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Abstract

The Bioconductor project is an initiative for the collaborative creation of extensible software for
computational biology and bioinformatics. The goals of the project include: fostering collaborative
development and widespread use of innovative software, reducing barriers to entry into
interdisciplinary scientific research, and promoting the achievement of remote reproducibility of
research results. We describe details of our aims and methods, identify current challenges,
compare Bioconductor to other open bioinformatics projects, and provide working examples.
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Background
The Bioconductor project [1] is an initiative for the collabora-
tive creation of extensible software for computational biology
and bioinformatics (CBB). Biology, molecular biology in par-
ticular, is undergoing two related transformations. First,
there is a growing awareness of the computational nature of
many biological processes and that computational and statis-
tical models can be used to great benefit. Second, develop-
ments in high-throughput data acquisition produce
requirements for computational and statistical sophistication
at each stage of the biological research pipeline. The main
goal of the Bioconductor project is creation of a durable and
flexible software development and deployment environment
that meets these new conceptual, computational and inferen-
tial challenges. We strive to reduce barriers to entry to
research in CBB. A key aim is simplification of the processes
by which statistical researchers can explore and interact fruit-
fully with data resources and algorithms of CBB, and by which
working biologists obtain access to and use of state-of-the-art
statistical methods for accurate inference in CBB.

Among the many challenges that arise for both statisticians
and biologists are tasks of data acquisition, data manage-
ment, data transformation, data modeling, combining differ-
ent data sources, making use of evolving machine learning
methods, and developing new modeling strategies suitable to
CBB. We have emphasized transparency, reproducibility, and
efficiency of development in our response to these challenges.
Fundamental to all these tasks is the need for software; ideas
alone cannot solve the substantial problems that arise.

The primary motivations for an open-source computing envi-
ronment for statistical genomics are transparency, pursuit of
reproducibility and efficiency of development.

Transparency
High-throughput methodologies in CBB are extremely com-
plex, and many steps are involved in the conversion of infor-
mation from low-level information structures (for example,
microarray scan images) to statistical databases of expression
measures coupled with design and covariate data. It is not
possible to say a priori how sensitive the ultimate analyses
are to variations or errors in the many steps in the pipeline.
Credible work in this domain requires exposure of the entire
process.

Pursuit of reproducibility
Experimental protocols in molecular biology are fully pub-
lished lists of ingredients and algorithms for creating specific
substances or processes. Accuracy of an experimental claim
can be checked by complete obedience to the protocol. This
standard should be adopted for algorithmic work in CBB.
Portable source code should accompany each published anal-
ysis, coupled with the data on which the analysis is based.

Efficiency of development
By development, we refer not only to the development of the
specific computing resource but to the development of com-
puting methods in CBB as a whole. Software and data
resources in an open-source environment can be read by
interested investigators, and can be modified and extended to
achieve new functionalities. Novices can use the open sources
as learning materials. This is particularly effective when good
documentation protocols are established. The open-source
approach thus aids in recruitment and training of future gen-
erations of scientists and software developers.

The rest of this article is devoted to describing the computing
science methodology underlying Bioconductor. The main sec-
tions detail design methods and specific coding and deploy-
ment approaches, describe specific unmet challenges and
review limitations and future aims. We then consider a
number of other open-source projects that provide software
solutions for CBB and end with an example of how one might
use Bioconductor software to analyze microarray data.

Results and discussion
Methodology
The software development strategy we have adopted has sev-
eral precedents. In the mid-1980s Richard Stallman started
the Free Software Foundation and the GNU project [2] as an
attempt to provide a free and open implementation of the
Unix operating system. One of the major motivations for the
project was the idea that for researchers in computational sci-
ences "their creations/discoveries (software) should be avail-
able for everyone to test, justify, replicate and work on to
boost further scientific innovation" [3]. Together with the
Linux kernel, the GNU/Linux combination sparked the huge
open-source movement we know today. Open-source soft-
ware is no longer viewed with prejudice, it has been adopted
by major information technology companies and has changed
the way we think about computational sciences. A large body
of literature exists on how to manage open-source software
projects: see Hill [4] for a good introduction and a compre-
hensive bibliography.

One of the key success factors of the Linux kernel is its mod-
ular design, which allows for independent and parallel devel-
opment of code [5] in a virtual decentralized network [3].
Developers are not managed within the hierarchy of a com-
pany, but are directly responsible for parts of the project and
interact directly (where necessary) to build a complex system
[6]. Our organization and development model has attempted
to follow these principles, as well as those that have evolved
from the R project [7,8].

In this section, we review seven topics important to establish-
ment of a scientific open source software project and discuss
them from a CBB point of view: language selection, infra-
structure resources, design strategies and commitments,
Genome Biology 2004, 5:R80
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distributed development and recruitment of developers,
reuse of exogenous resources, publication and licensure of
code, and documentation.

Language selection
CBB poses a wide range of challenges, and any software devel-
opment project will need to consider which specific aspects it
will address. For the Bioconductor project we wanted to focus
initially on bioinformatics problems. In particular we were
interested in data management and analysis problems associ-
ated with DNA microarrays. This orientation necessitated a
programming environment that had good numerical capabil-
ities, flexible visualization capabilities, access to databases
and a wide range of statistical and mathematical algorithms.
Our collective experience with R suggested that its range of
well-implemented statistical and visualization tools would
decrease development and distribution time for robust soft-
ware for CBB. We also note that R is gaining widespread
usage within the CBB community independently of the Bio-
conductor Project. Many other bioinformatics projects and
researchers have found R to be a good language and toolset
with which to work. Examples include the Spot system [9],
MAANOVA [10] and dChip [11]. We now briefly enumerate
features of the R software environment that are important
motivations behind its selection.

Prototyping capabilities
R is a high-level interpreted language in which one can easily
and quickly prototype new computational methods. These
methods may not run quickly in the interpreted implementa-
tion, and those that are successful and that get widely used
will often need to be re-implemented to run faster. This is
often a good compromise; we can explore lots of concepts eas-
ily and put more effort into those that are successful.

Packaging protocol
The R environment includes a well established system for
packaging together related software components and docu-
mentation. There is a great deal of support in the language for
creating, testing, and distributing software in the form of
'packages'. Using a package system lets us develop different
software modules and distribute them with clear notions of
protocol compliance, test-based validation, version identifi-
cation, and package interdependencies. The packaging sys-
tem has been adopted by hundreds of developers around the
world and lies at the heart of the Comprehensive R Archive
Network, where several hundred independent but interoper-
able packages addressing a wide range of statistical analysis
and visualization objectives may be downloaded as open
source.

Object-oriented programming support
The complexity of problems in CBB is often translated into a
need for many different software tools to attack a single prob-
lem. Thus, many software packages are used for a single anal-
ysis. To secure reliable package interoperability, we have

adopted a formal object-oriented programming discipline, as
encoded in the 'S4' system of formal classes and methods [12].
The Bioconductor project was an early adopter of the S4 dis-
cipline and was the motivation for a number of improvements
(established by John Chambers) in object-oriented program-
ming for R.

WWW connectivity
Access to data from on-line sources is an essential part of
most CBB projects. R has a well developed and tested set of
functions and packages that provide access to different data-
bases and to web resources (via http, for example). There is
also a package for dealing with XML [13], available from the
Omegahat project, and an early version of a package for a
SOAP client [14], SSOAP, also available from the Omegahat
project. These are much in line with proposals made by Stein
[15] and have aided our work towards creating an environ-
ment in which the user perceives tight integration of diverse
data, annotation and analysis resources.

Statistical simulation and modeling support
Among the statistical and numerical algorithms provided by
R are its random number generators and machine learning
algorithms. These have been well tested and are known to be
reliable. The Bioconductor Project has been able to adapt
these to the requirements in CBB with minimal effort. It is
also worth noting that a number of innovations and exten-
sions based on work of researchers involved in the Biocon-
ductor project have been flowing back to the authors of these
packages.

Visualization support
Among the strengths of R are its data and model visualization
capabilities. Like many other areas of R these capabilities are
still evolving. We have been able to quickly develop plots to
render genes at their chromosomal locations, a heatmap
function, along with many other graphical tools. There are
clear needs to make many of these plots interactive so that
users can query them and navigate through them and our
future plans involve such developments.

Support for concurrent computation
R has also been the basis for pathbreaking research in parallel
statistical computing. Packages such as snow and rpvm sim-
plify the development of portable interpreted code for com-
puting on a Beowulf or similar computational cluster of
workstations. These tools provide simple interfaces that allow
for high-level experimentation in parallel computation by
computing on functions and environments in concurrent R
sessions on possibly heterogeneous machines. The snow
package provides a higher level of abstraction that is inde-
pendent of the communication technology such as the mes-
sage-passing interface (MPI) [16] or the parallel virtual
machine (PVM) [17]. Parallel random number generation
[18], essential when distributing parts of stochastic simula-
tions across a cluster, is managed by rsprng. Practical
Genome Biology 2004, 5:R80



R80.4 Genome Biology 2004,     Volume 5, Issue 10, Article R80       Gentleman et al. http://genomebiology.com/2004/5/10/R80
benefits and problems involved with programming parallel
processes in R are described more fully in Rossini et al. [19]
and Li and Rossini [20].

Community
Perhaps the most important aspect of using R is its active user
and developer communities. This is not a static language. R is
undergoing major changes that focus on the changing techno-
logical landscape of scientific computing. Exposing biologists
to these innovations and simultaneously exposing those
involved in statistical computing to the needs of the CBB com-
munity has been very fruitful and we hope beneficial to both
communities.

Infrastructure base
We began with the perspective that significant investment in
software infrastructure would be necessary at the early
stages. The first two years of the Bioconductor project have
included significant effort in developing infrastructure in the
form of reusable data structures and software/documenta-
tion modules (R packages). The focus on reusable software
components is in sharp contrast to the one-off approach that
is often adopted. In a one-off solution to a bioinformatics
problem, code is written to obtain the answer to a given ques-
tion. The code is not designed to work for variations on that
question or to be adaptable for application to distinct ques-
tions, and may indeed only work on the specific dataset to
which it was originally applied. A researcher who wishes to
perform a kindred analysis must typically construct the tools
from scratch. In this situation, the scientific standard of
reproducibility of research is not met except via laborious
reinvention. It is our hope that reuse, refinement and exten-
sion will become the primary software-related activities in
bioinformatics. When reusable components are distributed
on a sound platform, it becomes feasible to demand that a
published novel analysis be accompanied by portable and
open software tools that perform all the relevant calculations.
This will facilitate direct reproducibility, and will increase the
efficiency of research by making transparent the means to
vary or extend the new computational method.

Two examples of the software infrastructure concepts
described here are the exprSet class of the Biobase package,
and the various Bioconductor metadata packages, for exam-
ple hgu95av2. An exprSet is a data structure that binds
together array-based expression measurements with covari-
ate and administrative data for a collection of microarrays.
Based on R data.frame and list structures, exprSets
offer much convenience to programmers and analysts for
gene filtering, constructing annotation-based subsets, and for
other manipulations of microarray results. The exprSet
design facilitates a three-tier architecture for providing anal-
ysis tools for new microarray platforms: low-level data are
bridged to high-level analysis manipulations via the exprSet
structure. The designer of low-level processing software can
focus on the creation of an exprSet instance, and need not

cater for any particular analysis data structure representa-
tion. The designer of analysis procedures can ignore low-level
structures and processes, and operate directly on the
exprSet representation. This design is responsible for the
ease of interoperation of three key Bioconductor packages:
affy, marray, and limma.

The hgu95av2 package is one of a large collection of related
packages that relate manufactured chip components to bio-
logical metadata concerning sequence, gene functionality,
gene membership in pathways, and physical and administra-
tive information about genes. The package includes a number
of conventionally named hashed environments providing
high-performance retrieval of metadata based on probe
nomenclature, or retrieval of groups of probe names based on
metadata specifications. Both types of information (metadata
and probe name sets) can be used very fruitfully with
exprSets: for example, a vector of probe names immedi-
ately serves to extract the expression values for the named
probes, because the exprSet structure inherits the named
extraction capacity of R data.frames.

Design strategies and commitments
Well-designed scientific software should reduce data com-
plexity, ease access to modeling tools and support integrated
access to diverse data resources at a variety of levels. Software
infrastructure can form a basis for both good scientific prac-
tice (others should be able to easily replicate experimental
results) and for innovation.

The adoption of designing by contract, object-oriented pro-
gramming, modularization, multiscale executable documen-
tation, and automated resource distribution are some of the
basic software engineering strategies employed by the Bio-
conductor Project.

Designing by contract
While we do not employ formal contracting methodologies
(for example, Eiffel [21]) in our coding disciplines, the con-
tracting metaphor is still useful in characterizing the
approach to the creation of interoperable components in Bio-
conductor. As an example, consider the problem of facilitat-
ing analysis of expression data stored in a relational database,
with the constraints that one wants to be able to work with the
data as one would with any exprSet and one does not want to
copy unneeded records into R at any time. Technically, data
access could occur in various ways, using database connec-
tions, DCOM [22], communications or CORBA [23], to name
but a few. In a designing by contract discipline, the provider
of exprSet functionality must deliver a specified set of func-
tionalities. Whatever object the provider's code returns, it
must satisfy the exprSets contract. Among other things,
this means that the object must respond to the application of
functions exprs and pData with objects that satisfy the R
matrix and data.frame contracts respectively. It follows that
exprs(x) [i,j], for example, will return the number
Genome Biology 2004, 5:R80
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encoding the expression level for the ith gene for the jth sam-
ple in the object x, no matter what the underlying representa-
tion of x. Here i and j need not denote numerical indices but
can hold any vectors suitable for interrogating matrices via
the square-bracket operator. Satisfaction of the contract obli-
gations simplifies specification of analysis procedures, which
can be written without any concern for the underlying repre-
sentations for exprSet information.

A basic theme in R development is simplifying the means by
which developers can state, follow, and verify satisfaction of
design contracts of this sort. Environment features that sup-
port convenient inheritance of behaviors between related
classes with minimal recoding are at a premium in this
discipline.

Object-oriented programming
There are various approaches to the object-oriented program-
ming methodology. We have encouraged, but do not require,
use of the so-called S4 system of formal classes and methods
in Bioconductor software. The S4 object paradigm (defined
primarily by Chambers [12] with modifications embodied in
R) is similar to that of Common Lisp [24] and Dylan [25]. In
this system, classes are defined to have specified structures
(in terms of a set of typed 'slots') and inheritance relation-
ships, and methods are defined both generically (to specify
the basic contract and behavior) and specifically (to cater for
objects of particular classes). Constraints can be given for
objects intended to instantiate a given class, and objects can
be checked for validity of contract satisfaction. The S4 system
is a basic tool in carrying out the designing by contract disci-
pline, and has proven quite effective.

Modularization
The notion that software should be designed as a system of
interacting modules is fairly well established. Modularization
can occur at various levels of system structure. We strive for
modularization at the data structure, R function and R pack-
age levels. This means that data structures are designed to
possess minimally sufficient content to have a meaningful
role in efficient programming. The exprSet structure, for
example, contains information on expression levels (exprs
slot), variability (se.exprs), covariate data (phenoData
slot), and several types of metadata (slots description,
annotation and notes). The tight binding of covariate data
with expression data spares developers the need to track
these two types of information separately. The exprSet
structure explicitly excludes information on gene-related
annotation (such as gene symbol or chromosome location)
because these are potentially volatile and are not needed in
many activities involving exprSets. Modularization at the R
function level entails that functions are written to do one
meaningful task and no more, and that documents (help
pages) are available at the function level with worked exam-
ples. This simplifies debugging and testing. Modularization at
the package level entails that all packages include sufficient

functionality and documentation to be used and understood
in isolation from most other packages. Exceptions are for-
mally encoded in files distributed with the package.

Multiscale and executable documentation
Accurate and thorough documentation is fundamental to
effective software development and use, and must be created
and maintained in a uniform fashion to have the greatest
impact. We inherit from R a powerful system for small-scale
documentation and unit testing in the form of the executable
example sections in function-oriented manual pages. We
have also introduced a new concept of large-scale documen-
tation with the vignette concept. Vignettes go beyond typical
man page documentation, which generally focuses on docu-
menting the behavior of a function or small group of func-
tions. The purpose of a vignette is to describe in detail the
processing steps required to perform a specific task, which
generally involves multiple functions and may involve multi-
ple packages. Users of a package have interactive access to all
vignettes associated with that package.

The Sweave system [26] was adopted for creating and
processing vignettes. Once these have been written users can
interact with them on different levels. The transformed docu-
ments are provided in Adobe's portable document format
(PDF) and access to the code chunks from within R is availa-
ble through various functions in the tools package. However,
new users will need a simpler interface. Our first offering in
this area is the vignette explorer vExplorer which provides
a widget that can be used to navigate the various code chunks.
Each chunk is associated with a button and the code is dis-
played in a window, within the widget. When the user clicks
on the button the code is evaluated and the output presented
in a second window. Other buttons provide other functional-
ity, such as access to the PDF version of the document. We
plan to extend this tool greatly in the coming years and to
integrate it closely with research into reproducible research
(see [27] for an illustration).

Automated software distribution
The modularity commitment imposes a cost on users who are
accustomed to integrated 'end-to-end' environments. Users
of Bioconductor need to be familiar with the existence and
functionality of a large number of packages. To diminish this
cost, we have extended the packaging infrastructure of R/
CRAN to better support the deployment and management of
packages at the user level. Automatic updating of packages
when new versions are available and tools that obtain all
package dependencies automatically are among the features
provided as part of the reposTools package in Bioconductor.
Note that new methods in R package design and distribution
include the provision of MD5 checksums with all packages, to
help with verification that package contents have not been
altered in transit.
Genome Biology 2004, 5:R80
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In conclusion, these engineering commitments and develop-
ments have led to a reasonably harmonious set of tools for
CBB. It is worth considering how the S language notion that
'everything is an object' impacts our approach. We have made
use of this notion in our commitment to contracting and
object-oriented programming, and in the automated distribu-
tion of resources, in which package catalogs and biological
metadata are all straightforward R objects. Packages and doc-
uments are not yet treatable as R objects, and this leads to
complications. We are actively studying methods for simplify-
ing authoring and use of documentation in a multipackage
environment with namespaces that allow symbol reuse, and
for strengthening the connection between session image and
package inventory in use, so that saved R images can be
restored exactly to their functional state at session close.

Distributed development and recruitment of developers
Distributed development is the process by which individuals
who are significantly geographically separated produce and
extend a software project. This approach has been used by the
R project for approximately 10 years. This was necessitated in
this case by the fact no institution currently has sufficient
numbers of researchers in this area to support a project of this
magnitude. Distributed development facilitates the inclusion
of a variety of viewpoints and experiences. Contributions
from individuals outside the project led to the expansion of
the core developer group. Membership in the core depends
upon the willingness of the developer to adopt shared objec-
tives and methods and to submerge personal objectives in
preference to creation of software for the greater scientific
community.

Distributed development requires the use of tools and strate-
gies that allow different programmers to work approximately
simultaneously on the same components of the project.
Among the more important requirements is for a shared code
base (or archive) that all members of the project can access
and modify together with some form of version management
system. We adopted the Concurrent Versions System [28,29]
and created a central archive, within this system, that all
members of the team have access to.

Additional discipline is needed to ensure that changes by one
programmer should not result in a failure of other code in the
system. Within the R language, software components are nat-
urally broken into packages, with a formal protocol for pack-
age structure and content specified in the R Extensions
manual [30]. Each package should represent a single coher-
ent theme. By using well defined applications programming
interfaces (APIs) developers of a package are free to modify
their internal structures as long as they continue to provide
the documented outputs.

We rely on the testing mechanisms supported by the R pack-
age testing system [30] to ensure coherent, non-regressive
development. Each developer is responsible for documenting

all functions and for providing examples and possibly other
scripts or sets of commands that test the code. Each developer
is responsible for ensuring that all tests run successfully
before committing changes back to the central archive. Thus,
the person who knows the code best writes the test programs,
but all are responsible for running them and ensuring that
changes they have made do not affect the code of others. In
some cases changes by one author will necessitate change in
the code and tests of others. Under the system we are using
these situations are detected and dealt with when they occur
in development, reducing the frequency with which error
reports come from the field.

Members of the development team communicate via a private
mailing list. In many cases they also use private email, tele-
phone and meetings at conferences in order to engage in joint
projects and to keep informed about the ideas of other
members.

Reuse of exogenous resources
We now present three arguments in favor of using and adapt-
ing software from other projects rather than re-implementing
or reinventing functionality. The first argument that we con-
sider is that writing good software is a challenging problem
and any re-implementation of existing algorithms should be
avoided if possible. Standard tools and paradigms that have
been proven and are well understood should be preferred
over new untested approaches. All software contains bugs but
well used and maintained software tends to contain fewer.

The second argument is that CBB is an enormous field and
that progress will require the coordinated efforts of many
projects and software developers. Thus, we will require struc-
tured paradigms for accessing data and algorithms written in
other languages and systems. The more structured and inte-
grated this functionality, the easier it will be to use and hence
the more it will be used. As specific examples we consider our
recent development of tools for working with graph or net-
work structures. There are three main packages in Biocon-
ductor of interacting with graphs. They are graph, RBGL and
Rgraphviz. The first of these provides the class descriptions
and basic infrastructure for dealing with graphs in R, the sec-
ond provides access to algorithms on graphs, and the third to
a rich collection of graph layout algorithms. The graph pack-
age was written from scratch for this project, but the other
two are interfaces to rich libraries of software routines that
have been created by other software projects, BOOST [31,32]
and Graphviz [23] respectively, both of which are very sub-
stantial projects with large code bases. We have no interest in
replicating that work and will, wherever possible, simply
access the functions and libraries produced by other projects.

There are many benefits from this approach for us and for the
other projects. For bioinformatics and computational biology
we gain rapid access to a variety of graph algorithms includ-
ing graph layout and traversal. The developers in those
Genome Biology 2004, 5:R80
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communities gain a new user base and a new set of problems
that they can consider. Gaining a new user base is often very
useful, as new users with previously unanticipated needs tend
to expose weaknesses in design and implementation that
more sophisticated or experienced users are often able to
avoid.

In a similar vein, we plan to develop and encourage collabo-
ration with other projects, including those organized through
the Open Bioinformatics Foundation and the International
Interoperability Consortium. We have not specifically con-
centrated on collaboration to this point in part because we
have chosen areas for development that do not overlap signif-
icantly with the tools provided by those projects. In this case
our philosophy remains one of developing interfaces to the
software provided by those projects and not re-implementing
their work. In some cases, other projects have recognized the
potential gains for collaboration and have started developing
interfaces for us to their systems, with the intent of making
future contributions [33].

Another argument in favor of standardization and reuse of
existing tools is best made with reference to a specific exam-
ple. Consider the topic of markup and markup languages. For
any specific problem one could quickly devise a markup that
is sufficient for that problem. So why then should we adopt a
standard such as XML? Among the reasons for this choice is
the availability of programmers conversant with the para-
digm, and hence lower training costs. A second reason is that
the XML community is growing and developing and we will
get substantial technological improvements without having
to initiate them. This is not unusual. Other areas of computa-
tional research are as vibrant as CBB and by coordinating and
sharing ideas and innovations we simplify our own tasks
while providing stimulus to these other areas.

Publication and licensing of code
Modern standards of scientific publication involve peer
review and subsequent publication in a journal. Software
publication is a slightly different process with limited involve-
ment to date of formal peer review or official journal publica-
tion. We release software under an open-source license as our
main method of publication. We do this in the hope that it will
encourage reproducibility, extension and general adherence
to the scientific method. This decision also ensures that the
code is open to public scrutiny and comment. There are many
other reasons for deciding to release software under an open-
source license, some of which are listed in Table 1.

Another consideration that arose when determining the form
of publication was the need to allow an evolutionary aspect to
our own software. There are many reasons for adopting a
strategy that would permit us to extend and improve our soft-
ware offerings over time. The field of CBB is relatively volatile
and as new technologies are developed new software and
inferential methods are needed. Further, software technology

itself is evolving. Thus, we wanted to have a publication strat-
egy that could accommodate changes in software at a variety
of levels. We hope that that strategy will also encourage our
users to think of software technology as a dynamic field rather
than a static one and to therefore be on the lookout for inno-
vations in this arena as well as in more traditional biological
ones.

Our decision to release software in the form of R packages is
an important part of this consideration. Packages are easy to
distribute, they have version numbers and define an API. A
coordinated release of all Bioconductor packages occurs twice
every year. At any given time there is a release version of every
package and a development version. The only changes
allowed to be made on the release version are bug fixes and
documentation improvements. This ensures that users will
not encounter radical new behaviors in code obtained in the
release version. All other changes such as enhancements or
design changes are carried out on the development branch
[34].

Approximately six weeks before a release, a major effort is
taken to ensure that all packages on the development branch
are coordinated and work well together. During that period
extensive testing is carried out through peer review amongst
the Bioconductor core. At release time all packages on the
development branch that are included in the release change
modes and are now released packages. Previous versions of
these packages are deprecated in favor of the newly released
versions. Simultaneously, a new development branch is made
and the developers start to work on packages in the new
branch. Note that these version-related administrative oper-
ations occur with little impact on developers. The release
manager is responsible for package snapshot and file version
modifications. The developers' source code base is fairly sim-
ple, and need not involve retention of multiple copies of any
source code files, even though two versions are active at all
times.

We would also like to point out that there are compelling
arguments that can be made in favor of choosing different
paradigms for software development and deployment. We are
not attempting at this juncture to convince others to distrib-
ute software in this way, but rather elucidating our views and
the reasons that we made our choice. Under a different set of
conditions, or with different goals, it is entirely likely that we
would have chosen a different model.

Special concerns
We now consider four specific challenges that are raised by
research in computational biology and bioinformatics: repro-
ducibility, data evolution and complexity, training users, and
responding to user needs.
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Reproducible research
We would like to address the reproducibility of published
work in CBB. Reproducibility is important in its own right,
and is the standard for scientific discovery. Reproducibility is
an important step in the process of incremental improvement
or refinement. In most areas of science researchers continu-
ally improve and extend the results of others but for scientific
computation this is generally the exception rather than the
rule.

Buckheit and Donoho [35], referring to the work and philos-
ophy of Claerbout, state the following principle: "An article
about computational science in a scientific publication is not
the scholarship itself, it is merely advertising of the scholar-
ship. The actual scholarship is the complete software develop-
ment environment and that complete set of instructions that
generated the figures."

There are substantial benefits that will come from enabling
authors to publish not just an advertisement of their work but
rather the work itself. A paradigm that fundamentally shifts
publication of computational science from an advertisement
of scholarship to the scholarship itself will be a welcome addi-
tion. Some of the concepts and tools that can be used in this
regard are contained in [36,37].

When attempting to re-implement computational methodol-
ogy from a published description many difficulties are
encountered. Schwab et al. [38] make the following points:

"Indeed the problem occurs wherever traditional methods of
scientific publication are used to describe computational
research. In a traditional article the author merely outlines
the relevant computations: the limitations of a paper medium
prohibit complete documentation including experimental
data, parameter values and the author's programs. Conse-
quently, the reader has painfully to re-implement the author's
work before verifying and utilizing it.... The reader must

spend valuable time merely rediscovering minutiae, which
the author was unable to communicate conveniently."

The development of a system capable of supporting the con-
venient creation and distribution of reproducible research in
CBB is a massive undertaking. Nevertheless, the Bioconduc-
tor project has adopted practices and standards that assist in
partial achievement of reproducible CBB.

Publication of the data from which articles are derived is
becoming the norm in CBB. This practice provides one of the
components needed for reproducible research - access to the
data. The other major component that is needed is access to
the software and the explicit set of instructions or commands
that were used to transform the data to provide the outputs on
which the conclusions of the paper rest. In this regard pub-
lishing in CBB has been less successful. It is easy to identify
major publications in the most prestigious journals that pro-
vide sketchy or indecipherable characterizations of computa-
tional and inferential processes underlying basic conclusions.
This problem could be eliminated if the data housed in public
archives were accompanied by portable code and scripts that
regenerate the article's figures and tables.

The combination of R's well-established platform independ-
ence with Bioconductor's packaging and documentation
standards leads to a system in which distribution of data with
working code and scripts can achieve most of the require-
ments of reproducible and replayable research in CBB. The
steps leading to the creation of a table or figure can be clearly
exposed in an Sweave document. An R user can export the
code for modification or replay with variations on parameter
settings, to check robustness of the reported calculations or to
explore alternative analysis concepts.

Thus we believe that R and Bioconductor can provide a start
along the path towards generally reproducible research in
CBB. The infrastructure in R that is used to support replaya-
bility and remote robustness analysis could be implemented

Table 1

Reasons for deciding to release software under an open-source license

To encourage reproducibility, extension and general adherence to the scientific method

To ensure that the code is open to public scrutiny and comment

To provide full access to algorithms and their implementation

To provide to users the ability to fix bugs without waiting for the developer, and to extend and improve the supplied software

To encourage good scientific computing and statistical practice by exhibiting fully appropriate tools and instruction

To provide a workbench of tools that allow researchers to explore and expand the methods used to analyze biological data

To ensure that the international scientific community is the owner of the software tools needed to carry out research

To lead and encourage commercial support and development of those tools that are successful

To promote reproducible research by providing open and accessible tools with which to carry out that research
Genome Biology 2004, 5:R80



http://genomebiology.com/2004/5/10/R80 Genome Biology 2004,     Volume 5, Issue 10, Article R80       Gentleman et al. R80.9

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

in other languages such as Perl [39] and Python [40]. All that
is needed is some platform-independent format for binding
together the data, software and scripts defining the analysis,
and a document that can be rendered automatically to a con-
veniently readable account of the analysis steps and their out-
comes. If the format is an R package, this package then
constitutes a single distributable software element that
embodies the computational science being published. This is
precisely the compendium concept espoused in [36].

Dynamics of biological annotation
Metadata are data about data and their definition depends on
the perspective of the investigator. Metadata for one investi-
gator may well be experimental data for another. There are
two major challenges that we will consider. First is the evolu-
tionary nature of the metadata. As new experiments are done
and as our understanding of the biological processes involved
increases the metadata changes and evolves. The second
major problem that concerns metadata data is its complexity.
We are trying to develop software tools that make it easier for
data analysts and researchers to use the existing metadata
appropriately.

The constant changing and updating of the metadata suggests
that we must have a system or a collection process that
ensures that any metadata can be updated and the updates
can be distributed. Users of our system will want access to the
most recent versions. Our solution has been to place meta-
data into R packages. These packages are built using a semi-
automatic process [41] and are distributed (and updated)
using the package distribution tools developed in the repos-
Tools package. There is a natural way to apply version num-
bers so users can determine if their data are up to date or if
necessary they can obtain older versions to verify particular
analyses. Further, users can synchronize a variety of meta-
data packages according to a common version of the data
sources that they were constructed from.

There are a number of advantages that come from automating
the process of building data packages. First, the modules are
uniform to an extent that would not be possible if the pack-
ages were human written. This means that users of this tech-
nology need only become acquainted with one package to be
acquainted with all such packages. Second, we can create
many packages very quickly. Hence the labor savings are sub-
stantial. For microarray analyses all data packages should
have the same information (chromosomal location, gene
ontology categories, and so on). The only difference between
the packages is that each references only the specific set of
genes (probes) that were assayed. This means that data ana-
lysts can easily switch from one type of chip to another. It also
means that we can develop a single set of tools for manipulat-
ing the metadata and improvements in those tools are availa-
ble to all users immediately. Users are free to extend data
packages with data from other, potentially proprietary,
sources.

Treating the data in the same manner that we treat software
has also had many advantages. On the server side we can use
the same software distribution tools, indicating updates and
improvements with version numbering. On the client side,
the user does not need to learn about the storage or internal
details of the data packages. They simply install them like
other packages and then use them.

One issue that often arises is whether one should simply rely
on online sources for metadata. That is, given an identifier,
the user can potentially obtain more up-to-date information
by querying the appropriate databases. The data packages we
are proposing cannot be as current. There are, however, some
disadvantages to the approach of accessing all resources
online. First, users are not always online, they are not always
aware of all applicable information sources and the invest-
ment in person-time to obtain such information can be high.
There are also issues of reproducibility that are intractable as
the owners of the web resources are free to update and modify
their offerings at will. Some, but not all, of these difficulties
can be alleviated if the data are available in a web services
format.

Another argument that can be made in favor of our approach,
in this context, is that it allows the person constructing the
data packages to amalgamate disparate information from a
number of sources. In building metadata packages for Bio-
conductor, we find that some data are available from different
sources, and under those circumstances we look for consen-
sus, if possible. The process is quite sophisticated and is
detailed in the AnnBuilder package and paper [41].

Training
Most of the projects in CBB require a combination of skills
from biology, computer science, and statistics. Because the
field is new and there has been little specialized training in
this area it seems that there is some substantial benefit to be
had from paying attention to training. From the perspective
of the Bioconductor project, many of our potential users are
unfamiliar with the R language and generally are scientifically
more aligned with one discipline than all three. It is therefore
important that we produce documentation for the software
modules that is accessible to all. We have taken a two-
pronged approach to this, we have developed substantial
amounts of course material aimed at all the constituent disci-
plines and we have developed a system for interactive use of
software and documentation in the form of vignettes and
more generally in the form of navigable documents with
dynamic content.

Course materials have been developed and refined over the
past two to three years. Several members of the Bioconductor
development team have taught courses and subsequently
refined the material, based on success and feedback. The
materials developed are modular and are freely distributed,
although restrictions on publication are made. The focus of
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the materials is the introduction and use of software devel-
oped as part of the Bioconductor project, but that is not a
requirement and merely reflects our own specific purposes
and goals.

In this area we feel that we would benefit greatly from contri-
butions from those with more experience in technical docu-
ment authoring. There are likely to be strategies, concepts
and methodologies that are standard practice in that domain
that we are largely unaware of. However, in the short term, we
rely on the students, our colleagues and the users of the Bio-
conductor system to guide us and we hope that many will con-
tribute. Others can easily make substantial contributions,
even those with little or no programming skills. What is
required is domain knowledge in one field of interest and the
recognition of a problem that requires additional domain
knowledge from another of the fields of interest.

Our experience has been that many of these new users often
transform themselves into developers. Thus, our develop-
ment of training materials and documentation needs to pay
some attention to the needs of this group as well. There are
many more software components than we can collectively
produce. Attracting others to collaboratively write software is
essential to success.

Responding to user needs
The success of any software project rests on its ability to both
provide solutions to the problems it is addressing and to
attract a user community. Perhaps the most effective way of
addressing user needs is through an e-mail help list and one
was set up as soon as the project became active. In addition it
is important to keep a searchable archive available so that the
system itself has a memory and new users can be referred
there for answers to common questions. It is also important
that members of the project deal with bug reports and feature
requests through this public forum as it both broadcasts their
intentions and provides a public record of the discussion. Our
mailing list (mailto:bioconductor@stat.math.ethz.ch) has
been successful: there are approximately 800 subscribers and
about 3,000 email messages per year.

Attracting a user community itself requires a method of dis-
tributing the software and providing sufficient training mate-
rials to allow potential users to explore the system and
determine whether it is sufficient for their purposes. An alter-
nate approach would be to develop a graphical user interface
(GUI) that made interactions with the system sufficiently self-
explanatory that documentation was not needed. We note
that this solution is generally more applicable to cases where
the underlying software tasks are well defined and well
known. In the present case, the software requirements (as
well as the statistical and biological requirements) are con-
stantly evolving. R is primarily command-line oriented and
we have chosen to follow that paradigm at least for the first
few years of development. We would of course welcome and

collaborate with those whose goal was in GUI development
but our own forays into this area are limited to the production
of a handful of widgets that promote user interaction at spe-
cific points.

Users have experienced difficulties downloading and install-
ing both R and the Bioconductor modules. Some of these dif-
ficulties have been caused by the users' local environments
(firewalls and a lack of direct access to the internet), and some
by problems with our software (bugs) which arise in part
because it is in general very difficult to adequately test soft-
ware that interacts over the internet. We have, however, man-
aged to help every user, who was willing to persist, get both R
and Bioconductor properly installed. Another substantial dif-
ficulty that we had to overcome was to develop a system that
allowed users to download not just the software package that
they knew they wanted, but additionally, and at the same
time, all other software packages that it relies on. With Bio-
conductor software there is a much larger inter-reliance on
software packages (including those that provide machine
learning, biological metadata and experimental data) than for
most other uses of R and the R package system. The package,
reposTools contains much of the necessary infrastructure for
handling these tasks. It is a set of functions for dealing with R
package repositories which are basically internet locations for
collections of R packages.

Once the basic software is installed, users will need access to
documentation such as the training materials described
above and other materials such as the vignettes, described in
a previous section. Such materials are most valuable if the
user can easily obtain and run the examples on their own
computer. We note the obvious similarity with this problem
and that described in the section on reproducible research.
Again, we are in the enjoyable situation of having a paradigm
and tools that can serve two purposes.

Other open-source bioinformatics software projects
The Open Bioinformatics Foundation supports projects simi-
lar to Bioconductor that are nominally rooted in specific pro-
gramming languages. BioPerl [42], BioPython [43] and
BioJava [44] are prominent examples of open-source lan-
guage-based bioinformatics projects. The intentions and
design methodologies of the BioPerl project have been lucidly
described by Stajich and colleagues [45].

BioPerl
In this section we consider commonalities and differences
between BioPerl and Bioconductor. Both projects have com-
mitments to open source distribution and to community-
based development, with an identified core of developers per-
forming primary design and maintenance tasks for the
project. Both projects use object-oriented programming
methodology, with the intention of abstracting key structural
and functional features of computational workflows in bioin-
formatics and defining stable application programming
Genome Biology 2004, 5:R80
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interfaces (API) that hide implementation details from those
who do not need to know them. The toolkits are based on
highly portable programming languages. These languages
have extensive software resources developed for non-bioin-
formatic purposes. The repositories for R (Comprehensive R
Archive Network, CRAN) and Perl (Comprehensive Perl
Archive Network, CPAN) provide mirrored WWW access to
structured collections of software modules and documents for
a wide variety of workflow elements. Development methodol-
ogies targeted at software reuse can realize large gains in pro-
ductivity by establishing interfaces to existing CPAN or CRAN
procedures instead of reimplementing such procedures. For
reuse to succeed, the maintainer of the external resource
must commit to stability of the resource API. Such stability
tends to be the norm for widely-used modules. Finally, both
languages have considerable interoperability infrastructure.
One implication is that each project can use software written
in unrelated languages. R has well-established interfaces to
Perl, Python, Java and C. R's API allows software in R to be
called from other languages, and the RSPerl package [46]
facilitates direct calls to R from Perl. Thus there are many
opportunities for symbiotic use of code by Bioconductor and
BioPerl developers and users. The following script illustrates
the use of BioPerl in R.

> library(RSPerl)

> .PerlPackage("Bio::Perl")

> x <- .Perl("get_sequence", "swiss",

"ROA1_HUMAN")

> x$division()

[1] "HUMAN"

> x$accession()

[1] "P09651"

> unlist(x$get_keywords())

[1] "Nuclear protein" "RNA-binding"

[3] "Repeat" "Ribonucleoprotein"

[5] "Methylation" "Transport"

...

The .PerlPackage command brings the BioPerl modules into
scope. .Perl invokes the BioPerl get_sequence subroutine
with arguments "swiss" and "ROA1_HUMAN". The resulting
R object is a reference to a perl hash. RSPerl infrastructure
permits interrogation of the hash via the $ operator. Note that

RSPerl is not a Bioconductor-supported utility, and that
installation of the BioPerl and RSPerl resources to allow
interoperation can be complicated.

Key differences between the Bioconductor and BioPerl
projects concern scope, approaches to distribution, documen-
tation and testing, and important details of object-oriented
design.

Scope
BioPerl is clearly slanted towards processing of sequence data
and interfacing to sequence databases, with support for
sequence visualization and queries for external annotation.
Bioconductor is slanted towards statistical analysis of micro-
array experiments, with major concerns for array preprocess-
ing, quality control, within- and between-array
normalization, binding of covariate and design data to
expression data, and downstream inference on biological and
clinical questions. Bioconductor has packages devoted to
diverse microarray manufacturing and analysis paradigms
and to other high-throughput assays of interest in computa-
tional biology, including serial analysis of gene expression
(SAGE), array comparative genomic hybridization (array-
CGH), and proteomic time-of-flight (SELDI-TOF) data. We
say the projects are 'slanted' towards these concerns because
it is clear that both projects ultimately aim to support general
research activities in computational biology.

Distribution, documentation and testing
BioPerl inherits the distribution paradigm supported by
CPAN. Software modules can be acquired and installed inter-
actively using, for example perl -MCPAN -e shell. This
process supports automated retrieval of requested packages
and dependencies, but is not triggered by runtime events.
Bioconductor has extended the CRAN distribution function-
alities so that packages can be obtained and installed 'just in
time', as required by a computational request. For both Perl
and R, software modules and packages are structured collec-
tions of files, some of which are source code, some of which
are documents about the code. The relationship between doc-
umentation and testing is somewhat tighter in Bioconductor
than in BioPerl. Manual pages and vignettes in Bioconductor
include executable code. Failure of the code in a man page or
vignette is a quality-control event; experimentation with exe-
cutable code in manual pages (through the example function
of R) is useful for learning about software behavior. In Perl,
tests occupy separate programs and are not typically inte-
grated with documentation.

Details of object-oriented procedure
Both R and Perl are extensible computer languages. Thus it is
possible to introduce software infrastructure supporting dif-
ferent approaches to object-oriented programming (OOP) in
various ways in both languages.
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R's core developers have provided two distinct approaches to
OOP in R. These approaches are named S3 and S4. In S3, any
object can be assigned to a class (or sequence of classes) sim-
ply by setting the class name as the value of the object's class
attribute. Class hierarchies are defined implicitly at the object
level. Generic methods are defined as ordinary functions and
class-specific methods are dispatched according to the class
of the object being passed as an argument. In S4, formal def-
inition of class structure is supported, and class hierarchy is
explicitly defined in class definitions [12]. Class instances are
explicitly constructed and subject to validation at time of con-
struction. Generic methods are non-standard R functions and
metadata on generic methods is established at the package
level. Specific methods are dispatched according to the class
signature of the argument list (multiple dispatch). Overall,
the OOP approach embodied in S4 is closer to Dylan or
Scheme than to C++ or Java. Bioconductor does not require
specific OOP methodology but encourages the use of S4, and
core members have contributed special tools for the docu-
mentation and testing of S4 OOP methods in R.

OOP methodology in Perl has a substantial history and is
extensively employed in BioPerl. The basic approach to OOP
in Perl seems to resemble S3 more than S4, in that Perl's bless
operation can associate any perl data instance with any class.
The CPAN Class::Multimethod module can be used to
allow multiple dispatch behavior of generic subroutines. The
specific classes of objects identified in BioPerl are targeted at
sequence data (Seq, LocatableSeq, RelSegment are exam-
ples), location data (Simple, Split, Fuzzy), and an important
class of objects called interface objects, which are classes
whose names end in 'I'. These objects define what methods
can be called on objects of specified classes, but do not imple-
ment any methods.

BioJava, BioPython, GMOD and MOBY
Other open bioinformatics projects have intentions and
methods that are closely linked with those of Bioconductor.

BioJava [44] provides Dazzle, a servlet framework supporting
the Distributed Annotation System specification for sharing
sequence data and metadata. Version 1.4 of the BioJava
release includes java classes for general alphabets and sym-
bol-list processing, tools for parsing outputs of blast-related
analyses, and software for constructing and fitting hidden
Markov models. In principle, any of these resources could be
used for analysis in Bioconductor/R through the SJava inter-
face [46].

BioPython [43] provides software for constructing python
objects by parsing output of various alignment or clustering
algorithms, and for a variety of downstream tasks including
classification. BioPython also provides infrastructure for
decomposition of parallelizable tasks into separable proc-
esses for computation on a cluster of workstations.

The Generic Model Organism Database (GMOD) project tar-
gets construction of reusable components that can be used to
reproduce successful creation of open and widely accessible
databases of model organisms (for example, worm, fruitfly
and yeast). The main tasks addressed are genome visualiza-
tion and annotation, literature curation, biological ontology
activities, gene expression analysis and pathway visualization
and annotation.

BioMOBY [47] provides a framework for developing and cat-
aloging web services relevant to molecular biology and
genomics. A basic aim is to provide a central registry of data,
annotation or analysis services that can be used programmat-
ically to publish and make use of data and annotation
resources pertinent to a wide variety of biological contexts.

As these diverse projects mature, particularly with regard to
interoperability, we expect to add infrastructure to Biocon-
ductor to simplify the use of these resources in the context of
statistical data analysis. It is our hope that the R and Biocon-
ductor commitments to interoperability make it feasible for
developers in other languages to reuse statistical and visuali-
zation software already present and tested in R.

Using Bioconductor (example)
Results of the Bioconductor project include an extensive
repository of software tools, documentation, short course
materials, and biological annotation data at [1]. We describe
the use of the software and annotation data by description of
a concrete analysis of a microarray archive derived from a
leukemia study.

Acute lymphocytic leukemia (ALL) is a common and difficult-
to-treat malignancy with substantial variability in therapeutic
outcomes. Some ALL patients have clearly characterized
chromosomal aberrations and the functional consequences of
these aberrations are not fully understood. Bioconductor
tools were used to develop a new characterization of the con-
trast in gene expression between ALL patients with two spe-
cific forms of chromosomal translocation. The most
important tasks accomplished with Bioconductor employed
simple-to-use tools for state-of-the-art normalization of hun-
dreds of microarrays, clear schematization of normalized
expression data bound to detailed covariate data, flexible
approaches to gene and sample filtering to support drilling
down to manageable and interpretable subsets, flexible visu-
alization technologies for exploration and communication of
genomic findings, and programmatic connection between
expression platform metadata and biological annotation data
supporting convenient functional interpretation. We will
illustrate these through a transcript of the actual command/
output sequence. More detailed versions of some of the
processing and analysis activities sketched here can be found
in the vignettes from the GOstats package.
Genome Biology 2004, 5:R80



http://genomebiology.com/2004/5/10/R80 Genome Biology 2004,     Volume 5, Issue 10, Article R80       Gentleman et al. R80.13

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

The dataset is from the Ritz laboratory at the Dana Farber
Cancer Institute [48]. It contains data from 128 patients with
ALL. Two subgroups are to be compared. The first group con-
sists of patients with a translocation between chromosomes 4
and 11 (labeled ALL1/AF4). The second group consists of
patients with a translocation between chromosomes 9 and 22
(labeled BCR/ABL). These conditions are mutually exclusive
in this dataset.

The Affymetrix HGu95Av2 platform was used, and expres-
sion measures were normalized using gcrma from the affy
package. The output of this is an object of class exprSet which
can be used as input for other functions. The package
hgu95av2 provides biological metadata including mappings
from the Affymetrix identifiers to GO, chromosomal location,
and so on. These data can, of course be obtained from many
other sources, but there are some advantages to having them
as an R package.

After loading the appropriate packages we first subset the
ALL exprSet to extract those samples with the covariates of
interest. The design of the exprSet class includes methods
for subsetting both cases and probes. By using the square-
bracket notation on ALL, we derive a new exprSet with data
on only the desired patients.

> data("ALL")

> eset <- ALL[, ALL$mol %in%

c("BCR/ABL", "ALL1/AF4")]

Next we find genes which are differentially expressed
between the ALL1/AF4 and BCR/ABL groups. We use the
function lmFit from the limma package, which can assess
differential expression between many different groups and
conditions simultaneously. The function lmFit accepts a
model matrix which describes the experimental design and
produces an output object of class MArrayLM which stores
the fitted model information for each gene. The fitted model
object is further processed by the eBayes function to produce
empirical Bayes test statistics for each gene, including moder-
ated t-statistics, p-values and log-odds of differential expres-
sion. The log2-fold changes, average intensites and Holm-
adjusted p-values are displayed for the top 10 genes (Figure
1).

We select those genes that have adjusted p-values below 0.05.
The default method of adjusting for multiple comparisons
uses Holm's method to control the family-wise error rate. We
could use a less conservative method such as the false discov-
ery rate, and the multtest package offers other possibilities,
but for this example we will use the very stringent Holm
method to select a small number of genes.

> selected <- p.adjust(fit$p.value[, 2])

< 0.05

> esetSel <- eset [selected, ]

There are 165 genes selected for further analysis. A heat map
produced by the heatmap function from R allows us to visual-
ize the differential action of these genes between the two
groups of patients. Note how the different software modules
can be integrated to provide a very rich data-analysis environ-
ment. Figure 2 shows clearly that these two groups can be dis-
tinguished in terms of gene expression.

We can carry out many other tests, for example, whether
genes encoded on a particular chromosome (or perhaps on a
specific strand of a chromosome) are over-represented
amongst those selected by moderated t-test. Many of these
questions are normally addressed in terms of a hypergeomet-
ric distribution, but they can also be thought of as two-way or
multi-way tables, and alternate statistical tests (all readily
available in R) can be applied to the resulting data.

We turn our attention briefly to the use of the Gene Ontology
(GO) annotation in conjunction with these data. We first
identify the set of unique LocusLink identifiers among our
selected Affymetrix probes. The function GOHyperG is found

Limma analysis of the ALL dataFigure 1
Limma analysis of the ALL data. The leftmost numbers are row indices, ID 
is the Affymetrix HGU95av2 accession number, M is the log ratio of 
expression, A is the log average expression, and B is the log odds of 
differential expression.

1016 1914_at −3.1 4.6 −27 5.9e-27 56

7884 37809_at −4.0 4.9 −20 1.3e-20 44

6939 36873_at −3.4 4.3 −20 1.8e-20 44

10865 40763_at −3.1 3.5 −17 7.2e-18 39

4250 34210_at 3.6 8.4 15 3.5e-16 35

11556 41448_at −2.5 3.7 −15 1.8e-15 34

3389 33358_at −2.3 5.2 −13 3.3e-13 29

8054 37978_at −1.0 6.9 −10 6.5e-10 22

10579 40480_s_at 1.8 7.8 10 9.1e-10 21

330 1307_at 1.6 4.6 10 1.4e-09 21

ID M A t p-value B

> f <- factor(as.character(eset$mol))

> design <- model.matrix(~f)

> fit <- lmFit(eset, design)

> fit <- eBayes(fit)

> topTable(fit, coef = 2)
Genome Biology 2004, 5:R80
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in the GOstats package. It carries out a hypergeometric test
for an overabundance of genes in our selected list of genes for
each term in the GO graph that is induced by these genes (Fig-
ure 3).

The smallest p-value found was 1.1e-8 and it corresponds to
the term, "MHC class II receptor activity". We see that six of
the 12 genes with this GO annotation have been selected. Had
we used a slightly less conservative gene selection method

then the number of selected genes in this GO annotation
would have been even higher.

Reproducing the above results for any other species or chip
for which an annotation package was available would require
almost no changes to the code. The analyst need only substi-
tute the references to the data package, hgu95av2, with those
for their array and the basic principles and code are
unchanged.

Heat map (produced by the Bioconductor function heatmap()) of the ALL leukemia dataFigure 2
Heat map (produced by the Bioconductor function heatmap()) of the ALL leukemia data.

26
00

8
04

00
6

63
00

1
28

02
8

28
03

2
31

00
7

24
00

5
19

00
5

16
00

4
15

00
4

22
01

0
24

00
1

28
01

9
30

00
1

28
02

1
15

00
5

09
00

8
11

00
5

28
03

6
62

00
1

27
00

3
26

00
3

62
00

2
65

00
5

84
00

4
03

00
2

20
00

2
12

01
2

22
01

3
37

01
3

14
01

6
27

00
4

49
00

6
24

01
1

08
01

1
62

00
3

12
02

6
31

01
1

43
00

1
24

01
7

68
00

3
12

00
6

24
01

0
24

02
2

08
00

1
12

00
7

01
00

5

37039_at
41237_at
37383_f_at
37420_i_at
1461_at
31508_at
41745_at
676_g_at
35016_at
38833_at
38095_i_at
1389_at
675_at
36795_at
38096_f_at
41215_s_at
37043_at
32378_at
37967_at
40369_f_at
36398_at
36798_g_at
39717_g_at
37320_at
34210_at
38968_at
32977_at
41723_s_at
36878_f_at
36773_f_at
41266_at
40570_at
40088_at
41193_at
36650_at
34362_at
38032_at
33774_at
35769_at
39327_at
35260_at
1134_at
35816_at
40480_s_at
2039_s_at
32116_at
39424_at
37413_at
38056_at
37225_at
873_at
40763_at
41448_at
32215_i_at
36092_at
1929_at
33405_at
39716_at
33193_at
40393_at
35663_at
33528_at
34098_f_at
1500_at
36149_at
34247_at
32475_at
205_g_at
31605_at
41348_at
37558_at
33936_at
38223_at
39635_at
37809_at
36873_at
1914_at
931_at
41191_at
39315_at
33358_at
35665_at
31615_i_at
34106_at
36897_at
177_at
38004_at
36777_at
37810_at
1947_g_at
41470_at
37251_s_at
34961_at
39135_at
41071_at
41401_at
38385_at
37724_at
176_at
35831_at
41478_at
1140_at
919_at
39210_at
37479_at
37193_at
33412_at
41779_at
40493_at
35256_at
37184_at
31472_s_at
1126_s_at
2036_s_at
38413_at
1973_s_at
37099_at
37978_at
40785_g_at
40784_at
1674_at
41743_i_at
41742_s_at
40504_at
1307_at
1928_s_at
1308_g_at
40953_at
33809_at
36275_at
33440_at
34699_at
32872_at
40167_s_at
33244_at
1992_at
35714_at
40692_at
41346_at
41397_at
37006_at
36536_at
37280_at
38631_at
34850_at
34789_at
41744_at
39556_at
2057_g_at
1463_at
1911_s_at
37539_at
38408_at
307_at
266_s_at
39781_at
40215_at
1039_s_at
36643_at
1007_s_at
37600_at
32562_at
402_s_at
1267_at
39837_s_at
Genome Biology 2004, 5:R80



http://genomebiology.com/2004/5/10/R80 Genome Biology 2004,     Volume 5, Issue 10, Article R80       Gentleman et al. R80.15

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

Similarly, substitution of other algorithms or statistical tests
is possible as the data analyst has access to the full and
complete source code. All tools are modifiable at the source
level to suit local requirements.

Conclusions
We have detailed the approach to software development
taken by the Bioconductor project. Bioconductor has been
operational for about three years now and in that time it has
become a prominent software project for CBB. We argue that
the success of the project is due to many factors. These
include the choice of R as the main development language,
the adoption of standard practices of software design and a
belief that the creation of software infrastructure is an impor-
tant and essential component of a successful project of this
size.

The group dynamic has also been an important factor in the
success of Bioconductor. A willingness to work together, to
see that cooperation and coordination in software
development yields substantial benefits for the developers
and the users and encouraging others to join and contribute
to the project are also major factors in our success.

To date the project provides the following resources: an
online repository for obtaining software, data and metadata,
papers, and training materials; a development team that
coordinates the discussion of software strategies and develop-
ment; a user community that provides software testing, sug-
gested improvements and self-help; more than 80 software
packages, hundreds of metadata packages and a number of
experimental data packages.

At this point it is worth considering the future. While many of
the packages we have developed have been aimed at particu-
lar problems, there have been others that were designed to
support future developments. And that future seems very
interesting. Many of the new problems we are encountering in
CBB are not easily addressed by technology transfer, but
rather require new statistical methods and software tools. We
hope that we can encourage more statisticians to become
involved in this area of research and to orient themselves and
their research to the mixture of methodology and software
development that is necessary in this field.

In conclusion we would like to note that the Bioconductor
Project has many developers, not all of whom are authors of
this paper, and all have their own objectives and goals. The
views presented here are not intended to be comprehensive
nor prescriptive but rather to present our collective experi-
ences and the authors' shared goals. In a very simplified ver-
sion these can be summarized in the view that coordinated
cooperative software development is the appropriate mecha-
nism for fostering good research in CBB.
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