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Summary

Multiple members of the 14-3-3 protein family have been found in all eukaryotes so far
investigated, yet they are apparently absent from prokaryotes. The major native forms of 14-3-3s
are homo- and hetero-dimers, the biological functions of which are to interact physically with
specific client proteins and thereby effect a change in the client. As a result, 14-3-3s are involved
in a vast array of processes such as the response to stress, cell-cycle control, and apoptosis,
serving as adapters, activators, and repressors. There are currently 133 full-length sequences
available in GenBank for this highly conserved protein family. A phylogenetic tree based on the
conserved middle core region of the protein sequences shows that, in plants, the 14-3-3 family
can be divided into two clearly defined groups. The core region encodes an amphipathic groove
that binds the multitude of client proteins that have conserved 14-3-3-recognition sequences.
The amino and carboxyl termini of 14-3-3 proteins are much more divergent than the core
region and may interact with isoform-specific client proteins and/or confer specialized subcellular

and tissue localization.

The 14-3-3 protein family is highly conserved and is repre-
sented throughout the eukaryotic branch of life. The proteins
were discovered in 1967 during a study of the soluble acidic
proteins of the mammalian brain [1] and were named on the
basis of fraction number during DEAE-cellulose chromato-
graphy and location after starch gel electrophoresis. For 25
years, 14-3-3s were generally thought to reside exclusively in
animal brain tissue and to be involved in the function of
neurons. During this early period of research, 14-3-3s were
characterized as a heterogeneous family of dimeric proteins
with a monomer mass of 25-32 kDa and multiple isoelectric
points. One of the first biochemical functions of the 14-3-3s
to be identified was the activation of the neurotransmitter
pathway enzymes tyrosine hydroxylase and tryptophan
hydroxylase, in a reaction requiring calcium and the cAMP-
dependent kinase or calmodulin-dependent protein kinase IT
[2]. Once 14-3-3s were found in Arabidopsis thaliana [3],
maize [4] and other plants, and in tissues other than the
brain, however, perspectives on their presence and roles

broadened, and now 14-3-3s have been found in every
eukaryote that has been screened for their presence. The
vast number of organisms containing 14-3-3s suggests that
this family of proteins is involved in many important biologi-
cal processes [5].

Gene organization and evolutionary history

Each 14-3-3 protein sequence can be roughly divided into
three sections: a divergent amino terminus, the conserved
core region and a divergent carboxyl terminus. The high level
of conservation in the core region is demonstrated in
Figure 1a, which shows a similarity plot derived from an
alignment of selected 14-3-3s. A phylogenetic tree generated
from the full alignment of the core region is shown in
Figure 2 and demonstrates that plant 14-3-3s fall into two
groups, an epsilon (g) group and a non-epsilon group [6,7].
The plant non-epsilon group is very different from plant ¢ iso-
forms and animal isoforms. Additional complex groupings
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Figure |

Conservation of 14-3-3 proteins. (a) A graph of percentage similarity derived from (b), which shows a multiple sequence alignment of 40 selected 14-3-3
isoforms. Highly conserved helices in (a) are in red and are indicated by numbers that correspond to helices in the crystal structure of Figure 3. The
alignment in (b) was created using Clustal W [39]. Residues in red are 100% conserved across all isoforms; residues in blue are highly conserved. These
red and blue colors correspond to the red and blue regions of the crystal structure shown in Figure 3.

and subgroupings are apparent, but the tree must be evalu-
ated carefully because not all species are represented by a
complete genome sequence [8]. The presence of the divergent
termini and the few amino-acid changes that do occur within
the conserved region result in multiple isoforms in most
organisms and present the potential for client-specific inter-
actions occurring in distinct cellular locations [9].

Although 14-3-3s are found throughout the eukaryotes, Ara-
bidopsis is an excellent model system for studying 14-3-3s
for two reasons: it is a higher eukaryote with a fully
sequenced genome and it has a large family of thirteen
14-3-3 isoforms [7]; there is also a wealth of knowledge on
key biological pathways. In Arabidopsis, the 14-3-3 epsilon

group has five members (1 (mu), &, © (pi), 1 (iota), and
o (omicron) and the non-epsilon group has eight members
(x (kappa), A (lambda), y (psi), v (nu), v (upsilon), ® (omega),
o (phi), and y (chi)). The presence and chromosomal location
of all Arabidopsis 14-3-3 isoforms is known (Table 1); there is
at least one 14-3-3 on each of the five chromosomes. Similar
diversity in chromosomal distribution occurs in other species
where multiple 14-3-3s have been found.

Characteristic structural features

The conserved middle core region of the 14-3-3s encodes an
amphipathic groove that forms the main functional domain,
a cradle for interacting with client proteins. Extensive

Figure 2 (see the figure on the next page)

Phylogenetic relationships of 14-3-3s. This tree is a rooted cladogram from a neighbor-joining analysis [40] of the 133 different full-length 14-3-3 isoforms
that are currently available in the GenBank database [37], with Dictyostelium discoideum 14-3-3 as the outgroup. Arabidopsis isoforms are highlighted in
green. The separation of plant epsilon and non-epsilon 14-3-3 proteins is clearly visible.
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Dictyostelium discoideum
Fritillaria cirrhosa

Arabidopsis thaliana GF14 Omicron
Tobacco Roots and Flowers

Tomato SIG74

Tobacco bZIP reg D75

Populus x canescens 260AAa

Vicia faba Protein B
Maackia amurensis
Soybean GF14 C

Cionia intestinalis
Drosophila melanogaster Epsilon
Xenopus laevis Epsilon
Rat Epsilon

Human Epsilon

Sheep Epsilon

Fucus vesiculosus
Schistosoma japonicum
Schistosoma mansoni 1
Geodia cydonium

Human Gamma

Cow Gamma

Human Eta ASI

Mouse Eta KCIP1

Fundulus heteroclitus A

C. elegans 1

C. elegans 2

Drosophila melanogaster Zeta 1
Drosophila melanogaster Zeta 2
Human Beta

Cow Beta

Rat Beta

Mouse Beta

Xenopus laevis Zeta

XP 018019 man

XP 005100 man

Human Zeta

Cow exoenzyme S activator
Mouse Zeta

Rat Zeta

Human Tau HSI

Mouse Tau

Rat Theta

Human Sigma

Mouse Sigma 2

Mouse Sigma 1

Echinococcus multilocularis 1
Echinococcus granulosus
Plasmodium knowlesi

Eimera tenella
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Toxoplasma gondii

Tetrahymena pyriformis
Entodinium caudatum 2
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Schistosoma mansoni Epsilon
Entamoeba histolytica 1
Entamoeba histolytica 2
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RA24 Fis. Yeast

RA25 Fis. Yeast
Chlamydomonas reinhardtii 1433 Like
Triticum aestivum TaWIN
Tobacco Protein G

Vigna angularis B

Soybean GF14 B

Tobacco Protein D

Tomato Protein 1

Potato 35G
[Arabidopsis thaliana GF14 Rappa

Triticum aestivum TaWINL
Oryza sativa GFldd

Picea glauca 259AA

Populus x canescens 26133
Vigna angularis &

Pisum sativum 14331like 260AA
Oenothera elata

Vicia faba Protein A
Cucurbita pepo 32kDa endonuclease
Brassica napus GF14 Omega
Arabidopsis thaliana GF14 Omega
Arabidopsis thaliana GF14 Phi
Helianthus annuus

Tobacco Protein F

Tomato Protein 6

Potato 16R

Tomato SP shoot & flower reg
Tobacco Protein A

Tomato SIGS

Tomato Protein 5

Potato RA215

Tobacco Protein B

Tomato Protein 2

Tomato pBLT3
Lilium longiflorum 1433 Like Protein
Oryza sativa GFldc

Barley 1433 263AA

Barley Protein B

Oryza sativa GFl4b

Zea mays GF1412

Zea Mays GF146
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Potato Leaf Specific

Tomato pBLT4

Mesembryanthemum crystallinum
Populus x canescens 262AA P201
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Arabidopsis thaliana GF14 Psi
Arabidopsis thaliana GF14 Nu

Arabidopsis thaliana GF14 Upsilon

Figure 2 (see the legend on the previous page)
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investigation of the 14-3-3 binding site of the mammalian
serine/threonine kinase Raf-1 has produced a consensus
sequence for 14-3-3-binding, RSxpSxP (in the single-letter
amino-acid code, where x denotes any amino acid and p
indicates that the next residue is phosphorylated) [10]
which has been verified through peptide library screening
[11]. A common, but not exclusive, requirement of 14-3-3
ligands is the phosphorylation of a serine or threonine
residue in the target sequence. The phosphorylated consen-
sus sequence does not, however, fully represent every ligand
that 14-3-3s can bind: they are also known to bind other
non-phosphorylated sequences such as GHSL [12], and
WLDLE [13]. A common, but not exclusive, requirement of
14-3-3 ligands is the phosphorylation of a serine residue in
the target sequence. For those client proteins whose target
sequences undergo phosphorylation, the binding of 14-3-3s
to the target is the major step of a signal-transduction event.
Despite the simplicity of the binding-site requirements, a
diverse array of proteins potentially interact with 14-3-3s;
some reports suggest that as many as 20% of Arabidopsis
proteins are clients for 14-3-3s [14].

Our knowledge of the three-dimensional structure of 14-3-3s
is based on the model derived from X-ray diffraction of the
crystals of the { and T mammalian isoforms [15,16]. The high
level of conservation of 14-3-3 amino acid sequence in the
conserved core allows the general features of this structural
model to be applied to all known 14-3-3s. The monomer con-
sists of nine o helices organized in an antiparallel manner,
forming an L-shaped structure (Figure 3). The interior of the
L-structure is composed of four helices: H3 and Hs, which
contain many charged and polar amino acids, and H7 and
Ho9, which contain hydrophobic amino acids. These four
helices form the concave amphipathic groove that interacts
with target peptides. An alignment of all currently known
full-length isoforms provides evidence that this groove is
over 70% conserved (Figures 1 and 3). Five of the most
highly conserved regions correspond to helices H1, H3, Hs,
H7, and Hg (Figure 1). The conserved amphipathic groove is
the site for ligand binding; amino acids Lys49, Arg56, and
Argi127 in mammalian 14-3-3 { sequences have been demon-
strated to interact with the phosphorylated amino acids of
ligands (serine/threonine kinases Raf-1 and Ber) by muta-
tional [17-19] and co-crystallization [11,13] experiments; the
latter have also shown that both phosphorylated and non-
phosphorylated ligands bind in the amphipathic groove [13].
The peptides bound by 14-3-3s adopt an extended conforma-
tion, which is thought to reduce steric hindrance between
neighboring amino acids of the ligand [20].

The 14-3-3 dimerization interaction occurs between the
amino-terminal helix H1 of one monomer and helices H3
and H4 of the opposing monomer; the high conservation of
amino-acid sequence along helices H1 and H3 among
various isoforms allows 14-3-3s to heterodimerize
(Figure 3) [21,22]. Two identical or different client proteins

Figure 3

The crystal structure of 14-3-3s. The model shown is derived from the
human 14-3-3 { isoform (PDBIQ)JB [22]) and is shown from () the top
and (b) one side as visualized by the 3Dmol software found in the Vector
NTI 7.0 Suite. Helix numbers are denoted from HI near the amino
terminus to H9 near the carboxyl terminus. Red and blue areas correspond
to residues of 100% identity and high conservation, respectively, and
correspond to colors on the alignment (Figure 1). Yellow areas correspond
to regions of reduced similarity and green areas indicate the nuclear export
signal [22].

can be bound simultaneously by the dimer. This dual
interaction means that possible roles of 14-3-3s include
acting as adapters capable of bringing disparate client
proteins together or moving or rearranging two different
regions of the same protein. An example of the potential
role of 14-3-3 dimers as adapters comes from studies of
14-3-3s interacting with the plant plasma-membrane
proton ATPase and the plant toxin fusicoccin [6]. It has
been suggested that the 14-3-3 dimer binds the carboxy-
terminal autoinhibitory (C-TA) domain of the ATPase in
the presence of magnesium, creating a binding site where
fusicoccin can then interact [6]. Once fusicoccin is bound,
the complex of 14-3-3 and the ATPase is stabilized and the
C-TA domain is displaced, allowing the ATPase to become
fully active.



Localization and function

In general, 14-3-3s are distributed widely throughout the
cell, supporting the argument that they are involved in mul-
tiple protein-protein interactions in a plethora of biological
roles. There is, however, some differential subcellular local-
ization, suggesting an element of specialization among spe-
cific isoforms. Localization data have been collected for eight
of the Arabidopsis isoforms using isoform-specific antibod-
ies and fusions of 14-3-3 to green fluorescent protein (GFP;
Table 1). These data do not necessarily exhaust all possible
locations for each isoform; instead, they support the idea
that certain isoforms are recruited to distinct subcellular
locations. The localization of 14-3-3 k¥ and v was studied
using carboxy-terminal GFP fusions in transgenic Arabidop-
sis [14]. Fusions of k with GFP tended to localize to the
plasma membrane, whereas v-GFP fusions tended to be
found in the cytosol [14]. Additional data collected using
microscopy and immuno-cytochemistry of total nuclear
extracts showed that at least five different forms of 14-3-3s
are found in the nucleus [23]. Chloroplast stromal extracts
screened with isoform-specific antibodies showed that
14-3-3 W and € (members of the epsilon group) and 14-3-3 v
and v (members of the non-epsilon group) were the only
14-3-3s prominently located in the chloroplast [24]. The
presence of the two non-epsilon members 14-3-3 v and v in
the chloroplast suggests that these proteins, although
located on distinct branches of the phylogenetic tree, may
share similar roles and cellular locations [25]. 14-3-3 € and n
were also found in starch grains [26]; € has also been found

Table |
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at the nuclear envelope during 14-3-3-GFP studies. GFP-»
fusion studies showed that 14-3-3 nuclear localization is reg-
ulated by the cell-cycle [27]; generally, 14-3-3-@-GFP fusions
were excluded from the nucleus, but they accumulated in the
nucleus just after nuclear division and then relocated back
out of the nucleus just before completion of cytokinesis [28].
In addition, a nuclear export signal was identified in the
14-3-3s of the fission yeast Schizosaccharomyces pombe
that is required (in concert with the Crmi nuclear export
machinery) for the shuttling of the mitosis-inducing protein
Cdc25 out of the nucleus following DNA damage [29].
Nuclear shuttling has emerged as an important biological
role for 14-3-3s [29], and the nuclear export signal
(I/LxxxLxxxLxL) is highly conserved in the 133 full-length
14-3-3 sequences currently available (Figures 1 and 3).

The 14-3-3s are also differentially expressed among tissues
and organs (Table 1). Arabidopsis 1y, A, |1, and € are found in
the leaves; y and A are also expressed in the stems and
flowers [30], and y is expressed in pollen grains and stigma
papillar cells [25]. The fact that 14-3-3s are differentially
expressed in various tissues and differentially localized in
subcellular compartments adds a layer of complexity to the
examination and determination of biological roles for
14-3-3s, a complexity that must be reconciled with the highly
conserved nature of 14-3-3-target interactions.

The identification of mutants and the use of transgenic
organisms have provided some insight into some of the

Genetic, cellular and functional information on Arabidopsis 14-3-3s

Gene name  Isoform Locus*  Cellular localizationt Tissue distribution ~ Gene accession number [37]

GRFI Chi (x) At4g09000 N Pollen, stigma papillar cells u09377
GRF2 Omega (m) Atlg78300 ? ? uU09376
GRF3 Psi (y) At5g38480 ! Stems, leaves, flowers u09375
GRF4 Phi (¢) Atlg35160 Nm, Pm, Ct ? AF001414
GRF5 Upsilon (v) At5g16050 Nm, Pm, Ct ? AF001415
GRFé Lambda (1) At5g10450 N, Pm, Ct Stems, leaves, flowers AF145298
GRF7 Nu (v) At3g02520 Nm, Pm, Ct ? AF145299
GRF8 Kappa (k) At5g65430 N, Pm/Cw, Ct ? AF145300
GRF9 Mu (w) At2g42590 Sg Leaves AF145301
GRFI0 Epsilon (g) Atlg22300 Ne, Pm, Ct, Sg Leaves AF145302
GRFI'1 Omicron (0) Atlg34760 ? Stems, roots, flowers AF323920
GRFI2 lota (1) Atlg26480 ? Flowers AF335544
GRFI3 Pi () Atlg78220 ? ? AAF18556

*The number after ‘At’ denotes the chromosome. TN, nucleus; Nm, nuclear membrane; Pm, plasma membrane; Ct, cytoplasm; Cw, cell wall; Sg, leaf
starch grain; Ne, nuclear envelope [7,14,30]. For further information on 14-3-3s, please see the Ferl lab website [38].
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biological roles and locations of some 14-3-3s. For instance,
a mutation in the RAD24 protein, one of the two 14-3-3s in
S. pombe, reduces the yeast’s ability to keep DNA damage in
check [28]. In Saccharomyces cerevisiae, disruption of the
14-3-3 genes BMH1 and BMH2 creates a lethal phenotype
that can be rescued by introducing 14-3-3 isoforms from Ara-
bidopsis, Dictyostelium discoideum, or Homo sapiens [31].
The Leonardo (14-3-3 {) protein of Drosophila melanogaster
is known to regulate presynaptic function, and its mutation
results in the death of mature embryos [32]. Two transgenic
Arabidopsis lines, one carrying an antisense construct
against 14-3-3 | and another against 14-3-3 € show dramatic
increases in starch production in leaves [26].

Various 14-3-3s in a variety of species have been found to
interact with proteins involved in signal transduction (such
as Raf-1 [33]), apoptosis (such as the Bcl2-related protein
Bad [34]), cell-cycle control (such as Cde25 [35]), starch syn-
thesis [26], nitrogen metabolism [36], and ATP regulation
(reviewed in [6]).

Frontiers

Initially, discoveries of 14-3-3s were almost coincidental in
nature; in many cases their identification was serendipitous
after investigating other biochemical questions. Once it
became established that these proteins were ubiquitous,
research was directed toward identifying the number and
sequences of isoforms present in different species as well as
determining their functional diversity. As more genomes are
sequenced, experimental tasks will move towards elucida-
tion of general roles as well as investigation of isoform-spe-
cific roles in order to address the implications of 14-3-3
family diversity within organisms. Such studies are key to
understanding the current conundrum: the conservation of
14-3-3s throughout eukaryotes suggests that some central
biological roles might be served by any 14-3-3 protein, yet
the diversity of 14-3-3 isoforms argues for a multitude of
specific roles. Indeed, some combination of both concepts
might be the case, with some roles being served by any
isoform, and other roles requiring isoform-specific interac-
tions. In any case, all the current data suggest that interac-
tions involving 14-3-3 proteins are critical for the correct
function of higher-order biological systems.

The presence of 14-3-3 proteins in most, if not all, eukaryotic
cells, but not in any prokaryotic cells, offers an interesting
opportunity to study the early evolutionary history of this
protein family and the concomitant development of eukary-
otic regulatory processes.
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