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Evolution of mosaic operons by horizontal gene transfer and gene displacement in situThe discovery of in situ gene displacement shows that combination of rampant horizontal gene transfer with selection for preservation of operon structure provides for events in prokaryotic evolution that, a priori, seem improbable. These findings also emphasize that not all aspects of operon evolution are selfish, with operon integrity maintained by purifying selection at the organism level

Abstract

Background: Shuffling and disruption of operons and horizontal gene transfer are major
contributions to the new, dynamic view of prokaryotic evolution. Under the 'selfish operon'
hypothesis, operons are viewed as mobile genetic entities that are constantly disseminated via
horizontal gene transfer, although their retention could be favored by the advantage of coregulation
of functionally linked genes. Here we apply comparative genomics and phylogenetic analysis to
examine horizontal transfer of entire operons versus displacement of individual genes within
operons by horizontally acquired orthologs and independent assembly of the same or similar
operons from genes with different phylogenetic affinities.

Results: Since a substantial number of operons have been identified experimentally in only a few
model bacteria, evolutionarily conserved gene strings were analyzed as surrogates of operons. The
phylogenetic affinities within these predicted operons were assessed first by sequence similarity
analysis and then by phylogenetic analysis, including statistical tests of tree topology. Numerous
cases of apparent horizontal transfer of entire operons were detected. However, it was shown that
apparent horizontal transfer of individual genes or arrays of genes within operons is not uncommon
either and results in xenologous gene displacement in situ, that is, displacement of an ancestral gene
by a horizontally transferred ortholog from a taxonomically distant organism without change of the
local gene organization. On rarer occasions, operons might have evolved via independent assembly,
in part from horizontally acquired genes.

Conclusions: The discovery of in situ gene displacement shows that combination of rampant
horizontal gene transfer with selection for preservation of operon structure provides for events in
prokaryotic evolution that, a priori, seem improbable. These findings also emphasize that not all
aspects of operon evolution are selfish, with operon integrity maintained by purifying selection at
the organism level.
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Background
Operons, clusters of co-transcribed genes that often encode
functionally linked proteins, are the principal form of gene
organization and regulation in prokaryotes [1,2]. Compara-
tive analysis of bacterial and archaeal genomes has shown
that only a few operons are conserved across large evolution-
ary distances. In general, gene order in prokaryotes is poorly
conserved and prone to numerous rearrangements [3-6]. A
detailed analysis of gene order conservation has shown that
only 5-25% of the genes in bacterial and archaeal genomes
belongs to gene strings (probable operons) shared by at least
two distantly related species [7]. The presence of identical or
similarly organized operons and suboperons in phylogeneti-
cally distant bacterial or archaeal lineages may result from
three distinct evolutionary processes. Firstly, inheritance
from the respective common ancestor - the core of the ribos-
omal protein superoperon is a case in point, but such conser-
vation of operon organization is relatively rare; secondly,
independent origin of identical operons or suboperons in dif-
ferent lineages; and thirdly, emergence of operons in a single
lineage with subsequent dissemination by horizontal trans-
fer. The potential central role of horizontal transfer in the
evolution of operon organization of prokaryotic genomes is
embodied in the 'selfish operon model' (SOM) [8-10]. This
model posits that "the physical proximity of genes in an
operon provides no selective benefit to the individual organ-
ism but does enhance the fitness of the gene cluster itself, as
clusters can be efficiently inherited horizontally as well as ver-
tically" [11]. Under SOM, operons are conceptually analogous
to integrating viruses (phages), transposons and other mobile
genetic elements, although coregulation of the genes in an
operon could be an important selective factor that favors
retention of operons during evolution.

Horizontal gene transfer (HGT) events have been classified
into distinct categories of acquisition of new genes, acquisi-
tion of paralogs of existing genes and xenologous gene dis-
placement whereby a gene is displaced by a horizontally
transferred ortholog from another lineage (xenolog [12]).
Each of these types of horizontal transfer is common among
prokaryotes, but their relative contributions differ in different
lineages [13]. Comparative-genomic analyses by many groups
have suggested that, on the whole, horizontal gene transfer
had substantial effects, albeit uneven in different lineages, on
the gene content of bacterial and archaeal genomes [13-19].
However, in spite of the considerable popularity of the selfish
operon theory, we are unaware of systematic studies of hori-
zontal gene transfer events at the level of operons. In part,
this is likely to have been caused by the scarcity of experimen-
tal data on operon organization in any prokaryote other than
Escherichia coli.

Recent phylogenetic analyses of ribosomal proteins revealed
several instances of apparent xenologous gene displacement
within a conserved operon, in which other genes have not
been horizontally transferred; in other words, these operons

appear to represent an evolutionary mosaic [20-22]. Another
study demonstrated a complicated mosaic organization of the
leukotoxin operon in bacteria of the genus Mannheimia (Pas-
teurella); the observed evolutionary pattern had to be
explained through multiple gene transfer events, which led to
the hypothesis that, in this case, frequent gene displacement
conferred selective advantage onto the bacterium by main-
taining antigenic variation [23]. In earlier studies, evolution
of operons from gene blocks with distinct evolutionary fates
has been considered for rfb operons coding for lipopolysac-
charide biosynthesis in enterobacteria [24].

To assess the role of horizontal gene transfer in the evolution
of operons systematically, we undertook phylogenetic analy-
sis of members of highly conserved gene neighborhoods that
are predicted to constitute operons [25]. We focused prima-
rily on mosaic operons in which one or more of the genes
apparently have been transferred from distantly related spe-
cies such that the phylogeny of the transferred genes is obvi-
ously incongruent with the phylogeny of the remaining genes
in the respective operons.

Results and discussion
Identification of horizontal gene transfer
Experimental data on operons in organisms other than E. coli
and, to a lesser extent, B. subtilis are scarce. Therefore we
used conserved gene pairs and connected gene neighbor-
hoods associated with them as an approximation of operon
organization of genes in other prokaryotic genomes. Several
studies have suggested strongly that all gene pairs that are
conserved in multiple genomes belong to the same operon
[7,25,26]. Here we used an extremely conservative threshold
(conservation of a gene pair in 10 genomes) to ensure that
only genuine operons were analyzed. BLASTP searches for
potential horizontal gene transfer identified 729 candidate
genes (9% of all genes comprising conserved neighborhoods
in 41 analyzed genomes), that is, genes whose encoded pro-
tein sequences were more similar to homologs from phyloge-
netically distant taxa than to those from the reference taxon
(it might be worth noting that, throughout this analysis, we
treated genes as atomic units and did not consider the rela-
tively unlikely possibility of HGT for portions of genes). Phy-
logenetic analysis of these genes and their neighbors revealed
different types of evolutionary events, some of which involve
whole operons, whereas others seem to reflect operon
mosaicity.

Probable horizontal transfer of whole operons or large por-
tions of operons, when phylogenetic trees for all genes in a
predicted operon had the same topology (which, however,
was incompatible with the species tree) was identified in 35
neighborhoods - approximately one third of all analyzed
neighborhoods. These events were classified into three cate-
gories: acquisition of a new (for the given lineage) operon,
paralogous operon acquisition and xenologous operon
Genome Biology 2003, 4:R55
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displacement [13]. Examples of all these classes of apparent
operon transfer events are given in Table 1. These 35 neigh-
borhoods generally represented functional classes of genes
known to be prone to HGT: transporters, general
metabolism-related genes and signal transduction systems
[13,15,17]. This seems to be a relatively low level of horizontal

transfer in view of the purported selfish behavior of operons
[9,10]. However, the strict threshold, described above, on the
detection of conserved gene pairs undoubtedly led to many
horizontally transferred operons being missed. Thus, the
present analysis gives a conservative low bound of operon
transfer.

Table 1

Examples of horizontally transferred operons

Operon Recipient organism and 
correspondent genes

Probable source Other probable recipients Comment

Operon acquisition

Pyruvate:ferredoxin 
oxidoreductase

Thermotoga maritima 
TM0015-TM0018

Archaea Aae, Hpy, Bha/Sau Apparently, the related 
operon for 2-
oxoisovalerate 
oxidoreductase (TM1758-
TM1759) was also 
transferred from archaea

Sulfate/molybdate transport Bacillus halodurans BH3128-
BH3130

Gram-negative bacteria - No other such operons in 
Bacillus-Clostridium group 
members

Putative effector of murein 
hydrolase

Pyrococcus horikoshii 
PH1801-PH1802

Bacteria Pab, Mac

Allophanate hydrolase 
subunits

Pyrococcus horikoshii 
PH0987-PH0988

Bacteria Pab

Paralogous operon acquisition

Dipeptide transporter Vibrio cholerae VC0620-
VC0616

Thermotoga/Archaea Tma It has several another 
bacterial operons including 
VC1091-VC1095

Ribonucleotide reductase 
alpha and beta subunit

Halobacterium sp. 
VNG2384G VNG2383G

Bacteria - Additional to "archaeal:" 
Ribonucleotide reductase 
alpha subunit VNG1644G, 
beta subunit is apparently 
lost

Aromatic amino-acid 
biosynthesis

Halobacterium sp. 
VNG0384G VNG0386G

Bacteria - Paralogs of this pair are 
VNG1646G-VNG1647G

Xenologous operon displacement

Histidine biosynthesis 
suboperon

Pseudomonas aeruginosa 
PA3151-PA3152

Epsilon-Proteobacteria -

Panthothenate synthesis Campylobacter jejuni 
Cj0297c-Cj0298c

Gram-positive bacteria -

DNA repair SbcDC Vibrio cholerae VCA0520-
VCA0521

Gram-positive bacteria -

DNA gyrase A and B Halobacterium sp. 
VNG0887G-VNG0889G

Bacteria Hbs, Tac, Tvo, Afu,

Dipeptide transporter Streptococcus pyogenes 
SPy2000-SPy2004

Gamma-Proteobacteria -

Glutamate synthase 
complex

Thermotoga maritima 
TM0394-TM0398

Archaea - There is another homolog 
for gene TM0397 of 
possible archaeal origin

NADH:ubiquinone 
oxidoreductase

Halobacterium sp. 
VNG0635G-VNG0637G

Bacteria -

Phosphate transporter Methanothermobacter 
thermoautotrophicum 
MTH1727-MTH1734

Bacteria -
Genome Biology 2003, 4:R55
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In addition, 19 predicted operons with different phylogenetic
affinities of the constituent genes, that is, apparent mosaic
operons, were identified (Table 2). Again, this is definitely a
low bound - not only because of the high threshold set for the
identification of conserved gene pairs, but also because this
number includes only cases that were clearly resolved by phy-
logenetic tree analysis. In addition, we detected many uncer-
tain cases where the different phylogenetic affinities of genes
within an operon were not strongly supported (data not
shown); at least some of these are probably also mosaic
operons.

Below we describe in greater detail several case studies of
putative mosaic operons; in each of these cases, in addition to
the basic set of 41 species, we included in the analysis the
apparent orthologs of the respective proteins from all
prokaryotic species in which they were detected, in order to
control for possible effects of taxon sampling. We found that,
although the details of tree topology inevitably depended on
the set of species analyzed, the conclusions regarding HGT
were not affected by the inclusion of additional species.

Case studies of mosaic operons
Ribosomal protein L29 gene
In the previous study that prompted this work, we analyzed
the phylogeny of several ribosomal proteins and found sev-
eral cases of apparent horizontal transfer resulting in mosaic
operon organization [20]. Horizontal transfer "in the heart of
the ribosome" also has been independently described by oth-
ers [21,22]. Here we report another case of a ribosomal pro-
tein operon with apparent in situ gene displacement (that is,
displacement without change of the local gene arrangement)
via HGT. Figure 1a shows the highly conserved gene arrange-
ment around the gene for the large subunit protein L29. The
phylogenetic trees for the flanking L16 and S17 genes showed
largely congruent topologies without any indications of HGT
(Figure 1b,d). In contrast in the L29 tree, unexpected cluster-
ing is seen for Aquifex aeolicus and both Rickettsia: the
Aquifex branch is within the archaeal cluster, whereas the
Rickettsia group is with Chlamydia, rather than with the rest
of alpha-proteobacteria: the taxon where Rickettsia belong
(Figure 1c). In situ displacement is the most likely mechanism
behind this observation given that the structure of this operon
is conserved in the majority of bacteria. The nature of the
selective advantages conferred by this gene substitution is
unclear, but the apparent sources of the transferred genes
suggest that the displacements indeed might be adaptive.
Aquifex apparently acquired the L29 gene from archaea,
which could be related to the adaptation to the hyperthermal
conditions, whereas Rickettsia probably captured the gene
from other parasitic bacteria, such as Chlamydia. However,
these observations also allow a non-adaptationist interpreta-
tion, under which the apparent source of acquired genes sim-
ply reflects the increased likelihood of gene exchange between
the respective organisms due to co-habitation, with chance
fixation of some of the transferred genes.

The ruvB gene of Mycoplasma
The genes for Holliday junction resolvase subunits RuvA and
RuvB form an operon that is conserved in most of the
sequenced bacterial genomes (Figure 2a). In the phylogenetic
trees for RuvA and RuvB, the branch that includes
Ureaplasma and Mycoplasma occupies drastically different
positions. In contrast to RuvA, which belongs to the Gram-
positive clade as expected (Figure 2b), mycoplasmal RuvB
clusters with the epsilon-proteobacteria (Helicobacter and
Campylobacter) and the mycoplasma-epsilon-proteobacte-
ria clade further joins alpha-proteobacteria (Figure 2c). This
clustering is strongly supported by bootstrap analysis and
was shown to be robust using statistical tests of tree topology
(Table 3). Thus, the ruvB gene seems to have undergone
xenologous displacement in situ after the divergence of the
mycoplasmal branch from the rest of Gram-positive bacteria.
Notably, the gene exchange seems to have occurred between
phylogenetically distant parasitic bacteria.

Undecaprenyl pyrophosphate synthase gene in the lipid biosynthesis 
operon of Rickettsia
In Rickettsia, the undecaprenyl pyrophosphate synthase gene
(uppS), which belongs to a highly conserved doublet of lipid
biosynthesis genes embedded in functionally diverse operons
(Figure 3a), clusters with an unexpected assemblage of bacte-
rial orthologs, including those from the spirochete
Treponema pallidum and Fusobacterium nucleatum, but not
with the 'native' taxon, alpha-proteobacteria (Figure 3b,c).
Statistical testing of the tree topology showed that clustering
of rickettsial uppS with those from other alpha-proteobacte-
ria is highly unlikely (Table 3). The apparent in situ gene dis-
placement of the uppS gene in Rickettsia was accompanied by
a breakdown of the operon into three fragments (Figure 3a).
The topology of the uppS tree suggests the possibility of mul-
tiple HGT events, although only the rickettsial genomes show
evidence of gene displacement in situ. The emergence of gene
displacement in bacterial parasites is noted here again.

NADH:ubiquinone oxidoreductase subunits in Halobacterium sp.
Gene organization in the NADH:ubiquinone oxidoreductase
operon is highly conserved in all sequenced archaeal genomes
and those of several groups of bacteria (Figure 4a). The nuoI
gene of Halobacterium sp. shows an unexpected phylogenetic
affinity with proteobacteria (Figure 4c), whereas the neigh-
boring genes have the regular archaeal affinities (Figure
4b,d). The unusual phylogeny of halobacterial NuoI, which
was strongly supported by statistical tests (Table 3), suggests
in situ displacement by a proteobacterial gene. Notably, all
three NADH:ubiquinone oxidoreductase subunits of the
cyanobacteria unexpectedly grouped within the archaeal
clusters of the respective trees (Figure 4b-d). These observa-
tions point to a complex history of HGT for the genes encod-
ing all subunits of NADH:ubiquinone oxidoreductase.
Genome Biology 2003, 4:R55
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Table 2

Examples of probable mosaic operons

Species Predicted operon General operon 
function

Horizontally acquired 
genes

Probable source of 
horizontally acquired 
genes

Functions of 
horizontally acquired 
genes

Cluster 1*

Rickettsia prowazekii 
Rickettsia conorii

RP633-661, RC0980-
1008

Ribosomal operon RP651 RC0998 Chlamydia L29

Aquifex aeolicus Aq001-021 Ribosomal operon Aq018a Archaea L29

Cluster 2

Rickettsia prowazekii 
Rickettsia conorii

RP800-804, RC1234-
1238

F0F1-type ATPase RP804 RC1238 Gram-
positive bacteria

Delta subunit

Ureaplasma urealyticum UU128-138 F0F1-type ATPase UU128, UU132_1, 
UU133, UU134

Gram-negative 
bacteria

Epsilon subunit, alpha 
subunit, delta subunit, 
delta subunit

Mycobacterium leprae ML1139-1146 F0F1-type ATPase ML1139 Gram-negative 
bacteria

A chain protein

Cluster 3

Rickettsia prowazekii 
Rickettsia conorii

RP134-139, RC175-
180

Ribosomal proteins, 
transcription 
antiterminator, SecE

RP134 RC175 Gram-positive 
bacteria

Preprotein 
translocase subunit 
SecE

Cluster 5

Aquifex aeolicus Aq1968_1_2 two 
domains

Histidine biosynthesis Gram-negative 
bacteria

Phosphoribosyl-AMP 
cyclohydrolase

Cluster 8

Methanococcus 
jannaschii

MJ1037-1038 Tryptophan 
biosynthesis

MJ1037 Bacteria Tryptophan synthase 
beta chain

Methanobacterium 
thermoautotrophicum

MTH1655-1661 Tryptophan 
biosynthesis

MTH1660 Gram-negative 
bacteria

Tryptophan synthase 
alpha chain

Halobacterium sp. VNG0305-0309 Tryptophan 
biosynthesis

VNG0307G Bacteria Tryptophan synthase 
beta chain

Bacillus subtilis 
Bacillus halodurans

PabB-folK BH0090-
0095

Tryptophan 
biosynthesis

PabB, BH0090 Gram-negative 
bacteria

Anthranilate/para-
aminobenzoate 
synthases component 
I

Cluster 9

Halobacterium sp. VNG0635G-0647G NADH:ubiquinone 
oxidoreductase

VNG0640G Gram-negative 
bacteria

NADH 
dehydrogenase-like 
protein

Cluster 18

Rickettsia prowazekii 
Rickettsia conorii

RP423-425, RC0588-
0590

Lipid metabolism RP425, RC0590 Spirochetes Undecaprenyl 
pyrophosphate 
synthase

Cluster 27

Halobacterium sp. VNG1306G-1310G Succinate 
dehydrogenase/
fumarate reductase

VNG1310G Actinobacteria Succinate 
dehydrogenase 
subunit C
Genome Biology 2003, 4:R55
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Cluster 29

Mycoplasma genitalium 
Mycoplasma pneumoniae

MG461-466 MPN677-
682

Housekeeping MG466 MPN682 Gram-negative 
bacteria

Ribosomal protein 
L34

Cluster 34

Thermotoga maritima TM0548-0556 Leucine/isoleucine 
biosynthesis

TM0552 TM0555 
TM0554

2-Isopropylmalate 
synthase 3-
Isopropylmalate 
dehydratase, small 
subunit 3-
Isopropylmalate 
dehydratase, large 
subunit

Pyrococcus abyssi PAB888-895 PAB0890 PAB0893 Bacteria 2-Isopropylmalate 
synthase (LeuA-1) 3-
Isopropylmalate 
dehydrogenase (LeuB)

Clostridium 
acetobutylicum

CAC3169-3174 Leucine/isoleucine 
biosynthesis

CAC3172 CAC3173 
CAC3174 Archaea

3-Isopropylmalate 
dehydratase, small 
subunit 3-
Isopropylmalate 
dehydratase, large 
subunit 2-
Isopropylmalate 
synthase

Cluster 41

Thermotoga maritima TM1243-1251 Nucleotide 
metabolism

TM1243 Archaea Phosphoribosylaminoi
midazole-
succinocarboxamide 
synthase

Cluster 42

Lactococcus lactis L0104-0108 Arginine biosynthesis L0107 Gram-negative 
bacteria

Acetylglutamate 
kinase

Thermotoga maritima TM1780-1785 Arginine biosynthesis 
TM1784

Archaea Acetylglutamate 
kinase

Cluster 48

Borrelia burgdorferi BB0054-0061 Carbohydrate 
metabolism 
(glycolysis, 
gluconeogenesis)

BB0057 Gram-positive 
bacteria

Glyceraldehyde-3-
phosphate 
dehydrogenase

Cluster 54

Thermotoga maritima TM1780-1785 Arginine biosynthesis TM1780 Gram-negative 
bacteria

Argininosuccinate 
synthase

Cluster 63

Mycoplasma pneumoniae 
Mycoplasma genitalium

MPN573-574 MG391-
392

Molecular chaperones MPN574 MG393 Gram-negative 
bacteria

Heat shock protein 
(groES)

Cluster 82

Mycoplasma 
pneumoniae, 
Mycoplasma genitalium

MPN535-536 MG358-
359

DNA replication, 
recombination and 
repair

MPN536 MG359 Gram-negative 
bacteria

Holliday junction 
resolvasome helicase 
subunit

Table 2 (Continued)

Examples of probable mosaic operons
Genome Biology 2003, 4:R55
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Lipopolysaccharide biosynthesis operon in Methanothermobacter 
thermoautotrophicus    and Deinococcus radiodurans
The genes of the lipopolysaccharide biosynthesis (rfbABCD)
operon appear to have been extensively and independently
shuffled in many prokaryotic genomes and might have under-
gone multiple horizontal transfers. This conclusion is sup-
ported both by examination of the operon organization
(Figure 5a) and by phylogenetic tree analysis (Figure 5b-e).
The trees showed a clear affinity between the rfbA, rfbB, rfbC
genes of Methanothermobacter thermoautotrophicum and
Clostridium acetobutylicum (Figure 5b-d), with Fusobacte-
rium nucleatum and Listeria monocytogenes joining the
cluster in the case of rfbB (Figure 5b), whereas M. thermoau-
totrophicum RfbD clustered with its archaeal orthologs as
expected (Figure 5e). The genes of the rfbABCD operon in
Methanothermobacter are shuffled compared to the proba-
ble ancestral order, which is found in many bacteria and C.
acetobutylicum also shows a rearrangement (Figure 5a). One
likely scenario in this case is that M. thermoautotrophicum
acquired the rfbABCD operon with the typical gene order
from a bacterium of the clostridial lineage, which was fol-
lowed by displacement of three resident genes and loss of one
of the invading genes, accompanied by operon

rearrangement. An alternative scenario is that the rearrange-
ment occurred in the source bacterium of the clostridial
group and Methanothermobacter acquired only the rfbACB
portion, which might have inserted head-to-tail downstream
of the original operon, followed by elimination of the resident
rfbABC (Figure 5a).

Another interesting case of mosaic structure of the same
operon is seen in Deinococcus radiodurans (Figure 5a). Dei-
nococcus RfbA shows clear affinity with proteobacteria (Fig-
ure 5d), whereas RfbD is of archaeal descent (Figure 5e), with
RELL analysis revealing no competing topologies (Table 3).
The remaining two genes of this operon in Deinococcus, rfbB
(DRA0041) and rfbC (DRA0043), have uncertain phyloge-
netic affinities (Figure 5b,5c). Thus, as in the case of M. ther-
moautotrophicus, this operon in Deinococcus was apparently
formed through at least two events of xenologous gene dis-
placement in situ and gene shuffling.

Leucine/isoleucine biosynthesis operon
Perhaps the most prominent case of mosaic operon organiza-
tion is the leucine/isoleucine biosynthesis operon of several
bacteria and archaea, particularly Thermotoga maritima.

Ureaplasma urealyticum UU448-449 DNA replication, 
recombination and 
repair

UU448 Gram-negative 
bacteria

Holliday junction 
resolvasome helicase 
subunit

Cluster 86

Halobacterium sp. VNG6305CC-6306C Tetrahydrobiopterin 
biosynthesis

VNG6305C Gram-negative 
bacteria

Organic radical 
activating enzyme

Cluster 87

Halobacterium sp. VNG0582C-0586C Energy production 
and conversion

VNG0582, 
VNG0583G

Bacteria Cytochrome b subunit 
of the bc complex 
Cytochrome b subunit 
of the bc complex

Cluster 103

Archaeoglobus fulgidus AF0321-0325 Lipopolysaccharide 
biosynthesis

AF0323b Bacteria dTDP-4-
dehydrorhamnose 
3,5-epimerase and 
related enzymes

Deinococcus radiodurans DRA0037-DRA0044 Lipopolysaccharide 
biosynthesis

DRA0044 Archaea dTDP-4-
dehydrorhamnose 
epimerase

Methanothermobacter 
thermoautotrophicus

MTH1789-1792 Lipopolysaccharide 
biosynthesis

MTH1789, MTH1790, 
MTH1791

Gram-positive 
bacteria Bacteria 
Bacteria

dTDP-D-glucose 4,6-
dehydratase dTDP-4-
dehydrorhamnose 
3,5-epimerase dTDP-
glucose 
pyrophosphorylase

*The numbering of gene clusters is from the previously published analysis of gene neighborhoods in prokaryotic genomes [25].

Table 2 (Continued)

Examples of probable mosaic operons
Genome Biology 2003, 4:R55
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Figure 1  (see legend on next page)
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MTH1119 Mth
AF1339 Afu

MJ0543 Mja
SSO0294 Sso

APE0449 Ape
PAB1444 Pab

PH0633 Pho
VNG0099G Hsp

TVN0539 Tvo
Ta1057m Tac

UU238 Uur
MPN172 Mpn

MG158 Mge
Cgl0503 Cgl

SCO4709 Sco
Rv0708 Mtu

ML1856 Mle
aq 018 Aae

SA2040 Sau
OB0126 Oih

BS rplP Bsu
BH0141 Bha

lin2774 Lin
L0412 Lla

SP0216 Spn
SPy0057 Spy

TM1493 Tma
CPn0640 Cpn
CT521 Ctr

DR0318 Dra
FN1638 Fnu

CAC3126 Cac
CT2182 Cte

sll1805 Ssp
all4208 Nsp

tlr0088 Tel
BB0485 Bbu

TP0196 Tpa
HP1312 Hpy
Cj1700c Cje

SMc01302 Sme
mlr0301 Mlo

BMEI0764 Bme
CC1255 Ccr
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This is the only known branched chain amino acid biosynthe-
sis operon, and it is partly conserved in a wide range of bacte-
ria (Figure 6a). Following initial indications from the analysis
of taxon-specific BLAST hits, we constructed phylogenetic
trees for each of the genes of this operon. Unlike other bacte-
ria, Thermotoga has two leuA paralogs, which are adjacent in
the operon. The proteins encoded by these paralogous genes
show clearly distinct phylogenetic affinities: TM0552 belongs
to a distinct clade within the archaeal domain, whereas
TM0553 is part of a Gram-positive bacterial cluster (Figure
6b). This phylogenetic mosaic in Thermotoga extends fur-
ther, with LeuB (TM0556) clustering with proteobacterial
orthologs (Figure 6c), and LeuC (TM0554) and LeuD
(TM0555) with archaeal orthologs (Figure 6d,e). All these
affinities were strongly supported by two versions of boot-
strap analysis (Table 3). The genes encoding LeuA, LeuC, and
LeuD from Thermotoga, Clostridium, Aquifex and both
Pyrococcus abyssi and P. furiosus belong to a well-defined
clade, which also includes a medley of alpha-proteobacteria
and cyanobacteria, within the archaeal domain in the respec-
tive trees (Figure 6b-e). Thus, this sub-operon apparently has
been relatively recently horizontally spread among these
organisms. Pyrococcus abyssi and P. furiosus probably
acquired these genes after the divergence from the common
ancestor with P. horikoshii because the latter has only the typ-
ical archaeal operon (Figure 6a).

Given the apparent propensity of Thermotoga (and other
hyperthermophilic bacteria) for acquisition of archaeal genes
via HGT, it seems most likely that the archaeal version of the
leuACD suboperon originally entered the bacterial domain
via Thermotoga or a related thermophilic bacterium.
Formally, in Thermotoga these events could be classified as a
combination of paralogous (sub)operon acquisition
(TM0554-TM0555 in addition to another paralogous
archaeal gene pair TM0291-TM0292) and xenologous gene
displacements (genes TM0553, TM0556). In Clostridium,
xenologous operon displacement seems to have occurred
because the ancestral operon of the Gram-positive type
apparently had been lost. The subsequent evolution of this
operon in the four organisms proceeded along different
paths. Aquifex has lost the operon structure even for the two
subunits of 3-isopropylmalate dehydratase (LeuB, LeuD).
Different genes in the operons of P. abyssi and C.

acetobutylicum have been translocated and several genes
probably have been independently accrued (Figure 6a). In
both P. abyssi and Thermotoga, the original leuA and leuB
genes within the leuABDC core seem to have been independ-
ently displaced by bacterial orthologs without a clear affinity

ent phylo ((continued from previous page)Figure 1
Genes with different phylogenetic affinities in a ribosomal operon from Aquifex aeolicus and Rickettsia prowazekii. (a) A fragment of ribosomal operon in 
Aquifex aeolicus (the operon from Thermotoga maritima is shown for comparison), Rickettsia prowazekii and Rickettsia conorrii (operons from other alpha-
proteobacteria are shown for comparison). Genes are shown not to scale; the direction of transcription is indicated by arrows and gene numbers/names 
are given inside each arrow. Orthologous genes are shown by the same color. White arrows show genes in each genome that are unique in this operonic 
context. Phylogenetic affinity of a gene is shown as a thick colored border on the respective arrow; black denotes belonging to the reference taxon, red 
denotes not belonging to reference taxon. COG0197 - ribosomal protein L16/L10E; COG0255 - ribosomal protein L29; COG0186 - ribosomal protein 
S17. For species abbreviations, see Materials and methods. (b) Unrooted maximum-likelihood tree for ribosomal protein L16. Branches supported by 
bootstrap probability >70% are marked by black circles. Names of the genes from mosaic operons and the respective branches are shown in red. Branches 
for which the likelihoods of alternative placements were assessed using the RELL method are indicated by circles with numbers (see Table 3). (c) 
Unrooted maximum-likelihood tree for ribosomal protein L29;. the designations are as in Figure 1b. (d) Unrooted maximum-likelihood tree for ribosomal 
protein S17; the designations are as in Figure 1b.

Table 3

Kishino-Hasegawa test for the analyzed cases of apparent 
xenologous gene displacement in situ

Tree* Diff lnL† S.E.‡ RELL-BP§

L19 original 0.0 ML 0.8004

1R2 -12.6 7.7 0.0480

3R4 -6.6 6.6 0.1516

RuvB original 0.00 ML 0.9631

1R2 -27.1 15.4 0.0369

UppS original 0.00 ML 0.9883

1R2 -29.3 12.8 0.0117

NuoH original 0.00 ML 0.8336

1R2 -7.4 7.9 0.1664

RfbA original 0.00 ML 1.0000

1R2 -151.1 25.0 0.0000

RfbD original 0.00 ML 0.9005

1R2 -17.0 13.3 0.0995

LeuA original 0.00 ML 1.0000

1R2 -150.2 25.8 0.0000

3R4 -418.6 31.5 0.0000

5R6 -245.0 27.8 0.0000

LeuB original 0.00 ML 0.9847

1R2 -52.9 18.1 0.0007

3R4 -31.7 14.9 0.0146

LeuC original 0.00 ML 1.0000

1R2 -302.7 31.6 0.0000

3R4 -439.1 32.1 0.0000

LeuD original 0.00 ML 1.0000

1R2 -66.6 17.2 0.0000

3R4 -76.7 16.8 0.0000

*The numbers refer to local rearrangements of the tree as indicated on 
the corresponding figures. †Difference of the Log-likelihoods relative to 
the best tree. ‡Standard error of Diff lnL. §Bootstrap probability of the 
given tree calculated using the RELL method (Resampling of Estimated 
Log-likelihoods).
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In situ displacement of the ruvB gene in MycoplasmaFigure 2
In situ displacement of the ruvB gene in Mycoplasma. (a) Organization of the Holliday junction resolvasome operon and surrounding genes in bacteria. 
COG0632 - Holliday junction resolvasome, DNA-binding subunit, COG2255 - Holliday junction resolvasome, DNA-binding subunit, COG0817 - Holliday 
junction resolvasome, endonuclease subunit, COG0392 - Predicted integral membrane protein, COG0282 - acetate kinase, COG0839 - 
NADH:ubiquinone oxidoreductase subunit 6 (chain J), COG0244 - ribosomal protein L10, COG0732 - restriction endonuclease S subunits, COG0809 - S-
adenosylmethionine:tRNA-ribosyltransferase-isomerase, COG0772 - bacterial cell division membrane protein, COG0624 - acetylornithine deacetylase/
succinyl-diaminopimelate desuccinylase and related deacylases, COG1487 - predicted nucleic acid-binding protein, COG1132 - ABC-type multidrug 
transport system, ATPase and permease components, COG0442 - prolyl-tRNA synthetase, COG0323 - DNA mismatch repair enzyme, COG1408 - 
predicted phosphohydrolases. The designations are as in Figure 1a. For species abbreviations, see Materials and methods. (b,c) Unrooted maximum-
likelihood tree for RuvA (b) and RuvB (c); the designations are as in Figure 1b.
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Genes with different phylogenetic affinities in the lipid biosynthesis operon of RickettsiaFigure 3
Genes with different phylogenetic affinities in the lipid biosynthesis operon of Rickettsia. (a) Organization of the lipid biosynthesis operon and surrounding 
genes in Rickettsia prowazekii and Rickettsia conorrii (operons from three other alpha-proteobacteria are shown for comparison). COG0020 - undecaprenyl 
pyrophosphate synthase, UppS; COG0575 - CDP-diglyceride synthetase; COG0750 - predicted membrane-associated Zn-dependent proteases; 
COG0233 - ribosome recycling factor; COG0528 - uridylate kinase; COG0745 - OmpR-like response regulator; COG0642 - signal transduction histidine 
kinase; COG0729 - outer membrane protein; COG2919 - septum formation initiator; COG0743 - 1-deoxy-D-xylulose 5-phosphate reductoisomerase. 
The designations are as in Figure 1a. For species abbreviations, see Materials and methods. (b,c) Unrooted maximum-likelihood tree for UppS (b) and 
CdsA (c); the designations are as in Figure 1b.
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Figure 4  (see legend on next page)
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with any specific bacterial lineage (Figure 6a). The most likely
scenario for evolution of this operon in Thermotoga is that it
originated as a Gram-positive type operon and subsequently
many genes (or sub-operons) have been displaced in situ
through multiple horizontal transfers and a few additional
genes have been inserted into the preexisting structure. The
alternative but less likely hypothesis involves independent, de
novo operon assembly from genes of different phylogenetic
affinities. Several other apparent HGT events were detected
during the analysis of the phylogenetic trees for leucine bio-
synthesis genes (DR1614 in LeuD tree, DR1610 in LeuC tree
(Figure 6d,e)) but, in these cases, the acquired genes do not
belong to conserved operons.

Conclusions
Intragenomic plasticity and inter-species horizontal mobility
of operons are thought to be important facets of prokaryotic
genome evolution. Indeed, the results presented here indicate
that horizontal transfer of entire operons is the most likely
explanation for most of the findings of co-localized 'alien'
genes in a genome, which is generally consistent with SOM.
However, a substantial fraction - approximately 35% - of
operons with indications of horizontal transfer events appear
to consist of genes with different phylogenetic affinities. Bar-
ring artifacts of phylogenetic analysis, which can never be
ruled out completely, but appear unlikely given the strong
statistical support for the anomalous placement of the genes
in question in phylogenetic trees, two evolutionary scenarios
for the origin of such mosaic operons are conceivable. The
first involves de novo assembly of operons, in part from genes
acquired via HGT, whereas the second one postulates in situ
xenologous displacement of genes within a resident operon.
Analysis of mosaic operons suggested that both scenarios
might apply, but in situ displacement is likely to be more fre-
quent. In several cases, in situ displacement seems to have
occurred between genomes of distantly related parasitic bac-
teria that might have shared a host. A sequence of events that
is often considered as an alternative to HGT is an ancient
duplication with subsequent differential loss of paralogs.
However, in the cases analyzed here, this seems to be a partic-
ularly remote possibility because a tandem duplication fol-
lowed by lengthy evolution of both paralogs within the operon
would be required to mimic in situ displacement. Tandem

pairs of paralogs are uncommon in operons and such a
'smoking gun' was not observed in any of the suspected cases
of in situ displacement.

At first glance, in situ gene displacement seems highly
unlikely: given the vast evolutionary distance separating the
donor and recipient genomes, homologous recombination is
out of the question. In cases when the displacing gene(s) is
located on the periphery of an operon (for example, Figure
5a), a plausible mechanism could involve initial insertion of
the invading gene in the vicinity of the resident operon, fol-
lowed by deletion of intervening genes (provided these are
non-essential). However, when the displacing gene is tucked
between resident ones (for example, Figures 4a, 6a),
displacement must have occurred with surgical precision. The
only conceivable explanation seems to be that HGT is
extremely common in the evolution of prokaryotes and so is
intragenomic recombination, which provides for rare chance
occurrences of in situ displacement. Conceivably, a horizon-
tally acquired gene that displaces the resident ortholog with-
out disruption of operon organization would have its chances
of evolutionary fixation greatly increased, hence the apparent
disproportional survival of the displacing genes. This
explanation does not refute SOM as the conceptual frame-
work explaining the origin of operons but emphasizes the
'altruistic' aspect of the evolution of operons whereby the
operon integrity is maintained by strong purifying selection
at the organism level.

Materials and methods
Sequence data
Amino acid sequences from 41 completely sequenced
prokaryotic genomes were extracted from the Genome divi-
sion of the Entrez retrieval system [27] and used as the master
species set for this analysis. Bacterial species abbreviations:
Aquifex aeolicus (Aae), Bacillus halodurans (Bha), Bacillus
subtilis (Bsu), Streptococcus pyogenes (Spy), Staphylococcus
aureus (Sau), Clostridium acetobutylicum (Cac), Borrelia
burgdorferi (Bbu), Campylobacter jejunii (Cje), Chlamydia
trachomatis (Ctr), Chlamydophila pneumoniae (Cpn), Dei-
nococcus radiodurans (Dra), Escherichia coli (Eco), Haemo-
philus influenzae (Hin), Helicobacter pylori (Hpy),
Lactococcus lactis (Lla), Mesorhizobium loti (Mlo),

In situ gen((continued from previous page)  Figure 4
In situ gene displacement in the NADH-ubiquinone oxidoreductase operon in Halobacterium. (a) Organization of the NADH-ubiquinone oxidoreductase 
operon in selected archaeal and bacterial genomes. COG0838 - NADH:ubiquinone oxidoreductase subunit 3 (chain A), COG3077 - DNA-damage-
inducible protein J, COG0852 - NADH:ubiquinone oxidoreductase 27 kD subunit, COG0649 - NADH:ubiquinone oxidoreductase 49 kD subunit 7, 
COG1905 - NADH:ubiquinone oxidoreductase 24 kD subunit, COG1894 - NADH:ubiquinone oxidoreductase, NADH-binding (51 kD) subunit, 
COG1034 - NADH dehydrogenase/NADH:ubiquinone oxidoreductase 75 kD subunit (chain G), COG1005 - NADH:ubiquinone oxidoreductase subunit 1 
(chain H), COG1143 - Formate hydrogenlyase subunit 6/NADH:ubiquinone oxidoreductase 23 kD subunit (chain I), COG0839 - NADH:ubiquinone 
oxidoreductase subunit 6 (chain J), COG0713 - NADH:ubiquinone oxidoreductase subunit 11 or 4L (chain K), COG1009 - NADH:ubiquinone 
oxidoreductase subunit 5 (chain L), COG1008 - NADH:ubiquinone oxidoreductase subunit 4 (chain M), COG1007 - NADH:ubiquinone oxidoreductase 
subunit 2 (chain N). The designations are as in Figure 1a. For species abbreviations, see Materials and methods. (b-d) Unrooted maximum-likelihood tree 
for NuoH (b), NuoI (c) and NuoJ (d); the designations are as in Figure 1b.
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Mycoplasma genitalium (Mge), Mycoplasma pneumoniae
(Mpn), Mycobacterium tuberculosis (Mtu), Mycobacterium
leprae (Mle), Pasteurella multocida (Pmu), Neisseria menin-
gitidis (Nme), Pseudomonas aeruginosa (Pae), Rickettsia
prowazekii (Rpr), Rickettsia conorii (Rco), Synechocystis
PCC6803 (Ssp), Thermotoga maritima (Tma), Treponema
pallidum (Tpa), Vibrio cholerae (Vch), Xylella fastidiosa
(Xfa), Buchnera sp. (Bsp), Caulobacter crescentus (Ccr), and
Ureaplasma urealyticum (Uur). Archaeal species abbrevia-
tions: Aeropyrum pernix (Ape), Archaeoglobus fulgidus
(Afu), Halobacterium sp. (Hsp), Methanothermobacter ther-
moautotrophicum (Mth), Methanococcus jannaschii (Mja),
Pyrococcus horikoshii (Pho), Pyrococcus abyssi (Pab), Ther-
moplasma volcanium (Tvo), Thermoplasma acidophilum
(Tac), Sulfolobus solfataricus (Sso). In addition, the follow-

ing species were included in the case studies described in the
text; bacteria: Agrobacterium tumefaciens (Atu), Bifidobac-
terium longum (Blo), Brucella melitensis (Rso), Chlorobium
tepidum (Cte), Enterococcus faecalis (Efa), Fusobacterium
nucleatum (Fnu), Lactobacillus plantarum (Lpl), Leptospira
interrogans serovar (Lint), Listeria innocua (Lin), Listeria
monocytogenes (Lmo), Nitrosomonas europaea (Neu), Nos-
toc sp. (Nsp), Oceanobacillus iheyensis (Oih), Ralstonia
solanacearum (Rso), Sinorhizobium meliloti (Sme), Strepto-
myces coelicolor (Sco), Thermoanaerobacter tengcongensis
(Tte), Thermosynechococcus elongatus (Tel), Xanthomonas
campestris (Xca), Shewanella oneidensis (Son); archaea:
Methanopyrus kandleri (Mka), Methanosarcina acetivorans
(Mac), Pyrobaculum aerophilum (Pae), Pyrococcus furiosus
(Pfu).

Genes wih(continued from previous page)  radioduransFigure 5
Genes with different phylogenetic affinities in the lipopolysaccharide biosynthesis operon of Methanothermobacter thermoautotrophicus and Deinococcus 
radiodurans. (a) Organization of the lipopolysaccharide biosynthesis operon in different prokaryotes. COG1091 - dTDP-4-dehydrorhamnose reductase; 
COG1209 dTDP-glucose pyrophosphorylase; COG1898 - dTDP-4-dehydrorhamnose 3,5-epimerase and related enzymes; COG1088 - dTDP-D-glucose 
4,6-dehydratase. The designations are as in Figure 1a. For species abbreviations, see Materials and methods. (b-e) Unrooted maximum-likelihood tree for 
RfbB (b), RfbC (c), RfbA (d) and RfbD (e); the designations are as in Figure 1b.
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Reconstruction of gene neighborhoods
Gene neighborhoods for the 41 compared genomes were
reconstructed as previously described [25]. Briefly, the collec-
tion of clusters of orthologous groups of proteins from com-
plete genomes (COGs) [28] was used as the source of
information on orthologous relationships for detecting con-
served gene pairs. For the purpose of this analysis only 'highly
conserved' gene pairs were considered, that is, those formed
by genes from two COGs that were present in the same orien-
tation and separated by less than three genes in at least 10 of
the compared genomes. This conservative approach was
adopted in order to ensure that all analyzed gene pairs belong
to the same operon. At the next step, overlapping gene pairs
were joined in triplets; each triplet was required to exist in at
least one genome. Overlapping triplets were used to construct
gene arrays by run search in an oriented graph; a gene array
may or may not be found in its entirety in any available
genome. Finally, gene arrays that shared at least three COGs
were clustered into neighborhoods by using a single-linkage

clustering algorithm [25]. Conserved gene pairs that did not
belong to the reconstructed gene arrays were also analyzed.

Searching for candidate horizontally transferred genes
The protein sequences encoded by the genes of each neigh-
borhood were searched against the non-redundant protein
sequence database (NCBI, NIH, Bethesda) using the BLASTP
program. The BLAST hits were analyzed to identify their
potential phylogenetic affinity. For each protein, the best hits
were identified to the taxon to which the given species
belongs (hereinafter, reference taxon) and to other major
taxa; hits to closely related species were disregarded (see
Table 1S in the additional data file). Proteins that had more
significant (lower E-value) hits to a non-reference taxon than
to the reference taxon were considered candidates for hori-
zontal transfer and the respective orthologous protein clus-
ters were subject to further phylogenetic analysis as described
in the next section. If phylogenetic analysis indicated that a
particular gene was likely to be horizontally transferred,

Genes wit((continued from previous page)Figure 6
Genes with different phylogenetic affinities in the leucine/isoleucine biosynthesis operon. (a) Operon organization in different prokaryotic species. 
COG0028 - acetolactate synthase, large subunit; COG0440 - acetolactate synthase, small subunit; COG0059 - ketol-acid reductoisomerase; COG0129 - 
dihydroxyacid dehydratase; COG0119 - isopropylmalate synthases; COG0473 - isocitrate/isopropylmalate dehydrogenase; COG0066 - 3-isopropylmalate 
dehydratase, small subunit; COG0065 - 3-isopropylmalate dehydratase, large subunit. The designations are as in Figure 1a. For species abbreviations, see 
Materials and methods. (b-e) Unrooted maximum-likelihood tree for LeuA (b), LeuB (c), LeuC (d) and LeuD (e); the designations are as in Figure 1b.

COG0065

10

DR1778 Dra
Rv2988c Mtu
ML1685 Mle

SCO5553 Sco
NCgl1262 Cgl

BH3056 Bha
BS leuC Bsu

L0075 Lla
SA1864 Sau

sll1470
all1417 Nsp

tlr0909 Nsp
LA2095 Lint

VC2492 Vch
leuC Eco

YPO0531 Ype
HI0988 Hin

PM1960 Pmu
BUpL06 Bsp

Cj1717c Cje
NMB1036 Nme

Neur0619 Neu
PA3121 Pae
XF2375 Xfa

CC0196 Ccr
AGc4910 Atu
SMc03823 Sme

mll4272 Mlo
CT0614 Cte

MK1208 Mka
PF1679 Pfu

PH1726 Pho
PAB0287 Pab

DR1610 Dra
SSO2471 Sso

PAE1984 Pae
TM0291 Tma
AF2199 Afu

MJ1003 Mja
MTH1631Mth

MA3085 Mac
MK1440 Mka

MJ0499 Mja
MTH1386 Mth

MA1393 Mac
AF1963 Afu

TM0554 Tma
aq 940 Aae
PAB0891 Pab

PF0938 Pfu
CAC3173 Cac

TTE0017 Tte

2,4

1

3

COG0066

10

SCO5554 Sco
NCgl1263 Cgl

Rv2987c Mtu
ML1684 Mle

Cj1716c Cje
L0076 Lla

SA1865 Sau
BH3055 Bha

BS leuD Bsu
CC0195 Ccr

AGc5065 Atu
SMc03795 Sme

mll4408 Mlo
LA2096 Lint

BUpL07 Bsp
leuD Eco
YPO0530 Ype

HI0989 Hin
VC2493 Vch

PM1959 Pmu
Neur0620 Neu

NMB1034 Nme
PA3120 Pae

XF2374 Xfa
sll1444  Ssp

tlr1234 Tel
all1416 Nsp

CT0613 Cte
DR1784 Dra

MK1206 Mka
MK0781 Mka

AF0629 Afu
MTH1387 Mth
MJ1277 Mja

MTH829 Mth
MJ1271 Mja

SSO2470 Sso
PAE1991 Pae

MA1223 Mac
MA3751 Mac

AF1761 Afu
TM0292 Tma

DR1614 Dra
PAB0288 Pab

PH1724 Pho
PF1680 Pfu

aq 1398 Aae
CAC3172 Cac
TM0555 Tma

TTE0018 Tte
PAB0892 Pab
PF0939 Pfu

1

3

2,4

(d) (e)
Genome Biology 2003, 4:R55



R55.18 Genome Biology 2003,     Volume 4, Issue 9, Article R55       Omelchenko et al. http://genomebiology.com/2003/4/9/R55
phylogenetic trees were built also for the genes predicted to
belong to the same operon. When different phylogenetic
affinities were found for genes of the same predicted operon,
this operon was considered to be 'mosaic'.

Phylogenetic analysis
Multiple protein sequence alignments were constructed using
the T-Coffee program [29] and positions containing >70%
gaps were excluded. Distance trees were constructed by using
the least-square method as implemented in the FITCH pro-
gram of the PHYLIP package [30,31]. The least-square trees
were subjected to maximum-likelihood local rearrangement
using the ProtML program of the MOLPHY package, with the
JTT-F model of amino acid substitutions [32,33]. The result-
ing trees are a surrogate for maximum-likelihood phyloge-
nies; exhaustive maximum-likelihood tree construction is
impractical for the number of species analyzed here. Boot-
strap analysis was performed for each maximum-likelihood
tree using the Resampling of Estimated Log-Likelihoods
(RELL) method as implemented in MOLPHY [32-34]. Alter-
native placements of selected clades in maximum-likelihood
trees were compared by using the rearrangement optimiza-
tion (Kishino-Hasegawa) method as implemented in the
ProtML program [34].

Additional data file
Additional data, including schematics of operon organization
and phylogenetic trees for all gene clusters listed in Table 2,
are available in an additional data file (Additional data file 1).
Additional data file 1Additional data, including schematics of operon organization and phylogenetic trees for all gene clusters listed in Table 2Additional data, including schematics of operon organization and phylogenetic trees for all gene clusters listed in Table 2Click here for additional data file
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