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Summary

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the
conversion of HMG-CoA to mevalonate, a four-electron oxidoreduction that is the rate-limiting
step in the synthesis of cholesterol and other isoprenoids. The enzyme is found in eukaryotes and
prokaryotes; and phylogenetic analysis has revealed two classes of HMG-CoA reductase, the
Class I enzymes of eukaryotes and some archaea and the Class II enzymes of eubacteria and
certain other archaea. Three-dimensional structures of the catalytic domain of HMG-CoA
reductases from humans and from the bacterium Pseudomonas mevalonii, in conjunction with site-
directed mutagenesis studies, have revealed details of the mechanism of catalysis. The reaction
catalyzed by human HMG-CoA reductase is a target for anti-hypercholesterolemic drugs (statins),
which are intended to lower cholesterol levels in serum. Eukaryotic forms of the enzyme are
anchored to the endoplasmic reticulum, whereas the prokaryotic enzymes are soluble. Probably
because of its critical role in cellular cholesterol homeostasis, mammalian HMG-CoA reductase is
extensively regulated at the transcriptional, translational, and post-translational levels.
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Gene organization and evolutionary history 
The human hmgr gene that encodes the single human

HMG-CoA reductase is located on chromosome 5, map

location 5q13.3-5q14, and is over 24.8 kilobases (kb) long.

The 20 exons of the 4,475-nucleotide transcript, which range

in size from 27 to 1,813 base-pairs, encode the membrane-

anchor domain (exons 2-10), a flexible linker region (exons

10 and 11), and the catalytic domain (exons 11-20) of the

resulting 888-residue polypeptide (Figure 1). 

Genome sequencing has identified hmgr genes in organisms

from all three domains of life, and over 150 HMGR sequences

are recorded in public databases. Higher animals, archaea,

and eubacteria have only a single hmgr gene, although the

lobster has both a soluble and a membrane-associated

isozyme, both of which are encoded by a single gene). By

contrast, plants, which use both HMGR-dependent and

HMGR-independent pathways to synthesize isoprenoids,

have multiple HMGR isozymes that appear to have arisen by

gene duplication and subsequent sequence divergence [1].

Yeast has two HMGR isozymes derived from two different

genes (hmgr-1 and hmgr-2). Comparison of amino-acid

sequences and phylogenetic analysis reveals two classes of

HMGR, the Class I enzymes of eukaryotes and some archaea

and the Class II enzymes of certain eubacteria and archaea,

suggesting evolutionary divergence between the two classes

(Figure 2, Table 1) [2,3]. The catalytic domain is highly con-

served in eukaryotes, but the membrane-anchor domain

(consisting of between two and eight membrane-spanning

helices) is poorly conserved, and the HMGRs of archaea and

of certain eubacteria lack a membrane-anchor domain.

Characteristic structural features 
The HMGRs of different organisms are multimers of a species-

specific number of identical monomers. High-resolution



crystal structures have been solved for the Class I human

enzyme (HMGRH) [4,5] and for the Class II enzyme of

Pseudomonas mevalonii (HMGRP) [6,7], including protein

forms bound to either the HMG-CoA substrate or the

coenzyme (NADH or NADPH) or both, or bound to statin

drugs, which are potent competitive inhibitors of HMGR

activity and thus lower cholesterol levels in the blood [8,9].

As reviewed in detail by Istvan [10], structural comparisons

reveal both similarities and significant differences between

the two classes of enzyme. The human HMGR has three

major domains (catalytic, linker and anchor), whereas the

P. mevalonii HMGR has only the catalytic domain (Figure 1).

Both HMGRH and HMGRP have a dimeric active site with

residues contributed by each monomer, and a non-Rossmann-

type coenzyme-binding site (a three-dimensional structural

fold that contains a nucleotide-binding motif and is found in

many enzymes that use the dinucleotides NADH and NADPH

for catalysis). The core regions containing the catalytic domains

of the two enzymes have similar folds. Despite differences in

amino-acid sequence and overall architecture, functionally

similar residues participate in the binding of coenzyme A by the

two enzymes, and the position and orientation of four key

catalytic residues (glutamate, lysine, aspartate and histidine) is

conserved in both classes of HMGR.
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Figure 1
Schematic representation of the human hmgr gene and the human HMGRH and P. mevalonii HMGRP proteins. (a) The exon-intron structure of the
human hmgr gene, which extends from position 74717172 to position 74741998 of the human genome; positions refer to the Ensembl Transcript ID
for the human hmgr gene (ENST00000287936 [22]). The numbers indicate the start and end of each exon and intron and refer to the position in the
human genome sequence, omitting the first three digits (747); exons are indicated as filled boxes. Exon 1 is an untranslated region (UTR), as are the
last 1,758 nucleotides of exon 20. The exons encoding the membrane-anchor domain, a flexible linker region, and the catalytic domain are indicated
below the gene structure. (b) Human HMGR protein (HMGRH) is comprised of three domains: the membrane-anchor domain, a linker domain, and a
catalytic domain; within the catalytic domain subdomains have been defined. The N domain connects the L domain to the linker domain; the L domain
contains an HMG-CoA binding region; and the S domain functions to bind NADP(H). The cis-loop (indicated by an asterisk), a region present only in
HMGRH but not HMGRP, connects the HMG-CoA-binding region with the NADPH-binding region. (c) The HMGRP protein does not contain the
membrane-anchor domain or the linker domain but has a catalytic domain containing a large domain with an HMG-CoA binding region, and a small,
NAD(H)-binding domain. The active site of HMG-CoA reductase is present at the homodimer interface between one monomer that binds the
nicotinamide dinucleotide and a second monomer that binds HMG-CoA. The numbers underneath the diagrams in (b,c) denote amino acids (in the
single-letter amino-acid code) that are implicated in catalysis; S872 of HMGRH is reversibly phosphorylated. At the extreme carboxyl terminus of each
enzyme is a flap domain (approximately 50 amino acids in HMGRP and 25-30 amino acids in HMGRH) that closes over the active site during catalysis;
the flap domain is indicated by shading in (b,c). 
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Unlike the central cores, the amino- and carboxy-terminal

regions of the catalytic domains show little similarity between

the human and P. mevalonii HMGR structures. The active site

of HMG-CoA reductase is at the interface of the homodimer

between one monomer that binds the nicotinamide dinu-

cleotide and a second monomer that binds the HMG-CoA. In

human HMGR, the catalytic lysine is found on the monomer

that binds the HMG-CoA and comes from the so-called

cis-loop (a section that connects the HMG-CoA-binding

region with the NADPH-binding region). In contrast, the

P. mevalonii HMGR lacks the cis-loop and the catalytic lysine

is contributed by the monomer that binds the nicotinamide

dinucleotide. HMGRP crystallizes as a trimer of dimers (which

are composed of identical subunits), but HMGRH crystallizes

as a tetramer (of identical units). HMGRP uses NADH as a

coenzyme, whereas HMGRH uses NADPH, but mutation to

alanine of the aspartyl residue of HMGRP that normally blocks

binding of NADPH can allow NADPH to serve - albeit poorly -

as the coenzyme for HMGRP. A 180o difference in the orienta-

tion of the nicotinamide ring of the coenzyme suggests that
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Figure 2
A phylogenetic tree of HMGRs. The tree includes 98 selected organisms that have hmgr genes; for plants, which have multiple isoforms, only isoform 1 of
each species is included in the tree. Roman numerals indicate the division of the family into two classes [2,3]. Phylogenetic analysis was performed using
aligned amino-acid sequences of HMGR catalytic domains; membrane anchor domains were excluded from analysis. Amino-acid sequence alignments
were generated using ClustalW [23] and the phylogenetic tree constructed with TreeTop [24] using the cluster algorithm with PHYLIP tree-type output.
Full species names and GenBank accession numbers of the sequences used are provided in Table 1. 
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that the stereospecificity of the HMGRH hydrogen transfer is

opposite to that of HMGRP.

Comparisons between the HMGRP and HMGRH structures

reveal an overall similarity in how they bind statins, which

inhibit activity by blocking access of HMG-CoA to the active

site. There is a considerable difference in specific interac-

tions with inhibitor between the two enzymes, however

[8,9], accounting for the almost 104-fold higher Ki values for

inhibition of HMGRP by statin relative to the inhibition of

HMGRH (Ki is the equilibrium constant for an inhibitor

binding to an enzyme). There are significant differences in

the regions of the two proteins that bind statins. In both

enzymes the portion of the statin that resembles HMG (see
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Table 1 

Details of the sequences used for the phylogenetic tree in Figure 2

Organism name* Kingdom Accession
number

Mus musculus (mouse) Eukaryote XM_127496
Mesocricetus auratus (hamster) Eukaryote X00494
Rattus norvegicus (rat) Eukaryote BC064654
Homo sapiens (human) Eukaryote NM_000859
Gallus gallus (chicken) Eukaryote AB109635
Xenopus laevis (frog) Eukaryote M29258
Drosophila melanogaster (fruit fly) Eukaryote NM_206548
Homarus americanus (lobster) Eukaryote AY292877
Blatella germanica (cockroach) Eukaryote X70034
Dendroctonus jeffreyi (Jeffrey pine beetle) Eukaryote AF159136
Ips pini (bark beetle) Eukaryote AF304440
Ips paraconfusus (bark beetle) Eukaryote AF071750
Raphanus sativus (radish) Eukaryote X68651
Arabidopsis thaliana (thale-cress) Eukaryote NM_106299
Oryza sativa (rice) Eukaryote AF110382
Lycopersicon esculentum (tomato) Eukaryote AAL16927
Nicotinia tabacum (tobacco) Eukaryote AF004232
Cucumis melo (muskmelon) Eukaryote AB021862
Hevea brasiliensis (rubber tree) Eukaryote X54659
Pisum sativum (pea) Eukaryote AF303583
Solanum tuberosum (potato) Eukaryote L01400
Tagetes erecta (African marigold) Eukaryote AF034760
Catharanthus roseus (Madagascar periwinkle) Eukaryote M96068
Artemisia annua (wormwood) Eukaryote AF142473
Gossypium hirsutum (cotton) Eukaryote AF038046
Taxus x media (yew) Eukaryote AY277740
Andrographis paniculata (Indian herb) Eukaryote AY254389
Malus x domestica (apple) Eukaryote AY043490
Capsicum annuum (pepper) Eukaryote AF110383
Camptotheca acuminata Eukaryote U72145
Saccharomyces cerevisiae (baker’s yeast) Eukaryote M22002
Schizosaccharomyces pombe (fission yeast) Eukaryote CAB57937
Candida utilis Eukaryote AB012603
Trypanosoma cruzi (trypanosome) Eukaryote L78791
Schistosoma mansoni Eukaryote M27294
Leishmania major (trypanosome) Eukaryote AF155593
Dictyostelium discoideum Eukaryote L19349
Caenorhabditis elegans Eukaryote NM_066225
Strongylocentrotus purpuratus (sea urchin) Eukaryote NM_214559
Dicentrarchus labrax (European sea bass) Eukaryote AY424801
Penicillium citrinum Eukaryote AB072893
Ustilago maydis Eukaryote XM_400629
Eremothecium gossypii Eukaryote NM_210364
Gibberella zeae Eukaryote XM_389373
Gibberella fujikuroi Eukaryote X94307
Sphaceloma manihoticola Eukaryote X94308
Aspergillus nidulans Eukaryote EAA60025
Neurospora crassa Eukaryote XM_324891
Phycomyces blakesleeanus Eukaryote X58371
Archaeoglobus fulgidus Archaea NC_000917
Sulfolobus solfataricus Archaea U95360
Oceanobacillus iheyensis Archaea NC_004193
Thermoplasma volcanium Archaea BAB60335
Halobacterium sp Archaea AAG20075
Methanosarcina mazei Archaea AAM30031
Haloarcula hispanica Archaea AF123438
Thermoplasma acidophilum Archaea CAC11548
Picrophilus torridus Archaea AE017261
Archaeoglobus veneficus Archaea AJ299204

Table 1 (continued)

Organism name Kingdom Accession
number

Ferroglobus placidus Archaea AJ299206
Archaeoglobus profundus Archaea AJ299205
Archaeoglobus lithotrophicus Archaea AJ299203
Haloferax volcanii Archaea M83531
Pyrococcus furiosus Archaea AAL81972
Pyrococcus abyssi Archaea AJ248284
Methanococcus maripaludis Archaea CAF29643
Methanocaldococcus jannaschii Archaea AAB98699
Methanosarcina acetivorans Archaea AAM06446.
Methanopyrus kandleri Archaea AAM01570
Sulfolobus tokodaii Archaea AP000986
Aeropyrum pernix Archaea AP000062
Methanothermobacter thermautotrophicus Archaea AAB85068
Pyrobaculum aerophilum Archaea AAL64009
Bdellovibrio bacteriovorus Eubacteria BX842650
Lactobacillus plantarum Eubacteria AL935253
Streptococcus agalactiae Eubacteria CAD47046
Lactococcus lactis Eubacteria AE006387
Vibrio cholerae Eubacteria AAF96622
Vibrio vulnificus Eubacteria AAO07090.
Vibrio parahaemolyticus Eubacteria BAC62311
Enterococcus faecalis Eubacteria AAO81155
Lactobacillus johnsonii Eubacteria AE017204
Chloroflexus aurantiacus Eubacteria AJ299212
Enterococcus faecium Eubacteria AF290094
Listeria monocytogenes Eubacteria AE017324
Listeria innocua Eubacteria CAC96053
Streptococcus pneumoniae Eubacteria AF290098
Staphylococcus epidermidis Eubacteria AF290090
Staphylococcus haemolyticus Eubacteria AF290088
Staphylococcus aureus Eubacteria AF290086
Streptomyces griseolosporeus Eubacteria AB037907
Streptomyces sp. Eubacteria AB015627
Streptococcus pyogenes Eubacteria AF290096
Streptococcus mutans Eubacteria AAN58647
Paracoccus zeaxanthinifaciens Eubacteria AJ431696
Pseudomonas mevalonii Eubacteria M24015
Borrelia burgdorferi Eubacteria AE001169.
Actinoplanes sp. Eubacteria AB113568

*Common names are indicated in parentheses Accession numbers for
each sequence are available from sequence databases accessible through
the National Center for Biotechnology Information [25]. 



Figure 3) occupies the HMG portion of the HMG-CoA-

binding pocket, and the non-polar region partially occupies a

portion of the coenzyme-A-binding site. For HMGRP, this

impairs closure over the active site of the ‘tail’ domain that

contains the catalytic histidine.

Localization and function
HMGRs of eukaryotes are localized to the endoplasmic

reticulum (ER), and are directed there by a short portion of

the amino-terminal domain (prokaryotic HMGRs are soluble

and cytoplasmic). In humans, the reaction catalyzed by

HMGR is the rate-limiting step in the synthesis of cholesterol,

which maintains membrane fluidity and serves as a precursor

for steroid hormones. In plants, a cytosolic HMG-CoA

reductase participates in the synthesis of sterols, which are

involved in plant development, certain sesquiterpenes, which

are important in plant defense mechanisms against herbivores,

and ubiquinone, which is critical for cellular protein turnover.

In plastids, however, these compounds are synthesized via

a pathway that does not involve mevalonate or HMGR [1].

Various plant HMGR isozymes function in fruit ripening and

in the response to environmental challenges such as attack by

pathogens. In yeast, either of the two ER-anchored HMGR

isozymes can provide the mevalonate needed for growth.

Enzyme mechanism
The reaction catalyzed by HMGR is:

(S)-HMG-CoA + 2 NADPH + 2 H+ � (R)-mevalonate + 2

NADP+ + CoA-SH.

with the (S)-HMG-CoA and (R)-mevalonate designations

referring to the stereochemistry of the substrate and

product (enzymatic reactions are stereospecific and the

(R)-HMG-CoA isomer is not a substrate for HMGR). This

three-stage reaction involves two reductive stages and the

formation of enzyme-bound mevaldyl-CoA and mevaldehyde

as probable intermediates:

Stage 1: HMG-CoA + NADPH + H+ � [Mevaldyl-CoA] + NADP+

Stage 2: [Mevaldyl-CoA] � [Mevaldehyde] + CoA-SH

Stage 3: [Mevaldehyde] + NADPH + H+ �Mevalonate + NADP+

Kinetic analysis of point mutants of HMGRP and of HMGRH,

and inspection of the crystal structures of HMGRP and

HMGRH, has identified an aspartate, a glutamate, a histidine,

and a lysine that are likely to be important and have suggested

their probable roles in catalysis (Figure 4) [11]. 

Regulation 
A highly regulated enzyme, HMGRH is subject to transcrip-

tional, translational, and post-translational control [12] that

can result in changes of over 200-fold in intracellular

levels of the enzyme. The transcription factor sterol regulatory

element-binding protein 2 (SREBP-2) participates in reg-

ulating levels of HMGRH mRNA in response to the level of

sterols [13]; the regulatory process is as follows. At the ER

membrane or the nuclear envelope, SREBP-2 binds to

SREBP cleavage activating protein (SCAP) to form a

SCAP-SREBP complex that functions as a sterol sensor. The

proteins Insig-1 and Insig-2 bind to SCAP when cellular

cholesterol levels are high and prevent movement of the

SCAP-SREBP complex from the ER to the Golgi. In cells

depleted of cholesterol, Insig-1 and Insig-2 allow activation

of the SCAP-SREBP complex and its translocation to the

Golgi, where SREBP is cleaved at two sites. Cleavage releases

the amino-terminal basic helix-loop-helix (bHLH)

domain, which enters the nucleus, where it functions as a

transcription factor that recognizes non-palindromic

decanucleotide sequences of DNA called sterol-regulatory

elements (SREs). Binding of the bHLH domain of SREBP to

an SRE promotes transcription of the hmgr gene.

Degradation of HMGRH involves its transmembrane regions

[14]: removal of two or more transmembrane regions abolishes

the acceleration of HMGRH degradation that occurs under

certain conditions [12,15]: degradation is induced by a

non-sterol, mevalonate-derived metabolite alone or by a

sterol plus a mevalonate-derived non-sterol metabolite,

possibly farnesyl pyrophosphate or farnesol. Four con-

served phenylalanines in the sixth membrane span of the

transmembrane region are essential for degradation of

HMGRH [16]. Insig-1 also functions in the degradation of

HMGRH [17]: when cholesterol levels are high, SCAP and

HMGRH compete for binding to Insig-1. If SCAP binds Insig-1,

the SCAP-Insig-1 complex is retained in the Golgi, whereas if

HMGRH binds Insig-1, HMGRH is ubiquinated on lysine 248

and is rapidly degraded through a ubiquitin-proteasome

mechanism [18].
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Figure 3
Structures of lovastatin, a statin drug that competitively inhibits HMGR,
and of HMG-CoA. It can be seen that the portion of the drug shown here
at the top resembles the HMG portion of HMG-CoA. 
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The catalytic activity of the HMGRs of higher eukaryotes is

attenuated by phosphorylation of a single serine, which in

the case of HMGRH is at position 872 [19]. The location of

this serine - six residues from the catalytic histidine, a

spacing conserved in all higher eukaryote HMGRs - sug-

gests that the phosphoserine may interfere with the ability

of this histidine to protonate the inhibitory CoAS- thioanion

that is released in stage 2 of the reaction mechanism. Alter-

natively, it may interfere with closure of the flap domain, a

carboxy-terminal region that is thought to close over the

active site to facilitate catalysis, a step thought to be

essential for formation of the active site [7]. Subsequent

dephosphorylation restores full catalytic activity. HMGR

kinase (also called AMP kinase) phosphorylates HMGR; the

primary phosphatase in vivo is thought to be protein

phosphatase 2A (PP2A), but both phosphatases 2A and 2B

can catalyze dephosphorylation of vertebrate HMGR in

vitro [20]. HMGRH activity therefore responds to hormonal

control through AMP levels and PP2A activity. Phosphory-

lation of serine 577 of A. thaliana HMGR isozyme 1 by a

plant HMGR kinase that does not require 5’-AMP attenuates

activity, and restoration of HMGR activity follows from

dephosphorylation [21]. As many plant genes encode a

putative target serine surrounded by an apparent AMP

kinase recognition motif, it is probable that most plant

HMGRs are regulated by phosphorylation. Yeast HMGR

activity is, however, unaffected by AMP kinase. The phos-

phorylation state of HMGR does not affect the rate at

which the protein is degraded. 

Frontiers
Several basic unresolved questions concern how phosphory-

lation controls the catalytic activity of HMGRs; solution of

the structures of phosphorylated HMGRs should reveal

more of the precise mechanism. The protein kinases, phos-

phatases, and signal-transduction pathways that participate in

short-term regulation of HMGR activity are yet to be

elucidated. Finally, the physiological roles served by the

multiple ways in which HMGR is regulated require clarifi-

cation. On the medical side, continuing intense competition

between drug companies for a share of the lucrative worldwide

market for hypercholesterolemic agents should result in new

statin drugs with modified pharmacodynamic and metabolic

properties that not only lower plasma cholesterol levels

more effectively but more importantly minimize undesirable

side effects.
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