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Since the publication of the first entire

genome sequence seven years ago [1], a

multitude of other genomes have been

- or are in the process of being -

sequenced [2]. By the end of 2002, we

witnessed the landmark submission of

the 100th complete genome sequence

in the databases [3]. There are now 106

complete genomes in the public

domain, thanks to advances in

sequencing technology and sustained

funding. An overview, and in particular

the rank ordering, of these genomes

reveals certain interesting trends and

provides valuable insights into possible

future developments.

First, the contribution of genome

sequencing projects in terms of actual

protein sequence entries has been stag-

gering. There are 433,238 protein

sequences derived exclusively from

entire genomes [4] (Figure 1), out of a

total of a million protein sequences

known to date. In contrast, there are

only 101,602 entries in Swiss-Prot

(release 40), underlining the significant

effort that is required for high-quality

annotation [5]. The growth of protein

sequence data coming from entire

genomes is expected to reach over

1 million entries in two years’ time

(Figure 1). Given that approximately

40% of genes in any organism cannot

be assigned a specific functional role

[6], this suggests that in just a few years

hundreds of thousands of sequences

will be uncharacterized. While the

large-scale characterization of protein

function obtained from high-through-

put experimental techniques [7] will

Figure 1
Cumulative number of protein sequence entries (y-axis) in completed genomes (CoGenT, in blue)
and Swiss-Prot (in red) as a function of time (x-axis).
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alleviate some of the above problems, it

is clear that to capitalize on the infor-

mation explosion in genome biology,

more research should also be devoted to

the development of intelligent auto-

mated genome-annotation systems that

are able to predict functional properties

of protein sequences [8]. 

Second, in addition to the well-defined

collection of 106 completed and pub-

lished genomes, there are another 544

ongoing projects, covering a large

number of taxa. Yet, the known taxa of

Bacteria and Archaea are far better rep-

resented among the completed genome

projects compared to the Eukarya

(Figure 2). Using comparative genomics

we have already obtained a glimpse of

the bewildering biological diversity of

the prokaryotic world [9]. Very soon, a

similar trend might emerge for the

Eukarya: 208 out of the 544 ongoing

genome projects are dedicated to

eukaryotic species. However, many

eukaryotic taxa are still not represented

(Figure 2). A better sampling of phyloge-

netic diversity might be required, to fully

explore the genomes of eukaryotic cells.

Third, over time, both the range of

sequenced genome sizes and the selec-

tion of species on the basis of their social

impact has expanded [10] (Figure 3).

Sequenced genome sizes range from 0.5

to 300 Megabases (Mb), with the excep-

tion of the human and mouse genomes,

which span 2,900 and 2,500 Mb respec-

tively (and together constitute almost

90% of the data in the 106 available DNA

sequences). Although species of medical

and academic interest were initially the

main targets of genome projects, there

has been a recent trend to sequence

genomes from species with impact on

agriculture, environmental sciences or

industrial processes. In addition, a

growing number of genomes are being

sequenced in order to provide a better

perspective for the structure and function

Figure 2
Phylogenetic distribution of genome sequencing projects. Archaea and Bacteria are shown to the phylum level and Eukarya to their first taxonomic
branching, with the exception of Metazoa and Fungi. The numbers in parentheses represent the number of completed, published (red) and ongoing (blue)
genome projects. The tree is based on the taxonomy database from the National Center for Biotechnology Information (NCBI). Information about
ongoing genome projects has been obtained from the Genomes OnLine Database (GOLD) [14], as of 22 January 2003.



of evolutionarily related genes and

genomes through comparative analysis.

Thus, 10 years after the computational

analysis of the first eukaryotic chromo-

some [11] and seven years after an

exhaustive analysis of the first complete

genome [1,12], genomic science has

become a stand-alone discipline, and

genome sequencing and computational

analysis have become mutually depen-

dent, intertwined in a fascinating inter-

play. Not so long ago it would have been

unthinkable that from a set of DNA frag-

ments, it would be possible to assemble

a single genome, find the genes, trans-

late them into proteins, identify their

potential functional roles and ultimately

integrate all this structural and func-

tional information into complex bio-

chemical networks [13]. Although there

are still significant challenges, these

technologies, along with scientific

advances, have now come of age and are

expected to have a growing impact on

various aspects of human welfare.
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Figure 3
Representation of completed genome sequences over time (x-axis) and size (y-axis, in Mb,
logarithmic scale) labeled according to their social impact. Genomes from Archaea (squares),
Bacteria (circles) and Eukarya (triangles) are colored according to their academic (blue), medical
(pink), agricultural (light green), ecological (dark green) and industrial (black) relevance.
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