane exposed. There is current interest in antibacterial strat-
egies that endeavor to enhance lysozyme activity by co-
administration with agents that disrupt the outer membrane,
such as EDTA [42].

The following assumptions lead us to a hypothesis for Y{(hM
bact-a,M/PBP1C as a periplasmic defense system. First, bact-
o,M and PBP1C form a complex, probably through the car-
boxy-terminal non-enzymatic domain of PBP1C. Second, the
complex resides in the periplasmic space, attached by acyla-
tion to the inner membrane. Third, bact-a,M functions to
entrap attacking proteases. Fourth, PBP1C is a transglycosy-
lase that polymerizes glycan chains. Fifth, a periplasmic
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defense is only needed when the outer membrane has been
breached and peptidoglycan is under attack.

The role of the bact-a,,M/PBP1C system is then perceived to
be defense at, and repair of, peptidoglycan breaches induced
by the host (Figure 4). PBP1C provides 75% of the transglyco-
sylase activity in vitro, but only 3% of peptidoglycan biosyn-
thesis in vivo [25]: it is a fast linear transglycosylase, ideal for
traversing and repairing a breach. During repair it will, how-
ever, be exposed to attacking proteases and may be rapidly
rendered dysfunctional. The role of bact-a.,M will be to entrap
attacking proteases, protecting PBP1C and other periplasmic
proteins such as the high-affinity lysozyme inhibitor Ivy in E.
coli[45]. In this way, the fate of the invading bacterial cell will
depend on the relative balance of the host's attacking forces
versus the bacterial defense systems. Under an optimized
host attack, such defenses would be rapidly overwhelmed but
when (or where) the host is not well prepared, these defenses
may serve to prolong colonization.

Potential experimental and medical applications

The yfhM/pbpC gene pair in bacteria not only suggests exper-
imental research strategies, but may have medical potential
to help combat pathogenic organisms. Predicted periplasmic
location and complexing of bact-a,M and PBP1C with each
other (and any other periplasmic proteins) should be
straightforward to investigate biochemically. Elucidation of
the host proteases entrapped by bact-o,Ms should reveal
which host defense proteases are targeted at which parasites,
leading to enhanced understanding of host defense mecha-
nisms. Bact-a,M-inhibited proteases should be directly active
against pathogen proteins - or else act indirectly as, for exam-
ple, do the proteases of the complement cascade. PbpC dele-
tions should show increased sensitivity to lysozyme
treatments and pbpC/ivy double mutants, yet more so.

The bact-0,M/PBP1C proteins also provide targets for medi-
cal intervention, for example by training host immunity, the
administration of anti-bact-a,M monoclonal antibody or in
combination therapies. Antibodies to bact-a,Ms should act
not just by promoting immune clearance but also to block the
bact-a,M activity, so that the host antibacterial proteases are
unhindered. This dual effect may provide an enhanced
prophylactic efficacy for vaccines that are augmented with
extra bact-a,M protein (probably as an inactive variant) or be
directly invoked by targeted anti-bact-a.,M antibody adminis-
tration for combating acute infection. PBP1C should also be
rendered dysfunctional by specific antibodies, perhaps in
combination with transglycosylase inhibitors such as the
antibiotic moenomycin.

Conclusions

Bact-a,,Ms are spread widely amongst symbiotic and patho-
genic bacteria. The implication is that protease inhibition is
often an aid to colonizing higher eukaryotes. The major form
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Figure 4

Schematic outline of the proposed defense of breaches of the bacterial outer membrane. Host systems (whether antimicrobial peptides, antibody and/or
complement) have opened the outer membrane, allowing lysozyme and host proteases to attack periplasmic components, leading to a further breach of
the peptidoglycan. Host attack is hampered by protease trapping (bacterial o,-macroglobulin) and lysozyme inhibition (lvy), giving PBPI1C a chance to
repair the glycan chains. The fate of the colonizing bacterial cell will now depend on whether the bacterial defenses are exhausted or the host attacking
components are too limited to achieve cell lysis. Elements of the scheme are not drawn to scale.

of bact-o,Ms is typified by E. coli YthM and is a periplasmic
protein that co-occurs with periplasmic PBP1C, a candidate
peptidoglycan repair enzyme. The distribution of the yfhM/
pbpC gene pair is inconsistent with the established bacterial
phylogeny. Molecular trees calculated for each of the proteins
are in good agreement with each other. Each tree provides a
control for the other tree's topology, allowing confidence in
the general topology. This allows us to state with high confi-
dence that at least 11 separate gene transfers have occurred
between highly diverged bacterial taxa. An additional gene
transfer has occurred between bacteria and metazoans. We
are not yet able to determine in which direction this transfer
occurred, and therefore the title question is not yet
answerable.

The known properties of a.,Ms and PBP1C point to a periplas-
mic line of defense at cell-wall breaches, mounted by the

YfhM bact-o,M and PBP1C. This defensive line should be sen-
sitive to antibody-based therapeutic approaches, whether
enhanced vaccine efficacy or direct administration of
antibody.

Materials and methods

Sequence database searches

Bacterial a,Ms were clearly revealed in a search of SWISSALL
[46] using BLAST2SRS [47] in which the species names are
included in the BLAST output [48]. Profile searches as
described [49] using the EMBL Bioccelerators [50] supported
and extended the findings and were used to retrieve a set of
bacterial sequences. Reciprocal searches with bact-o,M pro-
files reconfirmed the findings with good E-values (<1.e-25).
The sets of proteomes provided by the BLAST server [51,52]
at the National Center for Biotechnology Information (NCBI)

Genome Biology 2004, 5:R38



http://genomebiology.com/2004/5/6/R38

[53] were surveyed to determine the presence or absence of
o,Ms in bacteria and in non-metazoan eukaryotes.

Survey of genomic context

The STRING server [54] is a resource for exploring genome
context (for example, identifying groups of genes found in
close proximity in many different genomes [21]). Queries
with bact-a,Ms from E. coli or other bacteria yielded a recur-
ring result: in most species the bact-a,,Ms cluster consistently
with certain other gene families. This behavior is typical of
gene sets belonging to the same operon. These families were
retrieved and used for further database explorations, align-
ments and trees. To identify the location of these gene fami-
lies in other genomes where linkage to bact-a,Ms is less direct
than those presented by STRING, we downloaded genomic
database entries from the NCBI, converted the format of
these files to EMBL using BioPerl [55], and assessed the loca-
tion of the genes using Artemis [56]. In addition, linkage of
these gene families was investigated in organisms not
included in STRING using the same method.

Sequence alignment and editing

Sequences were aligned using Clustal X 1.83 [57]. Because
many sequences are very dissimilar to each other, misaligned
regions were to be expected. These were identified using the
"low scoring segments' check and either realigned using the
'realign selected range' option or were hand-edited in SeaV-
iew [58]. Corrections were assessed by both improvements to
conserved hydrophobic columns (indicating structurally
important residues) and with the 'low scoring segments'
check. Sequences excluded because they were either too
divergent to be aligned or may contain sequencing errors
included Deinococcus radiodurans and Bacteroides
thetaiotamicron.

Calculation of sequence trees

Preliminary trees were made by neighbor-joining [59] as
implemented in Clustal X, excluding gaps and correcting for
multiple substitutions with the Kimura PAM model. These
initial trees indicated that HGT had occurred, warranting
more careful assessment. Alignments were processed with
the Gblocks server [60] (for the divergent bact-a,Ms, the low
stringency settings were used). Gblocks heuristically removes
poorly conserved excessively divergent segments of align-
ments with low signal-to-noise ratio in order to enhance the
phylogenetic signal [61]. Processed alignments were used to
derive tree topologies using Bayesian inference of phylogeny
as implemented by MrBayes v2.01 [27] with maximum-likeli-
hood branch-length estimates provided by PUZZLE [62].
MrBayes was used with four heated chains over 250,000 gen-
erations, sampling every 20 trees. The likelihoods of these
trees were examined to estimate the length of the burn-in
phase, and all trees sampled 20,000 generations later than
this point were used to create a consensus tree using the 50%
majority rule. Both MrBayes and PUZZLE were used with the
JTT model of amino-acid substitution [63], assuming the
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presence of invariant sites and using a gamma distribution
approximated by four different rate categories to model rate
variation between sites, estimating amino-acid frequencies
from the alignment. Trees were displayed and rooted in
Njplot [64].

Estimation of minimum yfhM gene number in the
bacterial last common ancestor

The program GeneTree [28] was used to evaluate the cost of
embedding the YfhM sequence tree in a bacterial species tree.
To compute the minimum gene number required in the last
common ancestor of the given bacterial set, we set the unre-
solved bacterial affinities to match the YthM/PBP1C trees
(that is, cyanobacteria and spirochetes form a clade, as do
bacteroidetes and fusobacteria; within the proteobacteria, the
subgroup affinities were allocated to minimize the number of
duplications required in the observed trees). Magnetospiril-
lum was excluded from the analysis as its position is not sta-
ble in the YthM and PBPiC trees. Embedding the observed
tree topology in this bacterial species tree yielded a reconciled
tree requiring six duplication and 29 deletion events.

Microarray expression data

STRING was used to investigate the expression patterns of
genes as detected by DNA microarray. The Stanford Microar-
ray Database (SMD) [26,65] was used to verify that these
genes were indeed spotted on the arrays used by STRING,
and that the spots displayed intensities significantly higher
than background levels.
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