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Summary

Adenosine deaminases acting on RNA (ADARs) were discovered as a result of their ability
extensively to deaminate adenosines in any long double-stranded RNA, converting them to inosines.
Subsequently, ADARs were found to deaminate adenosines site-specifically within the coding
sequences of transcripts encoding ion-channel subunits, increasing the diversity of these proteins in
the central nervous system. ADAR1 is now known to be involved in defending the genome against
viruses, and it may affect RNA interference. ADARs are found in animals but are not known in
other organisms. It appears that ADARs evolved from a member of another family, adenosine
deaminases acting on tRNAs (ADATs), by steps including fusion of two or more double-stranded-
RNA binding domains to a common type of zinc-containing adenosine-deaminase domain. 
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Gene organization and evolutionary history 
ADAR genes in chordate and invertebrate genomes
The role of ADARs is to deaminate adenosine to inosine

non-specifically in long double-stranded RNA (dsRNA)

or site-specifically in transcripts. Non-specific adenosine

deamination has a role in defence against viruses that have

dsRNA stages in their life-cycle [1], as hypermutation of the

viral genome by adenosine-to-inosine conversion disrupts

viral open reading frames. The second role of ADARs, site-

specific deamination of individual adenosines in pre-

mRNAs, can change individual codons in open reading

frames, including start or stop codons, or it may affect splic-

ing or untranslated regions [2].

The first ADAR gene to be identified was the vertebrate

ADAR1. The protein was purified from Xenopus, bovine liver

and calf thymus using non-specific deamination of dsRNA as

an assay [3-5], and peptide-sequence information was used to

design PCR primers to clone the gene [6,7]. The ADAR1 gene

was found to encode three double-stranded-RNA binding

domains (dsRBDs) and a deaminase domain with zinc-

binding motifs (Figure 1), similar to those of zinc-dependent

cytosine deaminases and to the cytosine-to-uracil RNA-

editing enzyme APOBEC1. The first example of site-specific

editing, in a pre-mRNA encoding the vertebrate glutamate-

receptor subunit GluR-B, was found at the same time;

editing converts a glutamine codon to an arginine codon (Q

to R in the single-letter amino-acid code) [8]. ADAR1 was

unable to catalyze site-specific editing of the Q/R editing site

in the GluR-B transcript in vitro, however. This observation

led to the idsentification of ADAR2, which edits the GluR-B

Q/R site specifically [9,10]. ADAR2 contains two dsRBDs

and an adenosine-deaminase domain (Figure 1). Other

ADAR genes in vertebrates and ADAR genes in other organ-

isms were identified either by PCR using primers derived

from the deaminase motifs or by sequence homology. 

There are two ADAR-like genes in vertebrate genomes,

encoding enzymes with unknown function. The ADAR3

gene, also called Red2, is very similar to ADAR2 (Figure 2)

[11]. It has all the key conserved residues that are known to

be required for catalysis, but it has been shown to lack

non-specific and site-specific dsRNA adenosine-deaminase

activity [12]. ADAR3 may have arisen from ADAR2 by gene



duplication within the chordate lineage. ADAR3 is very well

conserved in fish genomes, even though no function has

been ascribed to it, suggesting that it is active on an

unknown substrate. A fourth ADAR-like gene in vertebrates,

TENR, is expressed in the male germline and has only one

dsRBD [13]. TENR lacks a key catalytic glutamate residue in

the deaminase domain and also lacks zinc-chelating

residues; the protein has not been characterized. We have

been able to identify TENR genes only in mammalian and

not in fish genomes. 

The presence of four ADAR genes in vertebrates represents a

degree of gene-family expansion in the chordate lineage

similar to that found in many other gene families, notably

including the cytosine deaminases acting on RNA (CDARs)

[14]. The vertebrate ADAR genes are unlinked in the genome,

but some chordate genomes contain multiple copies of partic-

ular ADAR genes: for example, the Xenopus genome, which

is large and not completely sequenced, contains two ADAR1

genes, and Takifugu rubripes has two ADAR2 genes. 

The Drosophila genome encodes one ADAR, which has two

dsRBDs and a deaminase domain and is more similar to ver-

tebrate ADAR2 than to ADAR1 [15]. We searched for ADAR

genes in the complete genome sequences of the primitive

chordates Ciona intestinalis and Ciona savigni (our unpub-

lished work); predicted deaminase domains were found

that seem to correspond to ADAR1 and ADAR2 as well as a
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Figure 1
Primary structures of ADARs and ADATs (adenosine deaminases acting on tRNAs), showing arrangements of dsRNA-binding domains and deaminase
domains. The deaminase motifs (I-III) consist of four or five highly conserved amino acids surrounding each of the cytosines and histidines that bind zinc.
Proteins have been drawn to scale and are aligned at the catalytic glutamate residue (E) in the active site in adenosine deaminase motif I. The deaminase
domains of ADAR and ADAT1 proteins are larger than the core deaminase domain (which we define as the region of homology between Tad2/ADAT2
and Tad3/ADAT3) because of the insertion of sequence between the second and third zinc-chelating residues, separating deaminase motifs II and III, and
probably also because of fusion with a carboxy-terminal subdomain of unknown origin. Abbreviation: aa, amino acids.
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Figure 2 
A phylogenetic tree of core deaminase sequences. Protein sequences that are predicted from genomic sequences rather than from full cDNA sequences
are indicated by asterisks. The vertebrate genes listed include one from the crab-eating monkey Macacus fascicularis. The fish genomes examined are from
the zebrafish Danio rerio and pufferfish, Takifugu rubripes and Tetraodon fluviatilis. Two tunicate genomes have been examined, from Ciona intestinalis and Ciona
savigni. One squid (Loligo pealeii) is included (J. Rosenthal, personal communication). The insect genomes are of the two Drosophila species, Drosophila
melanogaster and Drosophila pseudoobscura, and the malaria mosquito Anopheles gambiae. Alignments were made using T-COFFEE, the boundaries of the
core deaminase domain were specified and a tree based on the alignment was generated using MEGA. Bootstrap values are given on all branches.
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separate ADAT1 gene (see below; Figure 2) [16]. We have not

proven that these are full ADAR1 genes, because there is no

cDNA sequence available for them and because the full

genes with dsRBDs are difficult to predict from the genome

sequence. ADAR1-like deaminase domains are clearly

present in basal chordates, however. This is a little surpris-

ing and argues against the idea that ADAR1 and ADAR2

diverged from a parental gene during the period of wide-

spread gene duplications in early vertebrate evolution; it

suggests, instead, that the ADAR duplication occurred

earlier (our unpublished work). An ADAR2 gene has been

cloned from the squid Loligo pealeii, but it is not clear

whether squid also have an ADAR1 gene.

The genomes of the nematodes Caenorhabditis elegans and

Caenorhabditis briggsae contain two ADAR genes, adr1 and

adr2 [17]. The deaminase domains of ADR1 and ADR2 are not

closely related to each other, and their names do not reflect a

direct correspondence with vertebrate ADAR1 and ADAR2

proteins; the sequences differ so much from vertebrate ADARs

that it is impossible to make such links (Figure 2). Both adr1

and adr2 are required for editing activity in vivo, and the pro-

teins may form heterodimers. ADR1 has two dsRBDs; ADR2

has only one and lacks the active-site glutamate. The

C. elegans adr1 gene structure shows some resemblance to the

Drosophila Adar gene, however. In addition to encoding an

ADAR with two dsRBDs, C. elegans adr1, like Drosophila

Adar, produces several isoforms by alternative 3� splice-site

usage affecting the sequence between the dsRBDs. 

Human ADAR1 has two transcription start sites and two pro-

moters, leading to production of a shorter isoform that lacks

the first 296 residues of the long form (Figure 1). The first

530 amino acids of human ADAR1, up to the middle of the

first dsRBD, is encoded by a single exon. Interestingly, each

of the regions encoding the three dsRBDs in ADAR1 is inter-

rupted in the middle by an intron in a conserved position,

suggesting that they could have arisen by duplication of a pair

of exons. The deaminase motifs are encoded on separate

exons. Human ADAR2 has both dsRBDs on one exon, as does

ADAR3. As in human ADAR1 the deaminase motifs are

encoded on separate exons but intron positions in the deami-

nase domain are not well conserved between human ADAR1

and ADAR2. Human ADAR2 produces two isoforms one of

which (ADAR-2L) has an exonized Alu sequence that inserts

an additional 40 amino acids between the second and third

deaminase motifs (the ADAR2-S form lacking the Alu

sequence is shown in Figures 1 and 3). These splice variants

should not be confused with the two distinct ADAR2a and

ADAR2b genes found in the genome of T. rubripes. Alterna-

tive splice forms of ADAR3 or TENR have not been described.

Evolution of ADAR genes from ADAT genes 
So far, ADARs have been found only in multicellular animals;

they are clearly absent from yeast and have not been reported

in protozoa. Searches in the yeast and Drosophila genomes

for proteins with ADAR-type deaminase motifs led to the

identification of an adenosine deaminase acting on tRNA

(Tad1/ADAT) that deaminates adenosine to inosine in

tRNAAla at position 37, adjacent to the anticodon [16]. ADAT1

has an adenosine-deaminase domain but lacks dsRBDs. Our

present view of ADAR evolution is that the first ADAR

evolved in protozoans or lower multicellular animals from an

ADAT1-like protein by acquisition of dsRBDs and residue

changes in the adenosine-deaminase domain.

Editing also occurs at position 34 within the anticodons of

several vertebrate tRNAs. Searches for adenosine-deaminase

domain sequences in the yeast genome led to the identifica-

tion of Tad2/ADAT2, which, as a heterodimer with

Tad3/ADAT3, deaminates position 34 of tRNAs. This is the

wobble base-pairing position in the anticodons of seven

tRNAs in yeast [18]. Unlike ADAT1, the ADAT2 and ADAT3

proteins are essential in yeast. The loop between deaminase

motifs II and III of the ADARs and ADAT1 is absent from

ADAT2 and ADAT3 (Figure 1). A deaminase domain with

motifs II and III closer together is characteristic of the free-

nucleotide cytosine deaminases and CDARs such as

APOBEC1 and its relatives. The presence of such a domain in

CDARs and ADATs further supports the idea that ADARs,

ADATs and CDARs had a common ancestor [19]. Only

ADAT2, and not ADAT3, has the conserved glutamate

residue associated with adenosine deaminase motif I, so the

heterodimer has only one active site. 

ADAT1, ADAT2 and ADAT3 are present in all eukaryotes

examined, although we have not found any sequence encod-

ing an ADAT1 in the nematode genomes. ADAT2 and

ADAT3 are homologous to each other over a stretch of 120

amino acids containing the deaminase motifs, but the

remaining parts of the proteins are not clearly homologous

to one another or to the larger deaminase domains of

ADAT1s or ADARs. The carboxy-terminal region in verte-

brate ADAT2 proteins is even shorter than in the yeast

ADAT2 proteins. We have taken the region of homology

between ADAT2 and ADAT3 to define a core deaminase

domain and used protein sequence alignments of this region

to construct the evolutionary tree shown in Figure 2.

An Escherichia coli homolog of ADAT2, tadA, forms homod-

imers and is able to edit position 34 in tRNAArg2, which is the

only known target in E. coli [20]. The evolution of a het-

erodimeric ADAT2/ADAT3 in eukaryotes, presumably from

a tadA-like precursor, coincided with an increase in the

number of tRNAs that have inosine at the wobble position.

In higher eukaryotes, eight tRNA classes are edited, and

these are encoded by multi-copy genes, so the total number

of tRNA gene transcripts edited is 111 in C. elegans and 56 in

D. melanogaster [21].

The tadA protein edits a minisubstrate consisting of the anti-

codon stem-loop of E. coli tRNAArg2 [20]. ADAT1 from yeast,
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however, clearly requires other parts of the tRNA in addition

to the anticodon stem and loop, and it evidently recognizes a

longer portion of the tRNA substrate [16]. The definition of

ADARs and ADATs on the basis of whether their substrate is

tRNA or mRNA does not coincide with classification based

on the structures of their deaminase domains and their

interactions with RNA. ADAT2 and ADAT3 are different in

size, structure and mode of interaction with tRNA from

ADAT1, which has a clearly ADAR-like deaminase domain.

The ADAT1-type deaminase could have evolved from an

ADAT2-like protein in one of two ways: either a loop was

inserted between the second and third zinc-chelating

residues to give ADAR deaminase motif III, or ADARs have a

hybrid active site created by fusion of another protein at
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Figure 3 
An alignment of core deaminase domains from vertebrate ADAR1 and ADAR2 proteins, showing residues characteristic for each. Asterisks indicate
cysteines and histidines that chelate zinc, as in Figure 1, and the three active-site motifs are bracketed. 

                                                 *
H. sapiens ADAR2     : VISVSTGTKCINGEYMSDRGLALNDCHAEIISRRSLLRFLYTQLELYLNNK-DDQKRSIFQKS-ERG-GF
M. musculus ADAR2    : VISVSTGTKCINGEYMSDRGLALNDCHAEIISRRSLLRFLYAQLELYLNNK-EDQKKSIFQKS-ERG-GF
R. norvegicus ADAR2  : VISVSTGTKCINGEYMSDRGLALNDCHAEIISRRSLLRFLYAQLELYLNNK-EDQKKSIFQKS-ERG-GF
G. gallus ADAR2      : VISVSTGTKCINGEYMSDRGLALNDCHAEIISRRCLLKFLYTQLELYLSNK-DDQEKSIFIKS-ERG-GF
T. rubripes ADAR2a   : VICVSSGTKCINGEYMSDRGLALNDCHAEIVARRSLIRYLYSQLEHFLSNHEEEHHKSMFTRCEKKQ-GF
T. rubripes ADAR2b   : VICISTGTKCINGEYMSDRGLALNDCHAEIIARRSLIRYLYSQLEFFLSNNKEDHQKSIFVHC-EKG-GY
D. rerio ADAR2       : VICVTTGTKCINGEYMSDRGLALNDCHAEIIARRSLIRYLYNQLEYFLSDSTEEHEKSIFRWC-SEH-GY
H. sapiens ADAR1     : VVSLGTGNRCVKGDSLSLKGETVNDCHAEIISRRGFIRFLYSELMKYNSQ---TAKDSIFEPA-KGGEKL
M. musculus ADAR1    : VVSLGTGNRCVKGDSLSLKGETVNDCHAEIISRRGFIRFLYSELMKYNHH---TAKNSIFELA-RGGEKL
R. norvegicus ADAR1  : VVSLGTGNRCVKGDSLSLKGETVNDCHAEIISRRGFIRFLYSELMKYNHH---TAKNSIFELA-RGGEKL
X. laevis ADAR1      : VVSIGTGNRCVKGEELSLSGETVNDCHAEVVSRRGFIRFLYSQLMKYNPD---MPDDSIFEEA-EGD-ML
D. rerio ADAR1       : VVSLGTGNRCVKGEELSLRGDTVNDCHAEIISRRGFIRFLYSELMKHWES---PGDETIFELA-GDG-EL
T. rubripes ADAR1    : VVSLGTGNRCVKGEELSLKGDTVNDCHAEIISRRGFVRFVYSEILKYQDG----NDDCIFEPA-ENN-KL
T. fluviatilis ADAR1 : VVSLGTGNRCVKGEELSLKGDTVNDCHAEIISRRGFVRFLYSEILKYQDG----SDDCIFEPA-EKN-KL

                                       *
H. sapiens ADAR2     : RLKENVQFHLYISTSPCGDARIFSPHEPILE----------EPADRHP---NRKARGQLRTKIESGEGTI
M. musculus ADAR2    : RLKDTVQFHLYISTSPCGDARIFSPHEPVLE----------EPADRHP---NRKARGQLRTKIESGEGTI
R. norvegicus ADAR2  : RLKDTVQFHLYISTSPCGDARIFSPHEPVLEGMAPDSHQLTEPADRHP---NRKARGQLRTKIESGEGTI
G. gallus ADAR2      : KLKENVQFHLYISTSPCGDARIFSPHEAAQE----------DQGDRHP---NRKARGQLRTKIESGEGTI
T. rubripes ADAR2a   : RLKENVQFHLYISTSPCGDARIFSPHEAGVE----------DQGDRHP---NRKARGQLRTKIESGEGTI
T. rubripes ADAR2b   : RLKDNVQFHLYISTSPCGDARIFSPHEAGVE----------DQGDRHP---NRKARGQLRTKIESGEGTI
D. rerio ADAR2       : RLKDDIQFHLYISTSPCGDARIFSPHEAGAE----------DQGDRHP---NRKARGQLRTKIESGEGTI
H. sapiens ADAR1     : QIKKTVSFHLYISTAPCGDGALFDKSCSDRA--MES------TESRHYPVFENPKQGKLRTKVENGEGTI
M. musculus ADAR1    : QIKKTVSFHLYISTAPCGDGALFDKSCSDRA--VES------TESRHYPVFENPKQGKLRTKVENGEGTI
R. norvegicus ADAR1  : QIKKTVSFHLYISTAPCGDGAHFDKSCSDRA--VES------TESRHYPVFENPKQGKLRTKVENGEGTI
X. laevis ADAR1      : RVRPGVTFHLYISTAPCGDGALFDKSCSDQP--SAE------GDTQHCPIFENVKQGKLRTKVENGEGTI
D. rerio ADAR1       : KIKSDITFHLYISTAPCGDGALFDKSCSEA---AEL------NGSGHMPLFENIKQGKLRTKVENGEGTI
T. rubripes ADAR1    : QVKPDTTFHLYISTAPCGDGALFDKSCSETG--DEI--------KGHQPLFENVKQGKLRTKVENGEGTI
T. fluviatilis ADAR1 : QVKPDITFHLYISTAPCGDGALFDKSCSETG--DEI--------KGHQPLFENVKQGKLRTKVENGEGTI

                                               *
H. sapiens ADAR2     : PVRSNASIQTWDGVLQGERLLTMSCSDKIARWNVVGIQGSLLSIFVEPIYF
M. musculus ADAR2    : PVRSNASIQTWDGVLQGERLLTMSCSDKIARWNVVGIQGSLLSIFVEPIYF
R. norvegicus ADAR2  : PVRSNASIQTWDGVLQGERLLTMSCSDKIARWNVVGIQGALLSIFVEPIYF
G. gallus ADAR2      : PVRSTTTIQTWDGVLQGERLLTMSCSDKIARWNVLGIQGALLSLFVEPIYF
T. rubripes ADAR2a   : PVRSSNTIQTWDGVLQGERLLTMSCSDKIARWNVVGFQGSLMSYFTEPIYF
T. rubripes ADAR2b   : PVRSSNTIQTWDGVLQGERLLTMSCSDKIARWNVVGIQGSLMSYFTEPIYF
D. rerio ADAR2       : PVRTSNTIQTWDGVLQGERLLTMSCSDKIARWNVIGVQGSLLSYFTEPIYF
H. sapiens ADAR1     : PVESSDIVPTWDGIRLGERLRTMSCSDKILRWNVLGLQGALLTHFLQPIYL
M. musculus ADAR1    : PVESSDIVPTWDGIRLGERLRTMSCSDKILRWNVLGLQGALLTHFLQPVYL
R. norvegicus ADAR1  : PVESSDIVPTWDGIRLGERLRTMSCSDKILRWNVLGLQGALLTHFLQPVYL
X. laevis ADAR1      : PVESSDIVPTWDGIQHGERLRTMSCSDKILRWNVLGLQGGLLSHFVEPVYL
D. rerio ADAR1       : PVESSDIVPTWDGIQHGERLRTMSCSDKILRWNVLGLQGALLTHFIHPIYL
T. rubripes ADAR1    : PVESSAIVPTWDGIQHGERLRTMSCSDKILRWNVLGLQGALLSHFINPIYL
T. fluviatilis ADAR1 : PVESSAIVPTWDGIQHGERLRTMSCSDKILRWNVLGLQGALLSHFINPIYL

I

II

III



what is now the loop, with ADAR motif III and the carboxy-

terminal part of the deaminase domain deriving from

another protein.

Inosine has been found in archaeal tRNA [21,22], so the

core adenosine-deaminase domain may be very ancient.

Inosine could have been produced easily from adenosine

even earlier, by RNA-mediated catalysis, and inosine may

have been excluded rather than unavailable when the

canonical base set for Watson-Crick base-pairing evolved

to give unambiguous rules for RNA replication. The wobble

base-pairing of tRNAs now appears to be a means to econ-

omize on tRNAs rather than a relic of some ancient type of

translation apparatus, as the inosine in archaeal tRNA is

not in the anticodon. In eukaryotes, there have been two

rounds of evolutionary expansion in targets of the inosine-

producing RNA-editing apparatus, first to increase

the number of tRNAs edited at the anticodon wobble posi-

tion by Tad2/ADAT2 and Tad3/ADAT3 and second (in

animals) to include pre-mRNAs and dsRNA as targets

of ADARs.

Characteristic structural features 
The adenosine deaminase domain  
Experimental exchanges of the deaminase domains of

ADAR1 and ADAR2 have shown that the deaminase domain

determines the difference in specificity between the two

proteins [23]. With the availability of more genomic

sequences, we have aligned 14 different sequences of

ADAR1 and ADAR2 deaminase domains and found a high

degree of conservation in a region of 179 amino acids

(Figure 3). The amino acids that are downstream of the

second deaminase motif appear to specify the enzyme that

is encoded. The sequence differences between ADAR1 and

ADAR2 that are highlighted (Figure 3) make it possible to

assign newly sequenced vertebrate ADAR genes as ADAR1

or ADAR2 orthologs, even in cases in which there in no full-

length cDNA sequence and the number of dsRNA-binding

domains is not known. With this obvious difference close to

the catalytic site, it is not surprising that ADAR1 and

ADAR2 show very little overlap in the specific sites they edit

in transcripts, despite the fact that they both perform the

same enzymatic activity. The three active site sequence

motifs are particularly characteristic of ADARs. Each motif

contains a cysteine or histidine that is thought to chelate

zinc at the active site (asterisks in Figure 3); the first deami-

nase motif (CHAE) includes a glutamate (E) that is required

for catalysis.

Structural information is available for one E. coli free-

nucleotide cytosine deaminase [24]. This protein has deami-

nase-domain motifs similar to ADAT2 and tadA and

dimerizes so that each monomer contributes to form the

active site; it has very little homology to ADARs apart from

the zinc-binding motifs, and it is not clear whether the

ADARs dimerize in an equivalent way around the active site.

The additional sequence between motif II and motif III in

ADARs may be incompatible with this mechanism of dimer-

ization. Structural information from this cytosine deaminase

cannot be used reliably to model ADAR deaminase domains

but may be more useful for modeling the deaminase

domains of ADAT2 and ADAT3. 

We do not know how the deaminase domain interacts with

RNA. The ADAR2 deaminase domain without dsRBDs is

capable of site-specific editing in vivo [25], and the same is

true of the Drosophila ADAR deaminase domain (G. Ring

and M.O’C., unpublished observations). The ADAR deami-

nase domain was therefore a dsRNA-binding domain even

before it acquired dsRBDs. It clearly evolved from ADAT1

[19], but the residues responsible for binding to tRNA in

ADAT1 and in the heterodimer ADAT2/ADAT3 are as yet

unknown. Considering the sequence homology between the

ADARs and ADAT1, the intriguing possibility arises that

recognition of pre-mRNA and tRNA substrates by these pro-

teins follows a common structural model. Both ADARs and

ADAT1 probably flip the target adenosine out of the DNA and

into the enzyme’s active site; studies with a fluorescent

adenine analog at a second GluR-B DNA-editing site (the

R/G site) are consistent with base-flipping by ADAR2

[26,27]. (The R/G site is separated from the Q/R site and is

more experimentally accessible.) Consistent with this idea,

some similarity to DNA methyltransferases that flip out the

target base has been found in the deaminase domain of

ADARs [13].

Double-stranded RNA-binding domains 
DsRBDs are not diagnostic of ADARs, as they occur in a very

wide variety of proteins [28]. The number of dsRBDs and

the sequence conservation within them and in the linkers

connecting them help to distinguish ADAR1 and ADAR2

homologs in vertebrate genomes, however. X-ray crystal-

structure determination and nuclear magnetic resonance

(NMR) analysis of dsRBD-RNA complexes have revealed

that the dsRBDs of other proteins bind non-sequence-specif-

ically to the sugar phosphate backbone of dsRNA [29,30]. It

was therefore surprising when it was demonstrated in vitro

that the two dsRBDs of ADAR2 recognize the R/G site in

GluR-B with some specificity, even in the absence of the

deaminase domain [27]. Binding of the dsRBDs alters the

conformation of the substrate around the edited position;

this is thought to aid base-flipping. 

One feature of dsRBDs is that they are multi-functional and

are not equivalent to each other. Some have evolved to

become protein-protein-interaction domains [28]. The

amino terminus and the first dsRBD of Drosophila ADAR

are required for dimerization in a similar way to the dimer-

ization of dsRNA-dependent protein kinase (PKR) via its

dsRBDs [31,32]. The third dsRBD of ADAR1 contains a novel

nuclear localization sequence [33]. 
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Localization and function 
ADARs are primarily nuclear proteins, but ADAR1 is

expressed in two forms and the longer isoform (which is

inducible by interferon) is found predominantly in the cyto-

plasm [34]. The shorter form is a shuttling protein that cycles

in and out of the nucleus; blocking its export causes accumu-

lation in the nucleus [35,36]. ADAR1 (both forms) and

ADAR2 can accumulate in the nucleolus [36,37]; this accu-

mulation is dependent on binding to RNA, probably non-

specifically in the nucleolus. Transfection of HeLa cells with

transcripts that are known to be edited causes both ADAR

proteins to relocate from the nucleolus to the nucleoplasm,

suggesting that the nucleolus could be a site of accumulation

or storage of the proteins when substrate is limiting [36].

The known function of the vertebrate ADARs is to edit tran-

scripts expressed in the central nervous system. The para-

digmatic example of site-specific RNA editing is the editing

of the GluR-B Q/R site by ADAR2 [8]. Glutamate is the

major excitatory neurotransmitter in the vertebrate brain,

and GluR-B encodes a subunit of the �-amino-3-hydroxy-5-

methyl-4-isoxazole propionate (AMPA) class of glutamate

receptors, which are heterotetramers formed from subunits

encoded by several genes. The Q/R editing event changes a

key residue within the ion pore of the channel; the unedited

Q form of the GluR-B subunit renders AMPA receptors

more permeable to calcium ions. The Q/R editing site in the

GluR-B transcript in vertebrates is the only known site that

is edited more than 99.9% of the time. Studies on knockout

mice show that the GluR-B transcript must be edited when

it is present [38], but mice with deletions of the GluR-B

gene are viable because of redundancy with other subunit

genes [39].

Gene-targeting studies in mice show that ADAR2 is required

primarily for site-specific editing at the GluR-B Q/R site

[38]. Mice with mutations in ADAR2 die as pups, suffering

from epilepsy-like seizures and localized neurodegeneration

in the hippocampus [38]. These phenotypes are consistent

with calcium influx through AMPA receptors. The defects in

ADAR2 mutant mice are rescued by expression GluR-B(R).

More recently, studies in which mutated forms of GluR-B

were expressed in hippocampal-cell cultures have shown

that the unedited GluR-B(Q) isoform completes the tetramer

formation required to move from the endoplasmic reticulum

to the synapse much more quickly than edited GluR-B(R)

isoform. RNA editing thereby restricts trafficking of AMPA

receptors to the cell membrane [40,41], affecting an impor-

tant aspect of plasticity at glutamatergic synapses. 

The transcript encoding the metabotropic serotonin receptor

5-HT2C is also edited site-specifically by both ADAR1 and

ADAR2, in a region involved in coupling to G-proteins [42].

This target has generated considerable recent interest

because levels of editing may be influenced by factors that

alter levels of serotonin in the brain, such as depression [43]. 

Very recent gene-targeting experiments on mouse ADAR1

show that ADAR1 does contribute to site-specific editing

and that the gene is essential [44,45]. Mutant embryos die

at embryonic day 12.5 with hematopoiesis defects and liver

degeneration. Cultured cells from a variety of different

tissues in ADAR1 mutant mice undergo stress-induced

apoptosis in response to serum starvation. It is not known

whether this phenotype arises from failure to edit some

unknown site-specific anti-apoptotic RNA-editing target or

from failure of a more generalized non-specific RNA-

editing activity. The reasons to think ADAR1 might have a

wider role than ADAR2 include, in addition to the more

severe knockout phenotype [44,45], more widespread

expression, an additional promoter for interferon-inducible

transcripts and additional Z-DNA binding domains in

ADAR1 [46].

From the search for homologs of ADARs in other species

(Figure 2), it becomes apparent that ADAR3 and TENR are

probably functional. Both are thought not to have any enzy-

matic activity on dsRNA, but ADAR3 is conserved between

fish and mammals, and TENR is found in mammals and is

testis-specific. Considering the importance of APOPEC-3G

[47], which was regarded for many years as a non-functional

editing enzyme but now appears to be a DNA-editing

enzyme active against human immunodeficiency virus

(HIV), these ADAR orphans may yet surprise us.

Mechanism
The ADAR enzymes probably bind to many transcripts non-

productively, as binding and catalysis are independent

events [48,49]. Until recently, it was thought that ADARs

bind to editing sites as monomers, because ADARs are puri-

fied as monomers and because the pre-mRNAs that are

edited do not contain any obviously symmetrical RNA

sequence that would suggest binding by a dimer. Recent

work from many groups has demonstrated, however, that

the catalytic ADAR is a dimer [50-52]. Yeast two-hybrid

studies with Drosophila ADAR show that ADAR dimerizes

using the first dsRBD and sequences amino-terminal to it

[52]. Studies in vitro indicate that dimerization requires

RNA binding and that ADAR must be a dimer on RNA to be

enzymatically active. It is not known whether the minimal

dimerization region of one monomer contacts the equivalent

part of another monomer or a different part of the protein,

such as the deaminase domain.

The dimerization of ADARs is probably what controls the

specificity of editing, as two monomers must bind for cataly-

sis to occur. This dimerization model predicts that if another

adenosine was placed approximately 17 base-pairs away

from a known edited site, this adenosine would also be

edited. Evidence consistent with this model comes from an

experiment by Herbert and Rich [25], in which multiple base

changes in the GluR-B R/G substrate 16-19 base-pairs away

from the R/G site created new editing sites at these positions
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and also affected editing at the R/G site itself so that an adja-

cent adenosine was now also edited. 

Frontiers
There are important questions that remain to be answered

regarding the structures, substrates and regulation of

ADARs and on the links between RNA editing and RNA

interference. The structure of an adenosine-deaminase

domain from an ADAR or ADAT1 protein remains to be elu-

cidated. The details of how the multiple domains in ADARs

interact with substrate RNA must be resolved either with

ADAR-RNA cocrystals or structure-function studies guided

by the structures of the individual domains. Structural infor-

mation on a CDAR will also be necessary to resolve finally

the relationship between ADARs and the other members of

the cytosine deaminase superfamily.

There are likely to be many more transcripts in humans that

are edited than have been found so far. Comparison of the

human genome with another suitably distant chordate

genome sequence is likely to identify them, as indicated by

the recent success in using comparison of Drosophila

genome sequences to identify 24 novel transcripts with

editing at 53 individual sites [53]. Exons encoding editing

sites have reduced levels of synonymous codon substitution

and are more highly conserved than exons in general,

because of the requirement for an RNA duplex. When

genomic sequences of D. melanogaster and D. pseudoob-

scura genes encoding ion-channel subunits and synaptic-

vesicle fusion proteins were compared [53], edited exons

were identified by their higher conservation. Using this

method on the human genome requires identifying a verte-

brate genome with sufficient sequence divergence from ours.

Discovering regulatory mechanisms for RNA-editing activity

is a key issue in explaining why RNA editing occurs. Editing

is certainly tissue-specific - as shown by the expression pat-

terns of ADARs and their substrates - and the expression of

the interferon-inducible form of ADAR1 is increased by

interferon, viral infection, or dsRNA, but there may be

further levels of regulation, particularly in neurons. Under-

standing regulation may also relate A-to-I RNA editing to

other types of editing in mitochondria and chloroplasts that

are mechanistically very different but might have some par-

allel evolutionary rationale. 

Work on the C. elegans ADARs implicates RNA editing in

the antagonizing of RNA interference [54,55]. ADAR RNA

editing is part of a wider biology of dsRNA that has gained

renewed attention since the discovery of RNA interference.

Double-stranded RNA genomes are now found only in some

viruses, and higher eukaryotic cells recognize dsRNA as a

hallmark of infection, but dsRNA genomes may have been

more widespread in the very distant past. Proteins that rec-

ognize the A-form structure of dsRNA are very different

from, and some of them may be much more ancient than,

the large number of proteins that recognize the B-form helix

of DNA. The core deaminase domain of ADARs and ADATs

seems to be an ancient protein domain that, like RNA-

dependent RNA polymerase and other dsRNA-binding pro-

teins of the RNA interference system, has acquired new roles

in recognizing dsRNA genomes as foreign. The conjunction

of RNA editing and RNA interference is a lively area for

further research. Thus, the study of RNA editing continues

to raise fascinating questions about the evolution of

genomes, and is likely to give insights into a range of other

areas in the near future.
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