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ABSTRACT

Recent experiments have shown that the genomes of organisms such as worm, fly, human

and mouse encode hundreds of microRNA genes. Many of these microRNAs are thought to

regulate the translational expression of other genes by binding to partially complementary

sites in messenger RNAs. Phenotypic and expression analysis suggest an important role

of microRNAs during development. Therefore, it is of fundamental importance to identify

microRNA targets. However, no experimental or computational high-throughput method

for target site identification in animals has been published yet. Our main result is a new

computational method which is designed to identify microRNA target sites. This method

recovers with high specificity known microRNA target sites which previously have been de-

fined experimentally. Based on these results, we present a simple model for the mechanism of

microRNA target site recognition. Our model incorporates both kinetic and thermodynamic

components of target recognition. When we applied our method to a set of 74 Drosophila

melanogaster microRNAs, searching 3’ UTR sequences of a predefined set of fly mRNAs

for target sites which were evolutionary conserved between Drosophila melanogaster and

Drosophila pseudoobscura, we found that a number of key developmental body patterning

genes such as hairy and fushi-tarazu are likely to be translationally regulated by microRNAs.

Submitted to Developmental Biology 12 October 2003, accepted for publication 1 December

2003 (in press).
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Introduction

MicroRNA (miRNA) genes are a new and large class of genes which do not encode proteins.

They produce roughly 22 nucleotides long transcripts that in many cases are thought to func-

tion as antisense regulators of other mRNAs (Ambros, 2001). By now, hundreds of miRNAs

in human, mouse, worm, and fly have been identified using molecular and computational

approaches (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001; Ambros

et al., 2003; Lim et al., 2003b,a; Lai et al., 2003; Aravin et al., 2003). So far, however, the

biological function of miRNAs has been elucidated in only a few examples (lin-4 and let-7

in C. elegans, bantam and mir-14 in fly, and microRNA-23 in human). lin-4 and let-7 are

involved in the timing of developmental processes (heterochronic genes), bantam has been

shown to affect cell proliferation and death (Brennecke et al., 2003), mir-14 regulates the

expression of the cell death pathway and fat metabolism (Xu et al., 2003). These results

suggest a broad range of possible functions for miRNAs. The overall importance of miR-

NAs for development has been further established by the notion that many miRNAs appear

to have temporal or tissue-specific patterns of gene expression (Houbaviy et al., 2003; Lau

et al., 2001; Lagos-Quintana et al., 2002; Lim et al., 2003b; Ambros et al., 2003; Aravin et al.,
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2003).

In most known cases in animals, miRNAs regulate the translational expression of genes.

miRNAs are thought to bind partially complementary sites in 3′ untranslated regions of

mature target mRNA in the cytoplasm and, by unknown mechanisms, to modulate (repress)

translation of the target mRNA (for reviews, see Ambros, 2001; Moss and Poethig, 2002;

Moss, 2002; Ambros, 2003; Carrington and Ambros, 2003 and Banerjee and Slack, 2002).

To understand the biological function of miRNAs, it is necessary to identify their targets.

No high-throughput experimental techniques for target site identification have been reported

yet. Computational approaches have been successful in plants, where known target sites tend

to be almost perfectly complementary to miRNAs (Rhoades et al., 2002) and where miRNAs

are thought to promote degradation of the target mRNA (for a review, see Carrington and

Ambros, 2003). In animals, however, the miRNA:mRNA base pairing appears to be less than

perfect, which has greatly hindered computational approaches for target site identification.

Here, we report on a first computational method for miRNA target site identification in

animals. We set out by compiling a set of experimentally reasonably well established target

sites from the literature. Our dataset comprised 25 target sites (training set) for lin-4 and

let-7 in C. elegans. We then found an algorithm which recovers most of these sites with high

specificity when compared to random sites. A simple and intuitive model for kinetic and

thermodynamic aspects of target site recognition is consistent with this method.

We applied our algorithm to a previously cloned and sequenced set of miRNAs in fly (Ar-

avin et al., 2003; Lai et al., 2003). We find highly scoring, conserved putative target sites
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in several key developmental body patterning transcription factors such as fushi-tarazu and

hairy. Further computational analysis with existing tools (Rajewsky et al., 2002) suggests

that some of the miRNA genes such as mir-263b may have enhancers with binding sites for

subsets of the body-patterning transcription factors.

Results

A new algorithm for the computational identification of microRNA

target sites recovers known target sites with high specificity

A careful examination of our set of known miRNA binding sites revealed in most cases the

presence of a GC rich string of consecutive base pairings with the miRNA. Based on this,

we designed a simple scoring scheme that detects this “binding nucleus”. The score for the

nucleus is the weighted sum of consecutive basepairs (GC, AU, and GU). We fit these three

parameters by maximizing the difference of the mean scores between the training set and

random background sequences (“signal”, see Materials & methods) divided by the standard

deviation of the background scores (“noise”). We refer to these values as the Z-scores (see

figure 1). The best fit was obtained with the weights wGC = 5, wAU = 2, wGU = 0. These

values can be scaled by an arbitrary factor. When varying wGU only slightly, the Z-score

decreases dramatically, while varying the ratio of wGC/wAU between 2–3 yields comparable

Z-scores.

These fitted weights give us the best discrimination between the training set and the
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background. However, a cutoff value of the model score needs to be determined to set the

threshold level for target site detection. Naturally, there is a tradeoff between sensitivity

and specificity when setting this threshold. For example, for the training set a threshold

value of 25 recovers 84% (21 of 25) of the training data, while detecting one false positive

per 4000 bases of scanned target sequence. At a higher threshold level of 27 we recover half

of the training set, and obtain only one false positive per 11000 bases of target sequence.

However, the threshold level chosen for the miRNAs in the training set may not be optimal

for other miRNAs. The optimal level may depend on the GC content of the microRNA as

well as on other features of sequence composition. Therefore, the threshold score level is

set for each miRNA independently by running it over a random sequence and recording the

distribution of the scores. From this distribution one can compute p-values for scores. The

threshold is then set by cutting off at a desired p-value. Figure 2 shows the score histogram

for one of the training miRNAs (lin-4) and demonstrates the specificity of the nucleus score

for recovering known target sites.

The size of the nucleus is typically 6-8 bases long and therefore represents less than half

the total length of the miRNA. One might expect that one could improve the discrimination

between target sites and random sites by incorporating sequence homology between a target

site and the miRNA beyond the nucleus. Indeed, in silico hybridization of our training

target sites to their miRNAs via MFOLD (see Materials & methods) suggests that for most

of the RNA:RNA duplexes, a larger fraction of the miRNA is involved in base pairing. Thus,

after the binding nucleus was located, a window of 40 bases was extracted from the target
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sequence and hybridized to the miRNA. The computed binding free energy value is then

used to further filter for potential target sites. For example, the combination of nucleus

score and free energy at a free energy cutoff of -17.4 kcal/mol further reduced the number

of false positives by roughly 10% when detecting half of the known target sites. A few

RNA:RNA duplexes in the training set appear to have exceptionally low free energies (lower

than roughly -27 kcal/mol). Thus, the free energy can also be used to flag outstanding

candidates. However, we note that the main contribution to the specificity of our algorithm

stems from the nucleus score. We also note that we tried a great variety of different alignment

procedures and screened the parameter space for each one to increase the specificity of the

algorithm. None of these approaches outperformed the nucleus score or could efficiently

replace MFOLD as a postprocessing step after the nucleus scoring.

The nucleus model recovers known fly bantam targets, and a func-

tionally relevant base in lin-4

As a test of our nucleus score, we searched the 4017 nucleotides long D. melanogaster hid

transcript (head involution defective, CG5123-RA, http://rail.bio.indiana.edu:7084/) for tar-

get sites for the microRNA bantam (Brennecke et al., 2003). In (Brennecke et al., 2003) five

target sites had been verified experimentally. Our nucleus score detected four of them while

predicting no other sites. As an additional test, we mutated in silico the cytosine residue of

lin-4 which has been shown to be essential for post-transcriptional regulation of lin-14 (Ha

et al., 1996). All lin-14 target sites scored very poorly for this mutation of lin-4.
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A simple model for the mechanism of miRNA target recognition

The ratios of our optimal weights for the nucleus score (which is just the sum over these

weights) turn out to correspond well to the experimentally known RNA:RNA basepairing

energy ratios. Thus, our nucleus can be interpreted as a kinetic component of target site

recognition: the miRNA needs to be presented with sequence that allows for sufficiently

many energetically favorable and consecutive basepairings in order to rapidly zip up and

thereby overcome thermal diffusion.

The second phase of our algorithm models the thermodynamic annealing of the entire

miRNA to to the target. According to our results, the free energy of the target site:miRNA

duplex needs to be lower than roughly half of the free energy of a target site with perfect

complementarity to the miRNA. We had found that most of the ability of our algorithm

to discriminate target sites from random sites comes from the nucleus. Thus, according to

our model, most of the target recognition seems to take place during the kinetic phase of

miRNA to target binding. The model can also explain the observation (Lai, 2002) that some

fly miRNA sequences have substrings which are complementary to known 3’ UTR sequence

motifs that mediate translational repression. However, we remark that the nucleus may

not necessarily appear as consecutive base pairs in the predicted secondary structure of the

mRNA/miRNA duplex.

8



Searching for new miRNA targets in fly

We applied our algorithm to a set of 74 D. melanogaster miRNA genes which have been

recently identified (see Materials & methods). The efficiency of the algorithm would allow

a genome wide search for targets. However, searching genome wide for targets of a large

set of often differentially expressed miRNAs is likely to produce results which are difficult

to interpret. Therefore, we decided to focus on a set of 31 well characterized developmen-

tal genes, the body patterning genes (Materials & methods), which are central to a large

regulatory network during development. We reasoned that these genes (many of which are

key regulatory genes thoughout development) are likely to be targets of certain miRNAs.

To further reduce the number of false positives, we limited our search to the 3’ UTRs of

the genes in our dataset since all known miRNA target sites reside in 3’ UTRs. Finally,

we filtered all predictions for sites which are, for each D. melanogaster 3’UTR, also at least

present once in the orthologous D. pseudoobscura 3’ UTR, reasoning that these sites are

more likely to be functional. In our cross-species analysis we do not make the assumption

that target sites reside in a conserved chunk of RNA or that the order of multiple sites in a 3’

UTR is the same in both species since we know very little about the evolutionary mechanims

behind 3’ UTR sequence evolution. Setting the nucleus score p-value and the RNA:RNA

duplex minimal free energy such that we recover 84% of the known targets in our dataset

(see above), we found 39 high scoring melanogaster putative target sites (see table 1) which

were also present in each case in the orthologous UTR in pseudoobscura. Figures 3-5 present

the predicted secondary structures for some of these hits and the position of each nucleus.
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Detailed analysis of the significance and validation of these data should be accompanied by

experiments and is not in the scope of this paper. We will discuss one of the most interesting

cases.

The miRNA genes mir-309, mir-318, mir-263b, and mir-3 all hit the pair-rule genes fushi-

tarazu and odd-skipped and nothing else. Conversely, fushi-tarazu appears not to be targeted

by any other miRNAs from our dataset, only odd-skipped has additional target sites for mir-5

and mir-8 which in turn do not hit any other gene. The position of the nucleus relative to

the miRNA is almost perfectly constant for each miRNA across all its hits (for example, all

mir-309 nuclei are at the 5’ end of the miRNA at position 2, all mir-3 nuclei are at the 5’

end of the miRNA at position 1-4), indicating that the same cis-regulatory motif may be

used to coordinate the action of a miRNA across different genes. Again, this observation is

consistent with (Lai, 2002) where it was shown that certain miRNAs are complementary to

3’ UTR sequence motifs that mediate negative post-transcriptional regulation.

Discussion

We found that key developmental genes in fly such as the pair-rule genes fushi-tarazu, odd

skipped and hairy are possibly targeted by miRNAs (mir-309, mir-318, mir-263b, mir-3) and

mir-7. However, ultimately the function of miRNAs has to be elucidated in the context of

their own expression. Some of the above miRNA genes (mir-3, mir-309, mir-7) are indeed

known to be expressed during fly development (Aravin et al., 2003). Furthermore, since it

seems possible that miRNA genes are transcriptionally regulated similarly to most protein
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coding genes (Johnson et al., 2003), we have computationally searched the fly genomes for

enhancers in the vicinity of miRNA gene loci. More precisely, we searched the neighborhood

of miRNA gene loci for clusters of binding sites for body-patterning transcription factors

using an existing algorithm (Rajewsky et al., 2002; Mallela et al., 2003). We found high

scoring clusters very close to some miRNA genes (for example mir-263b, figure 6) and will

test some of these predictions in the future. Hopefully, we will thus understand more about

how transcriptional and translational gene regulation are intertwined.

Our algorithm for miRNA target site detection can almost certainly be improved. Since

the algorithm is based on experimental knowledge for only two miRNA genes, it seems

clear that as new targets for other miRNA genes will be discovered, our understanding

and modeling of the target recognition process will improve and reduce the number of false

positives. Futhermore, based on the observation that most genes which are targeted by

miRNAs appear to have multiple, co-clustered binding sites for multiple miRNAs in their

mRNA and that miRNA genes are thus likely to act combinatorially on target genes (see

also Doench et al., 2003), the most substantial improvement could perhaps be made by

incorporating searches for clusters of binding sites into the algorithm. Information about

expression profiles of miRNA genes will then help to filter for meaningful combinations of

miRNA binding sites. Key to further improvements may be to understand more about

the evolution of miRNA binding sites and thus to improve cross-species analysis and our

understanding how gene regulatory networks evolve.

We have demonstrated that our algorithm can detect miRNA target sites with high
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specificity, that it leads to a simple model for the mechanisms behind miRNA target site

recognition, and that it can be applied to existing data to make testable predictions about

miRNA function. Thus, we believe that it will help to shed more light on the unfolding,

exciting universe of miRNA genes.

Materials and methods

A set of 25 experimentally defined miRNA binding sites (Training

set)

The training set consisted of 25 experimentally defined target sites (see Banerjee and Slack,

2002; Lin et al., 2003 and references therein) of the C. elegans miRNAs lin-4 and let-7.

We padded these sites with the corresponding genomic sequences such that each site had a

length of 30 nucleotides. Our 25 pairs are ( 3 pairs lin-14:let-7, 7 pairs lin-14:lin-4, lin-28:let-7,

lin-28:lin-4, 2 pairs of lin-41:let-7, lin-41:lin-4, 2 pairs hbl:lin-4, 8 pairs of hbl:let-7).

Random sequences

Random sequences were produced by site independent sampling of specified ACGU back-

ground frequencies. We used background frequencies of (pA = 0.34, pC = 0.19, pG = 0.18,

pU = 0.29). These frequencies are consistent with the sequence composition of the C. ele-

gans 3’UTRs of the target genes in our training set, and they match the base frequencies of

3’UTRs from the set of all known full length D. melanogaster cDNAs. We checked that we
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obtained very similar base frequencies when mapping the 3’UTRs to D. pseudoobscura (see

below).

Using MFOLD to predict the secondary structure and free energy

of RNA:RNA duplexes

The second step of our algorithm involves in silico hybridization of the mature miRNA to

mRNA using the MFOLD RNA folding program (Zuker, 2003). Note that just joining the

two RNA sequences with some linker residues and then running MFOLD would produce

unreliable results since the linker residues would be treated like an interior loop and would

introduce incorrect contributions to the free energy. However, the new MFOLD software

allowed us to overcome this problem (Zuker, 2003). First the two RNA sequences were

joined together with an artificial linking segment of non-nucleotide elements (represented

by the symbol L). For example if one sequence was 5’-ACGTACGT-3’ and the other was

5’-GCATGCAT-3’ the resulting artificial single sequence is 5’-ACGTACGTLLLGCATGCAT-3’.

The remaining step is to prevent any base pairing within the original two sequences. Follow-

ing (Zuker, 2003) this was accomplished by passing a special configuration file to the MFOLD

program which prohibits pairing within a given range of bases. The MFOLD program was

run with a temperature setting of 20oC and default parameters otherwise.
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A set of 74 Drosophila miRNA genes

The miRNAs used in this study came from two sources. A set of 62 miRNAs were found

experimentally via the cloning of small RNAs in Drosophila melanogaster (Aravin et al.,

2003) that were kindly provided to us by the Tom Tuschl prior to publication. A second

set came from a computational study of Lai et al (Lai et al., 2003). This set was identified

by searching both melanogaster and pseudoobscura genomic sequence for short conserved

sequences with an extended stem-loop structure and a given pattern of divergence between

the two species. We BLASTed the second set against the first and found 12 non-redundant

miRNA’s (miR-274, miR-219, miR-276a, miR-33, miR-280, miR-281a, miR-282, miR-284,

miR-263a, miR-289, miR-287, miR-288). We added these 12 to the first set and obtained

our final dataset. We did not exclude from our dataset the roughly 25 % of miRNA genes

which were detected in adult animals or testes only, reasoning that the expression assays

used are certainly not perfectly sensitive, and also reasoning that we can always backtrack

our results.

Set of genes important for fly body patterning

Our set comprises all well known key early genes (nanos, oskar, vasa, tudor, Pumilio,

Staufen, Fat facets), gap (hunchback, bicoid, tailless, caudal, Kruppel, giant, knirps, sloppy

paired 1, sloppy paired 2, buttonhead, collier, crocodile, empty spiracles, huckebein, orthoden-

ticle, cap’n’collar) , and pair-rule genes (eve, hairy, ftz, runt, odd-paired, paired, Tenascin

major, odd-skipped).
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Extraction of 3’UTR sequences in D. melanogaster and D. pseudoobscura

The 3′ UTRs for Drosophila melanogaster were extracted from the BDGP genome annotation

release 3.1 at www.fruitfly.org/sequence/download.html. The crocodile gene from our

dataset was the only gene which did not have a 3′ UTR of at least 50 basepairs length. In al-

most all cases where a gene had multiple transcripts the corresponding 3′ UTR sequences were

still the same. However in one case (for the gene collier) this was not true and we chose the

transcript CG10197-RB which mapped to the experimentally known cDNA BcDNA:RE03728

of this gene. We note that for roughly 50 % of the genes in our dataset the 3′ UTR anno-

tations from release 3.1 are directly supported by the drosophila cDNA library. To define

the homologous Drosophila pseudoobscura 3′ UTR sequences we used the Berkeley genome

pipeline (Couronne et al., 2003; Bray et al., 2003) website (pipeline.lbl.gov/pseudo/)

which presents a genomic alignment of the two species. We looked up the corresponding

alignments for each melanogaster 3′ UTR region and extracted the pseudoobscura sequence

from the alignment with the highest percentage identity. We checked that in each case the

coding region of the gene was in the same alignment. The only genes for which we found

not enough homology to unambiguously define the pseudoobscura 3′ UTR were giant and

Tenascin major. These genes were excluded from our dataset. The 3′ UTR pairs in our

dataset have an average percentage identity of 0.52.
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Figure 1: Pictorial representation of the Z-score. The Z-score is a comparison of the

typical value in the target (training) set with the distribution of scores from the random

background. The background distribution is on the left and is parametrized by its mean (µ)

and its width (variance σ). The mean (x) of the training set is on the right. The Z-score

which represents an approximate signal to noise ratio measurement is given by Z = (x−µ)/σ.

It indicates how far above the background the target signal is.

20



µ

σ

x

Z=(x-µ)/σ

Nucleus
Score

C
o

u
n

ts
 (f

re
q

u
en

cy
)

21



Figure 2: Nucleus score histogram for the C. elegans miRNA lin-4. A search window

of 30 bases was shifted in steps of 10 over random sequence of length 1,000,000 bases. At

each position, the nucleus score was recorded. A score threshold of 25 (27) will recover 84%

(50%) of the known lin-4 target sites in our training set, but is only rarely exceeded by scores

obtained from the random sequence. Thus, the nucleus score recovers with high specificity

the known targets.
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Figure 3: Predicted targeting of the Drosophila melanogaster gene fushi-tarazu by mir-

309. Shown is the mRNA:miRNA duplex as predicted by MFOLD. The free energy is -23.4

kcal/mol, the nucleus has a score of 31 (p value 0.0001) and is located at the 5’ end of

the miRNA and 271 bases downstream of the stop codon. The fushi-tarazu ortholog in

pseudoobscura also has a predicted target site for mir-309. All nuclei are found close to the

5’ end of the miRNA. GC basepairings are marked in red, AU and GU in blue.
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Figure 4: Predicted targeting of the Drosophila melanogaster gene fushi-tarazu by mir-

3. Shown is the mRNA:miRNA duplex as predicted by MFOLD. The free energy is -30.8

kcal/mol, the nucleus has a score of 28 (p value 0.0001) and is located at the 5’ end of the

miRNA and 173 bases downstream of the stop codon. Another putative target site for mir-3

is located 99 bases further downstream. The fushi-tarazu ortholog in pseudoobscura also has

a predicted target site for mir-3. All nuclei are found close to the 5’ end of the miRNA. GC

basepairings are marked in red, AU and GU in blue.
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Figure 5: Predicted targeting of the Drosophila melanogaster gene hairy by mir-7. Shown

is the mRNA:miRNA duplex as predicted by MFOLD. The free energy is -30.6 kcal/mol, the

nucleus has a score of 30 (p value 0.0001) and is located at the 5’ end of the miRNA. The

target site is 438 bases downstream of the stop codon. The hairy ortholog in pseudoobscura

also has a predicted target site for mir-7. All nuclei are found close to the 5’ end of the

miRNA. GC basepairings are marked in red, AU and GU in blue.
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Figure 6: The D. melanogaster mir-263b locus was searched for clusters of binding sites

for the body patterning transcription factors kruppel, caudal, bicoid, hunchback, tailless,

torRE, bicoid following (Rajewsky et al., 2002). We used the Ahab webserver (Mallela et al.,

2003). The score for finding a cluster is shown as a function of position in the locus (in

nucleotides). Two peaks in the score bracket the position of the miRNA gene.
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Table 1: Putative targets of miRNAs within the set of patterning genes (see Material

and methods). The free energy of the predicted RNA:RNA duplexes is given (in kcal/mol)

as well as the position of the nucleus in the mRNA (in nucleotides downstream of the stop

codon).
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Gene miRNA Free Eng,Position

kn mir-312 -21.7,107

kn mir-313 -22.3,106

kn mir-92b -17,28

kn mir-2a-2:mir-2a-1 -18.8,1078

opa mir-8 -23.7,139

oc mir-317 -23.5,171 -17.8,199 -17.8,205

oc mir-133 -18.6,172

btd mir-7 -18.3,455

tll mir-6-1:mir-6-2:mir-6-3 -21.3,61

tll miR-219 -27.4,86

slp1 mir-79 -16.1,36

slp1 mir-8 -19,144

cnc mir-315 -18.5,983

cnc mir-279 -18.1,989 -18.1,991

run miR-287 -20,132 -19.5,334 -18.4,438

ftz mir-318 -21.5,272

ftz mir-309 -23.4,271

ftz mir-263b -19,272

ftz mir275 -23.2,263

ftz mir-3 -30.8,173 -25.8,272
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Gene miRNA Free Eng,Position

ems mir-312 -20,565

ems mir-133 -18,546

ems miR-263a -20.8,422

vas mir-P323-1:mir-P323-2 -18.3,668

vas mir275 -23.8,637

odd mir-318 -20.7,182

odd mir-263b -18.7,182

odd mir-309 -18.3,181

odd mir-5 -22,673

odd mir-8 -19.7,22

odd mir-3 -20.7,182

kni miR-284 -27.8,144

nos mir-124 -26.5,174

stau miR-280 -16.4,373

stau mir305 -29.4,589

h miR-289 -22.9,102

h let-7 -23.2,381

h mir-7 -30.6,460 -30.6,461

hkb let-7 -22.4,157
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