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Abstract 

We propose a new model for describing gene regulatory networks that can capture discrete 

(Boolean) and continuous (differential) aspects of gene regulation. After giving some 

illustrations of the model, we study the problem of the reverse engineering of such networks, 

i.e., how to construct a network from gene expression data. We prove that for our model there 

exists an algorithm finding a network compatible with the given data. We demonstrate the 

model by simulating lambda-phage. We also describe some generalizations of the model, 

discuss their relevance to the real-world gene networks and formulate a number of open 

problems.  

Keywords: gene regulation, regulatory networks, regulatory circuits, dynamic systems, finite 

state automata, reverse engineering 

Background 

There are many mechanisms how genes are regulated. An important role in gene regulation 

apparently is played by specific proteins, called transcription factors, which influence the 

transcription of particular genes by binding to specific parts of the DNA in the genome. In 

this way a product of one gene can influence the expression of another gene, and we can 

consider a network of gene regulation. Such regulatory networks or circuits are well studied 

in lambda-phage and some other viruses[1]. If the network involves only few genes, its 

functioning can be understood relatively directly. But what does it mean to understand a gene 

regulatory network of hundreds or thousands of genes? Just describing such a network may be 

highly nontrivial. We think that to be able to understand complex gene regulatory networks, 

first a formal language for describing such networks has to be developed. The language can 
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be graph based and preferably should allow the simulation of the behaviour of the network. 

By simulating a network we can make predictions and compare them to experimental data. If 

the predictions are consistent with the data, then we can say that the model is correct (within 

the given accuracy limits). Such an approach is usual in physics: models (theories) are built to 

explain existing data, then predictions are made, which again are compared to new data. If the 

correspondence is good, it is claimed that the phenomenon has been understood. Preferably, 

the model should not be a black box, but should be interpretable, and ideally its elements 

should have interpretation in the real world consistent with the existing knowledge. At the 

same time, each model involves a simplification of the real world, which is a part of the 

strength of the modelling approaches.  

Various models for gene regulatory networks have been proposed and studied (see for 

instance [2, 3]). In general these models fall into two categories: boolean network based 

models, for instance [4-6], and dynamic systems described by differential or difference 

equations, for instance [7, 8]. Each of these models have their advantages and drawbacks. The 

Boolean model is based on the assumption that the important aspects of gene regulation can 

be described by binary on/off switches, functioning in discrete time steps: the state of the 

network in time point n is determined by its state at time-point n-1. Even if we generalize 

these models to more than two discrete states they cannot describe continuous changes that 

happen in the cell environment. These can be described by differential equation based models, 

which on the other hand cannot easily describe the discrete aspects of gene regulation such as 

binding of a transcription factor to the DNA, which is essentially an on/off event. Also, in a 

differential equation model it is difficult (though not impossible) to describe non-additive 

logics in gene regulation (for instance, competitive events), as well as time delays.  
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Models trying to combine the discrete and continuous components have been proposed, for 

instance in [9-11]. Thomas and Thieffry [12, 13] describe a combined model for qualitative 

description of gene regulatory networks. They introduce a notion of gene state and image, the 

last effectively representing the substance produced by the respective gene. There is a time 

delay between the change of the gene state and the change of the image state. By introducing 

different levels of gene activity and thresholds for switching the gene states, thus they go 

beyond binary models. They study the qualitative behaviours of various feed-back loops in 

their model, and show that they fall into two classes: positive loops leading to multi stable 

states and negative ones leading to periodicity.  

The finite state linear model proposed in this paper combines the discrete and continuous 

aspects of gene regulation in a simple and structured way. It has a boolean network type 

discrete control component, and an environment of substances changing their concentrations 

continuously. Time is continuous, and the state of the network directly determines only the 

concentration change rates, while the state is affected by the concentrations themselves.  

A framework (a formal language) for describing gene regulatory networks enables us to study 

the problem of building particular models from gene expression data -often referred to as the 

reverse engineering of gene networks (e.g., [3, 5]). Until recently there were little quantitative 

data available for building models for gene regulation. Most of the earlier gene network 

models, including [13] are based on observations from gene mutation data leading to 

phenomenological changes and not on direct observations of gene activities. This has changed 

with the advent of DNA microarray technology, which generates huge amounts of data 

characterizing gene activities under various conditions [14-16] and are now being collected in 

various databases [17]. There can be various precise formulations for the reverse engineering 
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problem, and there is a certain analogy between the problems of reverse engineering of gene 

networks and the problem of identifying finite state automata from input/output data [18].  

In this paper we consider two different formulations of the reverse engineering problem. The 

weakest one is finding a gene network consistent with the given data. We prove that this 

problem is algorithmically solvable for our model. The second one involves assuming that the 

data have been produced by some unknown gene network, which we want to reconstruct by 

making experiments. This problem is still open. In the next section we describe the model, 

after which we study the reverse engineering problem. Then we give some informal extension 

of the model, and use it to describe the lambda-phage regulatory circuit. Finally we discuss 

some open problems.  

Results and Discussion 

The definition of the model 

The assumptions on which our model is based are: (1) the gene activity is determined by the 

state of transcription factor binding sites in its promoter region; (2) each binding site can be in 

one of a finite number of states, characterized by having or not having bound a particular 

transcription factor; (3) depending on the states of the binding sites in the promoter, the gene 

can either be silent, or have a particular activity level; (4) if a gene is active, the concentration 

of the substance it produces is growing with a rate dependent on the activity level of the gene, 

otherwise it is decreasing (or staying 0); (5) the state of a binding site depends on the 

concentration of the respective transcription factor(s). To make these assumptions precise and 

to formalize them we have developed the model described below. We begin by describing a 

simpler version of the model, which we call the binary model, where each binding site and 
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each gene have only two states: on or off. We formulate the reverse engineering problem for 

the binary model, before introducing the general case, though the formulation remains the 

same in the general case.  

The binary model 

Informally we assume that we have an environment of n substances 1, … , n having 

concentrations c1(t), … , cn(t), respectively, which may change in time t. We also assume that 

there are, what we call substance binding sites in the environment, each of which can attach 

(bind) a specific substance. In the binary case the binding site can bind only one substance. 

We define a binary binding site b as a triple  

b=(i, a, d), 

where i is the number of the substance (which can bind to b), and a and d are positive real 

constants 0<d<a, called association and dissociation constants, respectively. Each binding 

site can be in one of two states: attached state or detached state. If binding site b = (i, a, d) is 

in detached state, and the concentration of substance i reaches the association constant a, i.e., 

ci(t) ≥ a, then the b switches to attached state. If b is in attached state and the concentration 

ci(t) falls below the dissociation constant d, i.e., ci(t) ≤ d, then b switches to detached state. 

We denote the attached state by 1 and detached state by 0. Thus, the binding site can be 

described as a two state automaton in Figure 1, left. Next we define a binary gene. Each 

binary gene produces one substance. A binary gene can have two states on or off, depending 

on the state of the binding sites regulating this gene. If a gene G is on, then the respective 

substance is being produced and its concentration linearly increases. If G is off, the substance 
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is being degraded by the environment, and its concentration linearly decreases (until it reaches 

0, or the gene switches on). Formally a binary gene is a triple  

G = (B, F, r),  

where B = (b1, … , bk), and b1, … , bk are a subset of the binding sites, F is a boolean function 

called control function, and r = (i, r0, r1), where i is an integer denoting the number of the 

substance produced by the gene, r0 < 0 is a real constant called degradation rate, and r1 > 0 

production rate. We call r a substance generator. Graphically, a gene is represented as in 

Figure 2, left. We can think of the binding sites and the control function, as the promoter of 

the gene, while the substance generator - as the coding part plus transcription machinery. 

The semantics of a gene G = (B, F, r) can be described as follows. Let q1, … , qk be the states 

of binding sites b1, … , bk where B = (b1, … , bk): i.e., qi =1 if bi is in attached state, and qi=0, 

otherwise, at some given time point t'. If F(q1, … , qk) = 1, i.e., the gene is on, then the 

concentration ci(t) of substance i (where r = (i, r0, r1) increases in time with rate r1, i.e., ci(t) = 

ci(t') + (t - t')r1. If Fi(q1, … , qk) = 0, i.e., the gene is off, then, the concentration ci(t) decreases 

with rate r0 while it is positive, or remains equal to 0. 

A binary gene network 

We define a gene network as a set of genes 

 Γ = G1, … , Gn.  

We can use a graphical representation of gene networks to show which gene products can 

attach to which binding sites. An example of such representation is given in Figure 2, right. 
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In general, several genes my share the same binding site (in graphical representation the 

dotted line coming out of a binding site can fork to several control functions). To describe the 

functioning of a gene network let us consider an example in Figure 3 (a more formal 

definition is given in Section 4.1).  

Let Γ1 = (G1, G2), G1 = ((b1), F1, r1), G2 = ((b2), F2, r2), and let us assume that the function F1 

is the negation (i.e., F1(0)=1 and F1(1)=0), while F2 is the identity (i.e., F2(0)=0 and F2(1)=1). 

Gene G1 produces substance 1, gene G2 substance 2, and let b1 = (2,a1,d1), b2=(1,a2,d2), 

r1=(1,r1,0,r1,1), and r2=(1,r2,0, r2,1).  

Further, we assume that at time point t0=0 the substance 1 has some positive initial 

concentration c1(t0)>0, while c2(t0)=0, as shown in the graph in the lower part of Figure 3. We 

also assume that the states of both binding sites are initially equal to 0, i.e., q1=0, q2=0. 

Starting from this state at t0, the network Γ1 functions as follows. Since F1(0)=1, the substance 

1 is produced with rate r1,1 > 0, and the concentration c1(t) is growing. On the other hand 

F2(0)=0, therefore the concentration c2(t) remains 0. This linear change continues until time 

t=t1, when c1(t)=a2, i.e., until the concentration of the substance 1 reaches the association 

constant for binding site b2. At that point b2 switches to attached state 1, and since F2(1)=1, 

gene G2 switches to on state and starts producing substance 2 with rate r2,1. Thus, starting 

from t=t1, the concentration of both substances are growing. This continues until the c2 

reaches a1, at which point b1 switches to on state, switching gene G1 off. The concentration 

c1(t) starts falling, and when it reaches d2, gene G2 switches off and c2(t) starts falling too. 

This continues as shown in Figure 3. The table at the bottom of Figure 3 show the states of the 

binding sites.  
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The assumption that the substance concentrations change linearly for the given state is not 

essential for the model. We think that linearity may be a reasonable approximation in the 

cases where the gene expression rates are far from saturation levels. This assumption can be 

relaxed by changing the linear functions to a function that behave approximately linearly 

while the values are relatively small, decreasing the growth rate for larger values and 

asymptotically approaching some given maximum. An example of such a function is the 

solution of the logistic differential equation dc/dt = rc(1-c/k), where c is the concentration, 

and r and k are constants.  

Another instance where the linearity may be insufficient, is if the degradation rate of a certain 

substance depends on the concentration of another substance (for instance, if one substance is 

degrading the other). Our model can be generalized to capture this situation in a straight 

forward manner, if there are no loops in the dependency graph describing which substances 

degrade which.  

Although the linearity is not an essential feature of the model, in the next sections dealing 

with the reverse engineering, we will stick to this assumption, as we think that the properties 

of a simpler model should be explored first.  

Reverse engineering of gene networks 

Let b1, … , bm, be all the binding sites in the environment, and let Q(t')=(q1(t'), … , qm(t')) be 

their states at time point t'. We call Q(t') the binding site state vector of the network at time 

point t'.  

Let C(t')=(c1(t'), … , cn(t')) be the concentrations of all environment substances at time point 

t'. We call C(t') the environment concentration vector. We say that the binding site state Q(t') 
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and concentration state C(t') are compatible, if for every binding site bj = (i, aj, dj) , if qj = 0 

then ci < aj , and if qj = 1 then ci > dj. We define the network state vector as a pair  

Σ(t') = (Q(t'), C(t'))  

and we say that it is compatible if Q(t') is compatible with C(t'). We often omit t'.  

Note that concentration state vector C(t') = (c1(t'), … , cn(t')) at a given time-point t' can be 

regarded as a concentration measurement. Let us define a measurement series as a pair of 

m-tuples  

M = ((t0, t1, … , tm), (C(t0), C(t1), … , C(tm))).  

The reverse engineering problem for gene networks can be formulated as follows:  

given a measurement series M = ((t0, t1, … , tm), (C(t0), C(t1), … , C(tm))), find a gene network 

Γ that can produce concentrations C(t0), C(t1), … , C(tm) at time points t0, t1, … , tm. In this 

case we say that network Γ is compatible with measurements M. 

Theorem 

The problem of reverse engineering is algorithmically solvable for the linear finite state gene 

network models, i.e., there exists an algorithm that, given a series of measurements M, 

outputs a gene regulatory network Γ compatible with M. 

To prove the theorem, we need to introduce a few auxiliary notions. Given a network Γand a 

compatible starting state Σ(t0), network Γ defines the concentration change graph ∆, which is 

the set of all points C(t)=(c1(t), … ,cn(t)) , for the time interval t ∈ [t0, ∞]. An example of an 
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initial part of such a graph is given in the lower part of Figure 3 and in Figure 4. Note that 

each concentration changes as a piecewise linear function.  

Let Γ = {G1, … , Gn}be a network, where Gi = (Bi, Fi, ri) . Let us consider the sets of all the 

binding sites in the environment and all the substance generators in the network. Each binding 

site and each substance generator depends on two real value constants (association and 

dissociation constants for binding sites, and production and degradation constants for 

substance generators). Let us denote the set of all binding site constants in the network by β, 

and the set of all substance generator constants by γ. Let α = β ∪ γ, and we call α the set of 

the network constants.  

Let us consider an initial part ∆(t0,t') of a concentration change graph ∆ for a network Γ in 

time interval [t0,t'] . The slopes of the linear parts in the graph are determined by a subset of γ, 

while the transition-points by a subset β. We denote these subsets by γ' and β' . We call 

α'=β' ∪ γ' the set of reachable constants for the network Γ in [t0,t'] for the given starting state.  

Finally, for a given network Γ, we define the network structure as the object obtained from Γ 

by ignoring all the network constants (formally, we can substitute all the constants in Γ, for 

instance, by 0). In the graphical representation the network remains the same, but the 

constants disappear. The control functions are a part of the structure.  

Now, to prove the theorem, first, note that given an initial part of a concentration change 

graph ∆(t0,t') , we can find all reachable constants β' and γ' . We also know the number of the 

genes in the network, which equals n. We know the maximal number of binding sites that can 

switch at least once during [t0, t'] from the graph. As there are only finite number of network 

structures for the limited number of genes and binding sites, we can enumerate them. For each 
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structure, we can try all possible combinations of assignments of the constants from β' to the 

binding sites, and γ' to the substance generators and for each combination we can check the 

compatibility of the obtained network with the measurements. In this way, given ∆(t0,t') , we 

can construct a gene network that is compatible with it by an enumeration algorithm.  

To complete the proof of the theorem, it remains to note that ∆(t0, tm) can be obtained from a 

series of measurements, for instance, by joining the points of the respective substance 

concentration by fragments of straight lines (i.e., cj(ti) is joined with cj(ti+1) for all j∈{1, … ,n} 

and i∈{0, … ,m-1}). Given ∆(t0,tm), we can construct the network by exhaustive search as 

described above.  

Unfortunately such an enumeration algorithm needs exponential time and cannot be used in 

practice. We do not know if a polynomial-time reverse engineering algorithm exists for our 

model class. Note that even for finite state automata, the problem of finding a minimal 

automaton compatible with the input/output data is NP-complete [19, 20]. 

The theorem does not guarantee the reconstruction of the original network that has produced 

the concentration vectors. The method that we used in constructing the concentration change 

graph was very crude and can be easily improved to produce a more realistic graph (i.e., a 

graph that is more likely to be produced by the original network), by minimizing the number 

of fragments of straight lines for building the graph. Here, the notion of "more likely" is 

undefined. The problem of reconstructing the original network is formulated in the "open 

questions" section, but next, we generalize our model to non-binary networks, and define the 

functioning of gene networks mathematically more precisely.  
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The multiple level generalization 

For binary genes the control function is boolean, and consequently a gene has only two states: 

on or off. Also, the binding states have only two states. In the general case we assume that a 

binding site can bind more than one substance, and consequently has more than two states. 

We assume that the binding is exclusive, i.e., binding of one substance makes binding of any 

other substance impossible. In this way a binding site can either be in the detached state 

(denoted by 0), or in any of the attached states 1, 2, … , p, characterized by the substance that 

is bound. For a given binding site b that can bind p substances, each substance has separate 

association and dissociation constants ah and dh , where h∈{1, … , p}. In this way a 

generalized binding site can be described by a finite state automaton of the type given in 

Figure 1, right.  

We also assume that a gene can have several expression levels {0, … , k} (the 0 level usually 

meaning that the gene is not expressed). For this we assume that the control function F may 

have more than two values, i.e., instead of being a boolean, the function F maps an n-tuple of 

finite values, to a finite value from 0 to k (i.e., Fi: ({0, … ,m1}, … , {0, … , mn}) → {0,..,k}). 

Respectively the gene can have k+1 states, and there are k+1 different concentration change 

rates r0,…,rk , i.e., the substance generator has the form r=(i, r0,…,rk) . The concentration 

change rate of substance i is defined by the value of F(q1, … , qk) , where q1, … , qk are the 

binding sites of the gene. Concretely, if F(q1, … , qk) = j , then the rate equals to rj .  

Finally, we can also assume that genes can produce more than one substance, therefore in the 

general case a gene is defined as a triple G = (B, F, R) , where R ={r1, … , rp} and ri are the 

substance generators. We assume that all the substances are different (two genes cannot 

produce the same substance). In the graphical representation this implies that the dotted line 
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coming out of a control function can fork to more than one substance generator (for instance, 

see Figure 6). In general, all the lines can fork, but they are not allowed to merge (they 

combine either through a control function or entering the same binding site). A dotted line 

leaving a binding site can enter one ore more control functions, a dotted line leaving a control 

function can enter one or more substance generators, and a solid line leaving a generator can 

enter one or more binding sites. The control functions can be regarded as defining the logics 

of the network, while binding sites and substance generators are mediators transforming 

discrete values into concentration change rates, and concentrations back into discrete values, 

respectively. Together with binding sites, the control function defines promoter (B, F) of gene 

G = (B,F,R) .  

Functioning of a gene network and simulations 

The notion of binding site state vector can be generalized for multilevel networks in a 

straight-forward way (by changing a binary vector to a vector of integers representing the 

states of the respective binding sites at the given moment). The notion of the compatibility of 

the binding site state and concentration vectors can also be easily generalized to multilevel 

situation. Further, we can assume that all the control functions Fi in the gene network have the 

binding site state vector Q = (q1(t), … , qn(t)) as the argument (each function Fi can be 

changed to n argument function by adding dummy arguments for those binding sites which 

actually do not affect the gene). Let 

Σ(i) = (C(ti), Q
(i)) 
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be a compatible environment state, for i ≥ 0 . We define the linear concentration change 

corresponding to state Σ(i) as follows. For a substance j and gene G=(B,F,R) , where 

R={r1,…,rh,…,rm} and Rh = (j, rh,1, … , rh,k), for t ≥ ti we set  

cj(t) = cj(ti) + (t - ti) rh,j,  

where j = F(Q(i)) . Let t = ti+1 be the smallest t > ti , such that (C(t), Q(i)) is not a compatible 

state. Let bj1,…,bjp be the binding sites the states of which are not compatible with C(ti+1) . Let 

Q(i+1) be obtained from Q(i) by changing the states qj1, … , qjp to compatible ones. (In 

principle, there may be more than one way how this can be achieved - we can assume that we 

always change to the compatible state with the smallest number. This situation will not occur 

in the probabilistic generalization discussed in the next section.)  

Let Σ(i)=(C(ti+1),Q
(i+1)). Then, given the initial compatible environment state Σ(i)=(C(t0),Q

(0)), 

the environment changes in the described manner for i=0,1, … . The environment behaviour 

can be visualized as in the example in Figure 4. 

We say that promoter (B,F) of gene G=(B,F,R) is active at a given time point t , if at this time-

point the concentration of the substance produced by the gene G is increasing.  

Already with only a few genes the calculation of the network behaviour becomes quite 

laborious. Therefore we implemented a simulator ("Genenet") for these networks in JAVA. 

Figure 5 left shows the behaviour of a gene network consisting of only two genes, as depicted 

on the right of Figure 5. Both genes have a negative feedback loop to themselves. The first 

gene has an additional negative feedback onto the second gene, while the second gene has an 

additional positive feedback onto the first one (Figure 5, right). This example demonstrates 

that a very simple network of just two genes may show a non-trivial behaviour. 
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A model of lambda-phage 

The model defined above was designed to describe processes involved in transcriptional 

regulation. Many additional cellular processes can be involved in gene regulatory networks. 

This makes some extensions necessary. With minor changes the model can be extended to 

allow the description of cellular processes like protein degradation. Some informal extensions 

are made to improve the readability for humans. The shaded boxes indicate how many 

different output states a control-function can have. The default value is 0,1 indicating the two 

possible states of the substance generator ON and OFF. But more states are possible, e.g. 

OFF, weak activity ON1, strong activity ON2. We demonstrate the usage of our model by 

describing a simplified model of lambda-phage. 

lambda-phage 

A lambda-phage has two modes of operating: lysis and lysogeny (for instance see [1]). During 

the infection of the bacterial cell by the phage a complex decision is made for either lysis or 

lysogeny. In the lysogenic mode the phage DNA is integrated into the bacterial genome, and 

the gene for lambda-repressor cI is the only expressed phage gene. External influences can 

trigger the switch from lysogenic to lytic behaviour. In the lytic mode the phage DNA is 

replicated, excised, new phage particles are produced and in the end the bacterium is broken 

open (lysed) to release the new phages. The lysis-lysogeny decision network is well studied 

and known to involve several cascades of events. In Figure 6 we present a simplified genetic 

network the lambda-phage. To make the graph more readable, we do not draw the lines 

between substance generators (depicted by diamonds) and the related bindingsites (depicted 

by triangles) but instead label them by the respective substances. We also allow more freedom 

to introduce connections between control-functions.  
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The mode of a lambda-phage operating is essentially determined by two proteins CI and Cro. 

If CI is in abundance, the phage is in lysogenic mode, if Cro is in abundance, the phage is in 

lytic mode. Both genes are regulated by the same DNA region (but transcribed in opposite 

directions), which has three binding sites: OR1, OR2 and OR3. Each binding site can bind either 

Cro or CI competitively, but with different affinities. In this way each binding site can be in 

one of three states - unbound, Cro-bound, or CI-bound. Depending on these states the control 

functions PR and PM have different activity levels. The circuit functions like a trigger and has 

two stable state: either cro is transcribed and cI is down-regulated, or vice versa. The 

regulatory cascades of the lambda-Phage are quite complex, for reference please see [1, 21]. 

We will now go through a simplified description (Figure 6).  

On infection of the E. coli-cell by the lambda-Phage, only two promoters PL and PR of the 

lambda-Genome are active. From promoter PL the expression of N and CIII are initiated. 

Between both coding regions there is a leaky terminator of transcription located. Therefore 

CIII is produced at a lower rate than N. A second terminator is located between the coding 

region for CIII and Xis. This terminator is completely stopping transcription. If the 

concentration of N is high enough, the RNA-polymerase is able to ignore the terminators and 

the genes are expressed at the same rate. As it will be important later, transcription from PL 

can be repressed by CI binding to its CI bindingsite.  

The basal activity of promoter PR leads to the expression of cro and at lower level of O, P, 

cII, because there is also a terminator site located. Q is not expressed, because of a second 

terminator located upstream of it.  
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For the lysis-lysogeny decision CII is the crucial protein. It is protected by CIII from 

degradation by cellular enzymes. Thus, the concentration of CII depends on its rate of 

production, the activity of cellular proteinases and the concentration of CIII.  

The promoters PE, PI, PM are active only, if enough CII is present to bind to them. Promoter 

PI initiates the expression of int. The Int protein is important for the integration of the phage-

DNA into the host genome. Promoter PE with CII leads to the production of CI, also called 

lambda-Repressor. Therefore the promoter is called Promoter repressor Early (PE). CI binds 

to the operator sites OR1 and OR2 in promoter PR and to PL, thus blocking transcription from 

PR, PL, PE. But it activates its own synthesis via promoter PM (Promoter for repressor 

Maintenance). Thus the single gene for cI can be either transcribed from PM or PE. Actually 

these promoters are serially organized on DNA level. The promoters PM and PR are sharing 

the operator sites OR1, OR2, OR3 . These sites are bound by increasing concentrations of CI. 

Binding to OR1 and OR2 leads to inactivation of PR and activation of PM. However, binding to 

OR3 at even higher CI concentrations leads to inactivation of PR and PM, thus down-

regulating its own expression.  

At this point, the lambda-DNA is integrated into the bacterial genome and cI is the only 

expressed lambda-Phage gene. An auto-regulation circuit for controlling the concentration of 

CI at a high level is established. This is called the lysogenic state. Bacterial cells at this state 

show immunity to super-infection with lambda-phages, because they contain enough lambda-

Repressor to immediately repress the expression of the newly incoming lambda-phage genes. 

The CI protein, however, is prone to be degraded by some bacterial enzymes, which are 

expressed by the bacterial cell as stress response upon e.g. UV irradiation. When the CI 

concentration is rapidly decreasing because of the degradation by cellular enzymes, PR is not 
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repressed anymore. This leads to production of Cro, the counter-player of CI in the lambda-

system. The degradation of CI triggered by stress response proteins is depicted in our model 

by a circular control-function with an input for the stress response signal, which could 

actually be a bindingsite for a stress response protein.  

The regulatory protein Cro activates its own promoter by competing with CI for binding to 

OR1, OR2 , OR3. It binds to these sites with inverse preference compared to CI. Being a self-

activating system it is leading to a rapid increase of Cro protein in the cell. Cro also allows 

activation of PL, leading to increasing amounts of N. N is an anti-terminator which binds to 

the terminators mentioned before. With N the expression of cIII, xis and int is increasing 

rapidly. Xis and Int are needed for the excision of the lambda-phage-DNA from the bacterial 

genome. From PR not only cro is expressed, but also O, P, cII. O and P are needed for DNA 

replication of the lambda-Phage. With N these genes are produced at a significantly higher 

rate than without. N also allows the expression of Q. Q is an anti-terminator for structural 

genes coded downstream of promoter PR'. This means, once CI is degraded to sufficiently 

low concentrations Cro is rapidly produced and then activating the genes necessary for 

excision from the host DNA, DNA replication and production of new phage particles, leading 

to host cell lysis and setting free new infectious phage particles ("Cro is opening Pandora"s 

box"). 

A lambda-phage simulation 

In our model the promoter PL is represented by the control-function PL , its output is 1 if the 

CI binding site is unbound or bound by Cro and 0 if the bindingsite is bound by CI (the 

control-function would look like "if (Cro-bound OR unbound) return 1 (=ON), if CI-bound 

return 0 (=OFF)"). The first terminator is modelled by introducing a control-function PL1 



http://genomebiology.com/2003/4/6/P5                  Genome Biology  2003,     Volume 4, Issue 6, Article P5          Brazma and Schlitt.  P5.21 

Genome Biology 2003, 4:P5 

which has two inputs, one from a bindingsite for N and the other one from control-function 

PL. The three different possibilities for the production rate of CIII are degradation (state 0), 

production at lower rate (state 1, if N is not bound to PL1 , 80% of full rate) and production at 

high rate (state 2, if the bindingsite for N at PL1 is occupied, full rate). Control-function PL2 is 

leads to a complete stop of transcription. The input of PL2 is the used to model the second 

terminator site. Without N this terminator output of PL1 and a bindingsite for N. The output 

equals the input from PL1 if N is bound, or is 0 if N is not bound. The control-function Pint is 

used to model the transcriptional control of Int. The substance Int is generated either if PL2 is 

active or if the CII binding site of PL2 is occupied.  

The implementation of the lambda-switch in the model is achieved in a similar way. The 

binding sites OR1, OR2 and OR3 can be bound by substance Cro or substance CI and are shared 

by the control-functions PR and PM. The association and dissociation constants for these 

substances to these bindingsites differ, allowing preferential binding in opposite order.  

Using the simulator it is possible to run a simulation of the lambda-phage. Just using a quite 

arbitrary parameter set leads to the expected behaviour. In the beginning all substances are 

produced to a higher or lesser extend. After some time there are smaller changes of substance 

production, some kind of steady state is reached (we will refer to this informally as 

"behaviour" ). Over a wide range of parameter sets we so far only found two principally 

different "behaviours". One possible outcome is a steady state where only CI is produced. We 

will refer to this as lysogeny state (Figure 7, top). The other one reaches a steady state where 

CI and CII are not produced but the other substances are(Figure 7, bottom). To this we will 

refer to as lytic state. The lytic behaviour shows down-regulation of substance CI and up-

regulation of the other substances under control of substance Cro. Some of these are regulated 
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by a negative feedback loop and are limited to a certain concentration. Some of the others are 

growing infinitely. The lysogenic behaviour is exemplified by down-regulation of all 

substances besides CI which shows cyclic up- and down-regulation because of the feedback 

loop controlling its production/degradation. Interesting is to see, that at first the substances are 

up-regulated and until the "decision making" has taken place. Depending on the concentration 

of substance Cro and substance CI either lytic or lysogenic "behaviour" is selected. By 

changing the starting values for the rate of production of substance CII we can trigger the 

model into lytic or lysogenic behaviour. This reflects some property of the "real" lambda-

phage, the dependence on the number of phage particles infecting one cell. If this number is 

high (about 10 phage particles per cell) the preference is for lysogeny otherwise for lysis. In 

our model having several substance generators producing the same substance at a low rate it 

is equivalent to having one substance generator producing the substance at the according 

higher rate. 

The simulator allows to test for the effects of mutations easily, thus it is possible to 

experiment with the model and compare the simulations with the real mutants. 

The potentials of the lambda model have to be examined further, for example for what range 

of parameter sets we get similar behaviours and how many different kind of behaviours we 

can find. But already using only arbitrary numbers gives promising results. What seems to be 

a shortcoming of the lambda-phage model is the infinite growth of some substances (e.g. Int, 

Q). But this might as well be some property of the lambda-phage itself, because it appears in 

the lytic "behaviour" and this leads finally to the lysis of the host cell. There is not strict need 

for a feedback control e.g. of the proteins responsible for the lysis of the cell as the major 

function of these proteins is to kill the cell. The next challenge would be to find parameters 



http://genomebiology.com/2003/4/6/P5                  Genome Biology  2003,     Volume 4, Issue 6, Article P5          Brazma and Schlitt.  P5.23 

Genome Biology 2003, 4:P5 

which are derived from experimentally measured reaction constants. But the purpose of this 

model and simulation is rather to illustrate how the model is working in principle than to 

come up with a new lambda-phage study. 

It is obvious that additions to the model are necessary to get closer to the reality.  

Informally we introduced in Figure 6 already a new kind of control-functions which are 

depicted by circles to stress that this is not an action which takes place on a promoter site. 

These control-functions can have the different current concentrations of substances (depicted 

by smaller circle labelled with the corresponding substance name) as an input and a substance 

generator of a different substance as an output. Thus we can model the influence of cellular 

components on the concentration of a substance, like for instance, a certain proteinase on the 

concentration of its substrate. This is depicted in our model by the circular control-function 

with input sites for CIII, CII and other cellular influences. It is important to add that this 

feature is not yet added to the simulator and not included in the simulation shown in Figure 7. 

In the deterministic model, the state of the network is fully determined by its initial state and 

initial concentrations. To model the behaviour of the decision-making realistically [21], we 

need to introduce a stochastic element in the model. 

Instead of setting precise thresholds for switching from detached to attached state and vice 

versa, we treat these switches as probabilistic events: the higher the concentration, the higher 

the probability of switching to attached state, and smaller to detached state, and vice versa. In 

this way a binary site can be defined as a triple B=(i,A,D) , where as before i is the number of 

the substance that can bind to B , but A and D are two probability distributions, defining the 

probabilities of B switching from a detached to attached state and vice versa, respectively, 

depending on the concentration ci.  
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Open questions 

We would like to extend our model with some informal elements to allow description of the 

regulatory processes that may not be fully understood yet or may be too complicated for 

formal incorporation into the model. The extended model can be regarded as a semi-formal 

language for depicting gene-regulatory networks. The goals of such a semi-formal language 

are twofold: finding a semi-formal description of a network is the first step towards building a 

completely formal model which can be used for simulation (i.e., to "describe" the network to 

a computer) and at the same time it helps to depict the regulatory network in a systematic way 

(to describe regulatory networks to other humans). Note that such a semi-formal approach is 

often used in business modelling, where a formal graph-based description, which allows 

simulations of the given business process, are supplemented with informal comments, that can 

be interpreted only by humans.  

As already noted, the formulation of the reverse engineering problem given in Section 3 is not 

entirely satisfactory, as it does not necessarily lead to the reconstruction of the "correct" 

network. A more satisfactory formulation involves assuming that the data have been produced 

by some unknown regulatory network (a black box), and the task is to find that or an 

equivalent network. For this, first, we need to define the equivalence of gene networks.  

Let Γ1 and Γ2 be two gene networks and let Σ1(t0) and Σ2(t0) be their compatible starting states 

at time point t0 . Let Σ i(t) = (Ci(t),Qi(t)) , for i=1,2 . We say that Γ1 and Γ2 are equivalent for 

the starting states. Σ1(t0) and Σ2(t0) , if C1(t0) = C2(t0) implies C1(t) = C2(t) for all t > t0. We 

say that Γ1 and Γ2 are equivalent, if they are equivalent for every compatible starting states 

Σ1(t0) and Σ2(t0) , for which C1(t0) = C2(t0). We can also define an approximate equivalence, or 
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more precisely, d - equivalence for a constant d ≥ 0 . For this the requirement that C1(t) = 

C2(t) is relaxed to |C1(t) - C2(t)| ≤ d .  

We define the reverse engineering problem in the strict sense in the following way. Let Γ be 

an unknown gene network and let Σ(t0) = (C(t0),Q(t0)) be its compatible starting state. We are 

allowed to measure the concentration state vector C(t) at any given time-point t ≥ t0 . The task 

is to find time points t1, t2, … , tn , such that a network Γ' equivalent to Γ for the given starting 

state can be constructed from the measurements C(t1), C(t2), … , C(tn) .  

A generalized version of the problem is to find Γ' equivalent to Γ if we are allowed to choose 

arbitrary compatible starting states, and make series of concentration measurements for each 

of these states. Finally, a more practical problem is to find a network d -equivalent to Γ, from 

approximate measurements.  

At the moment we do not know if these problems are algorithmically solvable or not, even by 

an enumeration algorithm. They have a certain analogy with the problem of restoring a finite 

state automata from experiments[18]. This is algorithmically solvable, but is NP-hard [19, 

20]. Despite the analogy, situation with the finite state linear networks are different form 

finite state automata in many respects. 

Our theorem on the reverse engineering of gene networks gives us grounds for optimism that 

the reverse engineering problem for gene networks can be solved, still it is likely that heuristic 

methods will be needed for doing this in practice. To reconstruct gene networks all available 

background knowledge, such as knowing which binding sites belong to which gene 

promoters, will have to be used. Therefore systematic studies for regulatory signals in 

genomes, such as [22], will complement the approach followed here.  
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Figures 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 1: Finite state automata describing a binary binding site (left) and a multi-level binding 
site (right).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Left: a graphical representation of a gene. The triangles on the left represent the 
binding sites b1, b2, b3 . The rectangle in the middle represent the control function (in the 
particular example F(x1,x2,x3) = x1 & x2 &  ¬x3 , meaning that the gene is on if and only if the 
first two binding sites are in attached state, while the third in the detached state), and the 
diamond on the right represents the substance generator. Right: an example gene network. In 
this network Γ={G1, G2} , G1=((b1,b2), F1, r1), G2=((b3), F2, r2), b1=(1, a1, d1), b2=(2, a2, d2) , 
b3=(1, a3, d3), r1=(1, r0,1, r1,1) , and r2=(2, r0,2, r1,2) .  The solid lines can be regarded as 
connecting the substance produced by the gene to the respective binding sites, while the 
dotted lines channelling the information about the states of the binding sites and genes. 
Another interpretation of the lines is that the solid lines transmit real numbers, while dotted 
ones - boolean values. 
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Figure 3: The functioning of a simple network of two binary genes with a negative feedback 
loop.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: The environment change graph 
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Figure 5: Left: Output of the simulation program “Genenet” (using Gnuplot for visualisation) 
Right: corresponding network; abbreviations: a1 stands for association constant 1, belongs to 
the bindingsite with the a1,d1 label, d1 is the corresponding dissociation constant; a2, d2, a3, 
d3, a4, d4 correspondingly 
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Figure 6: In-formal description of lambda-phage using the elements defined by our model  
(for further description see text) 
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Figure 7: Simulation of lambda-phage model leading to lysogenic behaviour (top) or lytic 
behaviour (bottom)  
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