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Summary

Mitogen-activated protein MAP kinases are key signal-transducing enzymes that are activated by a
wide range of extracellular stimuli. They are responsible for the induction of a number of cellular
responses, such as changes in gene expression, proliferation, differentiation, cell cycle arrest and
apoptosis. Although regulation of MAP kinases by a phosphorylation cascade has long been
recognized as significant, their inactivation through the action of specific phosphatases has been
less studied. An emerging family of structurally distinct dual-specificity serine, threonine and
tyrosine phosphatases that act on MAP kinases consists of ten members in mammals, and
members have been found in animals, plants and yeast. Three subgroups have been identified that
differ in exon structure, sequence and substrate specificity.

The mitogen-activated protein (MAP) kinases are evolution-
ary conserved enzymes that play an important role in
orchestrating a variety of cellular processes, including prolif-
eration, differentiation and apoptosis [1,2]. To date, four
major discrete groups of MAP kinases have been identified
in mammalian cells, known as the extracellular signal-
regulated kinases (ERK1 and ERK2), the c-Jun amino-terminal
kinases (JNK1, JNK2 and JNK3), the p38 kinases (p38a,
P38B, p38y and p383) and ERK5/Big MAP kinase 1 (BMK1).
MAP kinases are part of a three-tiered cascade consisting of
a MAP kinase, a MAP kinase kinase (MAPKK, MKK or MEK)
and a MAP kinase kinase kinase (MAPKKK or MEKK). Phos-
phorylation of the threonine and tyrosine residues in the
T-loop of the MAP kinase, by its upstream kinase, results in
activation. The activation of MAP kinases is not a simple
switch, however, as both the duration and magnitude of acti-
vation is crucial in determining the physiological outcome in
cells [3]. Thus, it seems likely that dephosphorylation of the
MAP kinases is vital for their control. This is achieved by
removal of phosphate groups from either the threonine
residue or the tyrosine residue, or both. Both protein
serine/threonine phosphatases and protein tyrosine phos-
phatases have been reported to dephosphorylate MAP
kinases. In the past decade, however, some dual-specificity

phosphatases (DSPs) have been recognized as key players
for inactivating different MAP kinase isoforms; this class of
phosphatases has been designated MAP kinase phos-
phatases (MKPs).

Although the MKPs form a structurally and functionally dis-
tinct subclass among the large number of protein phos-
phatases present in eukaryotic genomes, there is a great deal
of confusion regarding their classification. In this article we
discuss the family of ‘classical’ MKPs that have been defini-
tively shown to play a role in the de-activation of MAP
kinases. Where relevant, we also mention the closely related
low-molecular-weight phosphatases, whose role in MAP
kinase regulation is controversial. Other more distantly
related DSP families, including members of the FYVE family,
which have high sequence similarity to myotubularin, and of
the Cdc2s family, which dephosphorylate cyclin-dependent
kinases, are beyond the scope of this review.

Gene organization and evolutionary history
Gene organization

To date, 10 genes encoding members of the classical MKP
family have been isolated and characterized from mammalian
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genomes (see Table 1). They all share some common features,
including an extended active-site motif with significant
sequence similarity to the corresponding region of the VH-1
protein tyrosine phosphatase that was isolated from vaccinia
virus [4]. In addition, their amino termini contain two short
regions that are homologous to sequences that flank the Cdc25
phosphatase catalytic site [5] and a cluster of basic amino-acid
residues that play an important role in binding to the MAP
kinases [6]. The MKPs can be further subdivided into groups
depending on their substrate specificity for the MAP kinases,
subcellular localization (nuclear, cytoplasmic or both) and the
structural organization of their genes.

A gene closely related to the MKP family is STYX. The protein
encoded by STYX contains many of the hallmarks of the
MKPs but lacks a critically important catalytically active cys-
teine residue, having a glycine instead [7]. Interestingly,
alteration of this glycine residue to cysteine renders the STYX
protein catalytically active, suggesting that other critical
residues have been retained. STYX appears to function as a
phosphotyrosine/phosphoserine/phosphothreonine-binding
protein analogous to the SH2 and PTB domains. It is unclear
whether it plays any role in signaling through the MAP kinase
pathways, however.

Evolutionary history

On the basis of structures predicted from genomic sequence,
the MKPs can readily be divided into the following sub-
groups: subgroup I, DUSP1, DUSP2, DUSP4 and DUSPs5;
subgroup II, DUSP6, DUSP7, DUSP9 and DUSP10; and sub-
group III, DUSP8 and DUSP16 (Figure 1, Table 1). Division
into these three subgroups is also supported by phylogenetic

Table |

analysis (Figure 2), and to a considerable extent by sub-
strate preference.

The genes of subgroup I consist of four exons [8-11], and the
exact positions of the introns are highly conserved. The first
exon encodes the amino terminus of each of the three pro-
teins and ends within the second of the Cdc25 homology
(CH2) domains. The active-site motif of all four proteins is
encoded within exon 4, and the length of exon 3 is identical
for all these DUSPs, suggesting that they arose from a
common ancestral gene.

Subgroup II genes (DUSP6, 7 and 9, and provisionally 10)
consist of three exons [12]. As with subgroup I, exon 1
encodes the amino terminus and the 3’-most exon encodes
the active site. Unlike subgroup I, however, the central
portion of the protein is encoded by a single exon. DUSP10
has an intron/exon structure consistent with a placement
within subgroup II, but it shares some features with
members of subgroup III, such as a similar MAP kinase
docking-site motif and similar substrate specificity. In addi-
tion, it has an extended amino-terminal region that is not
present in any of the other DUSPs. Assignment of DUSP10
to subgroup II or III or to its own subgroup may need re-
evaluation in the future.

The genes of subgroup III (DUSP8 and DUSP16) consist of
six exons [13-15]. The lengths of exons 2, 3, 4 and 5 are iden-
tical in the two genes. Unlike the two previous subgroups,
however, exon 1 encodes only the first of the CH2 domains.
Exon 2 ends within the same region of the second CH2
domain as does exon 1 of subgroups I and II, however. The

Classification and chromosomal and subcellular localization of DUSP genes

DUSP Subgroup Human protein Species ortholog Chromosomal localization Subcellular localization References
DUSPI | hVHI1/CL100 MKP-1/3CH134 (m) 5q35 Nuclear [8,60-62]
DUSP2 | hPAC-I — 2pl1.2-2qll Nuclear [10,42,62]
DUSP4 | hVH2/TYPI MKP-2 (r) 8pl2-pll Nuclear [42,63-65]
DUSP5 | hVH3/B23 Cpg2l (r) 10925 Nuclear [48,62,66]
DUSP6 1l PYSTI MKP-3/rVH6 (r) 12q22-q23 Cytosolic [49-51,65]
DUSP7 1l PYST2/B59 MKP-X (r) 3p2l Cytosolic [49,51,65,67]
DUSP8 1] hVH5 M3/6 (m) I1pl5.5 Nuclear /cytosolic [13,43,44]
DUSP9 1l MKP-4 — Xq28 Nuclear /cytosolic [45]
DUSPI10 11(?) MKP-5 — 1932 Nuclear /cytosolic [46,52]
DUSPI6 1] MKP-7 MKP-M (m) 12pl12 Cytosolic [14,15,36]

Compilation of DUSP genes identified in the human and other mammalian genomes. The DUSPs are classified into subgroups |, Il or Ill (see text for
details). The various alternative names for each gene in human (h) or rat (r) or mouse (m) are given. The chromosomal location of each gene and the
subcellular localization of the protein product of each gene are also indicated. Multiple names are used in the literature for each member of the MAP
kinase phosphatase gene family. To avoid confusion in this article, we have used the gene names recommended by the human gene nomenclature
committee, which uses the root DUSP (for dual specificity phosphatase). Note that the designation of DUSP16 is provisional.
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Gene structure of the DUSPs. Three distinct gene structures have been described for the DUSPs, allowing their classification into subgroups I, Il and Ill.
Structural motifs (CH2 domains, docking domain and catalytic domain) in the encoded proteins are indicated by shaded shapes and exons by boxes and

roman numerals. The dashed box in subgroup Il is an alternatively spliced exon.
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Phylogenetic analysis of DUSP sequences. Human DUSP amino-acid sequences were aligned and a phylogenetic tree derived using Clustal W [68] on
DNASTAR. The length of the branches is proportional to sequence divergence between proteins. Subgroups |, Il, and Ill are shaded (see text for

further details).

central portion of the protein is encoded by two exons, as in
subgroup I, rather than the single exon of subgroup II. This
suggests that subgroup II genes may have diverged earlier
and that subgroup I and III genes may be more closely
related to each other. Exon 5 encodes the catalytic site of
these DUSPs but not the carboxyl terminus; the sixth exon
encodes the large extended carboxyl terminus, with the
intron between the catalytic domain and the carboxyl termi-
nus of the protein being diagnostic of this subgroup.

Overall, the high conservation of some intron/exon bound-
aries within all three subgroups of DUSPs indicates a
common ancestral gene for each subgroup. The similarities
of substrate specificity among subgroup members suggest
that these ancestral genes are themselves likely to have
shown some substrate preference.

Dual specificity phosphatases have been found in a wide
variety of phylogenetically distinct eukaryotes, including
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yeasts, worms, flies and plants, as well as mammals.
Although budding yeast does not encode any predicted
protein tyrosine kinases, it has 16 dual specificity and low-
molecular-weight phosphatases and five phosphatase-like
STYX genes. A direct role has been demonstrated for the
budding yeast dual specificity phosphatase gene MSG5 in
the regulation of the MAP kinase Fus3 [16]. Six MKPs have
been noted in the Drosophila melanogaster genome
sequence [17]. Of these, two have been characterized: puck-
ered has been shown to encode a MKP that inactivates
basket, the Drosophila equivalent of mammalian JNK [18];
in addition, a Drosophila DUSP6-like gene has recently been
identified [19]. The sequence of the Caenorhabditis elegans
genome includes 26 predicted DSPs, including some MKPs
[20]. One of these, LIP-1, has been suggested to inactivate
MAP kinase, mediating inhibition by the ligand Notch of a
signaling pathway involving the GTPase Ras, during
C. elegans vulval development [21]. Moreover, at least two
MKPs have been identified in Arabidopsis thaliana, one of
which is required for relief from genotoxic stress [22].

Characteristic structural features

Catalytic domain

All the DUSPs share strong amino-acid sequence identity
over their catalytic domains (37%-50%), with members of
certain subgroups sharing up to 75% identity (for example,
DUSP6 with DUSP7 and DUSPg or DUSP8 with DUSP16).
The catalytic domain invariably contains the highly con-
served consensus sequence DX, (V/L)X(V/I)HCXAG(I/V)-
SRSXT(I/V)XXAY(L/I)M, in the single-letter amino-acid
code where X is any amino acid. The three amino acids indi-
cated in bold have been shown to be absolutely essential for
catalysis. The cysteine is required for the nucleophilic attack
of the phosphorus of the substrate and the formation of the
thiol-phosphate intermediate; the conserved arginine binds
the phosphate group of the phosphotyrosine or phospho-
threonine, enabling transition-state stabilization; whereas
the aspartate enhances catalysis by protonating the leaving
group oxygen [23].

Determination of the crystal structure of the catalytic domain
of DUSP6 [24] has revealed that this domain adopts a shallow
cleft conformation, similar to that of VH1-related phosphatase
(VHR) [25]. Within this cleft, the phosphatase is able to
accommodate both phosphotyrosine and phosphothreonine
side chains. In the absence of substrate, DUSP6 exists in a
low-activity state, with key residues (Arg299 and Asp262 in
DUSP6) disengaged from interaction. Upon binding of the
substrate ERK2, however, the active-site residues are
rearranged, adopting a catalytically active conformation [24]
and enabling the dephosphorylation of both Thri83 and
Tyr185 in ERK2 (Figure 3b). In particular, Asp262 (the con-
served aspartate in the consensus sequence) is located in a
loop, 5.5 A away from the nucleophilic cysteine and arginine in
the active site. This suggests that the loop must undergo con-

formational rearrangement for activation. Upon binding of the
substrate ERK2, closure of the Asp262 loop over the active site
occurs, positioning the aspartate residue for catalysis. Thus
DUSP6 adopts a catalytically active conformation [24].

CH2 domains

The amino terminus is much less conserved in the DUSPs
than the catalytic domain. Nevertheless, all DUSPs contain at
their amino terminus two conserved regions that show simi-
larity to the Ced25 phosphatase, designated CH2 domains. In
Cdc2s, these domains flank the catalytic site of the enzyme,
whereas in the DUSPs they are found upstream of the active
site [5]. They have been suggested to play a role in substrate
binding, but this has yet to be formally demonstrated.

Docking sites
All DUSPs have, near to their amino termini, a MAP kinase
docking site, which consists of a cluster of positively charged

(b)

Figure 3

Three-dimensional structure of DUSP6. (a) The amino-terminal Erk-
binding (EB) domain, reproduced with permission from [38]. (b) The
catalytic domain, reproduced with permission from [24].




amino acids [6]. It has been proposed that the number of
consecutive positively charged residues in this docking site
of MKPs may play a role in determining binding specificity
and therefore catalytic activity (Figure 4) [14]. The corre-
sponding docking site on the MAP kinases has been shown
to consist of negatively charged residues (known as the
common docking domain, CD), suggesting that electrostatic
interactions are critical for the binding of MAP kinases and
MKPs. Consistent with this suggestion, an altered form of
ERK2 (D319N) corresponding to the Drosophila sevenmaker
mutation is highly compromised in its ability to bind to, and
activate, DUSP6 [26,27]. The low-molecular-weight DSPs do
not have the MAP kinase docking site present in MKPs, but
VHR (a low-molecular-weight DSP) has been shown to be
capable of inactivating ERK in cells [28,29], suggesting that it
may have a distinct mechanism of interaction.

Further regions that are potentially important for docking to
and activation by MAPKs have now been defined in certain
subsets of MKPs. The FXFP motif, and variants of this
sequence (present in DUSP1, DUSP4, DUSP6, DUSP7 and
DUSP9) has been shown to mediate ERK binding [30-32].
Another such region is the D-domain (or D-box), which
comprises a cluster of basic residues amino-terminal to an
L/I-X-L/I motif [30,32,33]. The consensus for this site was
derived from alignment of the sequence of the delta domain
of c-Jun, the docking site for JNK, with similar motifs found
in other transcription factors that are known targets of the
MAP kinases. This domain is present in all MKPs identified
to date [34] and is thought to mediate binding to both JNK
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and ERK MAP kinases [30,32]. Given the diversity of
docking sites, the prevailing view is that the affinity of the
MKPs for their substrates may be governed by the number,
type and accessibility of docking sites.

PEST sequences

The subgroup III DUSPs, DUSP8 and DUSP16, have an
extended carboxyl terminus containing PEST sequences
(abundant in proline, glutamate, serine and threonine
residues) that are frequently found in rapidly degraded pro-
teins [35]. Removal of the PEST sequences from these pro-
teins can result in their stabilization ([36] and our
unpublished observations), consistent with a role for the
domain in rapid turnover.

Regulation of MKPs

In 1998, Arkinstall’s group [27] demonstrated that binding
of DUSP6 to purified ERK2 enhances the catalytic activity of
the phosphatase. Since then, several papers have attempted
to elucidate the mechanism of catalytic activation of DUSP6
[37,38] and to define the regions of interaction between
DUSP6 and ERK2. The derivation of the solution structure
of the ERK2-binding (EB) domain of DUSP6 [38] has pro-
vided considerable insight into this issue (Figure 3a). The EB
domain of DUSP6 contains a positively charged cluster of
arginine residues that binds to a highly negatively charged
region of ERK2. This binding causes a conformational
change in DUSP6, affecting the association of its EB domain
with its catalytic domain, which results in the re-positioning
of the conserved aspartate residue (Asp262 in DUSP6).

MKP MAP kinase docking site MAP kinase substrates
DUSP1 FSTIVRRRAKGAKGA | INK/SAPK
DUSP2 WNALLRRRARARGPP . p38
DUSP4 CNTIVRRRAKGSVSL i (ERK)
DUSP5 NSVVLRRARGGAVSA
DUSP6 PGIMLRRLOKGNLPV
DUSP7 PALLLRRLRRGSLSV | ERK
DUSP9 PGLMLRRLRKGNLPI
DUSP8 SKLVKRRLQQGKVTI Lo i

: JNK/SAPK !
DUSP10 DKISRRRLOQGKITV e |
DUSP16 SKLMKRRLQQIKVLI o ;

Figure 4

Classification of DUSPs on the basis of MAP kinase docking site. The sequence thought to be responsible for MAP kinase interaction in DUSPs is shown,
as is substrate preference. This results in a DUSP subclassification similar to that obtained by analysis of gene structure (Figure 1) or amino-acid sequence

similarity (Figure 2). Adapted from [14].




6 Genome Biology Vol 3 No7 Theodosiou and Ashworth

These conformational effects, in conjunction with the cat-
alytic domain binding to phosphorylated ERK2, allosteri-
cally trigger the rearrangement of DUSP6 active-site
residues, resulting in a high-activity state of the phosphatase
(Figure 5). This mechanism of activation of DUSP6 by its
substrate may be generally applicable to the DUSPs; recent
data support a similar model for both DUSP4 and DUSP9
[27,39], and binding of DUSP1 to p38 results in the catalytic
activation of the phosphatase [40].

An alternative regulatory mechanism is exemplified by the
binding of DUSP1 to ERK1, which results in phosphorylation
of the phosphatase [41]. This phosphorylation does not
directly affect the phosphatase activity of DUSP1, but instead
leads to its stabilization, by reducing the rate of proteosome-
mediated degradation of this rather labile protein [41].

Localization and function

Most DUSPs display wide tissue distribution but some show
a rather restricted expression pattern. These include:
DUSP2, which is predominantly expressed in hematopoietic
tissues [42]; DUSP8, which is expressed mainly in brain, as
well as in heart and lung [43,44]; DUSP9, which is detected
in placenta, kidney and fetal liver [45]; and DUSP10, which

appears to be restricted to liver and skeletal muscle [46].
Detailed information on expression patterns during develop-
ment is not available for most DUSPs.

The DUSPs vary in their subcellular locations and can be
subdivided into three major groups on the basis of location.
One group consists of members expressed exclusively in the
nucleus, including DUSP1, DUSP2, DUSP4 and DUSP5
[42,47,48] whereas another group includes DUSP6, DUSP7
and DUSP16, which are predominantly expressed in the
cytoplasm [12,14,15,49-51]. Some DUSPs (DUSP8, DUSP9g
and DUSP10) show both cytoplasmic and nuclear localiza-
tions [44-46,52]. It is of interest that DUSP9 shows punctate
nuclear staining, which is reminiscent of the pattern dis-
played by promyelocytic leukemia (PML) protein [45].
Moreover, DUSPg9 and PML co-localize in a significant pro-
portion of cells, suggesting a potential role for DUSP9 as a
regulator of kinases that phosphorylate PML. The recently
identified DUSP16 has been shown to act as a shuttle protein
[15]; it has both an active nuclear localization signal (NLS)
and a nuclear export signal (NES), and it has been suggested
to function by translocating into the nucleus, where it inter-
acts with and dephosphorylates its substrates (JNK and/or
p38) and then subsequently transports them to the cyto-
plasm. The sequence of the NES region of DUSPS8 is very
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Figure 5

Activation of DUSP6 phosphatase by interaction with substrate ERK. This is a simplified schematic representation of ERK binding to DUSP6, resulting in
catalytic activation. The carboxy-terminal catalytic domain is represented by a circle and the amino terminus containing the ERK binding (EB) domain by a
rectangle. DUSP6 appears to exist in a low-activity state until binding to ERK through the EB domain results in a conformational change, triggering
activation of the phosphatase. This results in ERK dephosphorylation and subsequent dissociation of the complex.




similar to that of DUSP16, and it therefore seems possible
that DUSP8 also shuttles between cytoplasm and nucleus.

Despite the wealth of data supporting the role of MKPs in
the regulation of MAP kinases in cell-culture systems, there
is as yet no direct in vivo evidence confirming this in
mammals. Disruption of the DUSP1 gene in mice causes no
obvious phenotype [53]. Moreover, DUSP1-deficient embry-
onic fibroblasts and stem cells display no abnormalities in
the regulation of MAP kinases. Genetic studies in yeasts,
Drosophila and Arabidopsis have provided evidence for a
role for MKPs in the regulation of MAP kinases in vivo,
however. In Drosophila, mutations in puckered (encoding
an MKP) cause severe developmental defects, resulting in
embryonic lethality due to hyperactivation of Drosophila
JNK and failure of dorsal closure [18]. Moreover, a mutant
has been identified in Arabidopsis that develops normally
but is hypersensitive to genotoxic stress as a result of disrup-
tion of a gene that encodes a MKP, AtMKP1. AtMKP1 is
required for maintaining the MAP kinase activity at levels
that contribute to genotoxic stress resistance rather than
those that trigger cell death [22].

Substrate specificity

Assessment of substrate specificity for the DUSPs has
proved problematic because many of the assays used do not
reflect the situation in vivo. From data published so far,
however, it seems that many of the DUSPs have preferred
substrates. For example, after transfection into mammalian
cells, DUSP6 completely inactivates ERK1 and ERK2, even
at low concentrations, but not JNK or p38 kinases [49,54];
similarly, DUSPg also displays some specificity towards ERK
[45]. In contrast, DUSP8 and DUSP16 appear highly specific
for the inactivation of JNK and p38 kinases but fail to inhibit
ERK activation [14,15,54]; similarly, DUSP10 displays speci-
ficity for p38 and JNK kinases [46,52]. These ‘specificities’
should be treated with caution, as they may be specific to a
certain cell type or physiological status [26,55,56]. Some of
the specificity may reside in the docking sites present on the
various MKPs, but it must be emphasized that access to sub-
strate may be an equally important factor in regulating
specificity in vivo.

Frontiers

MAP kinase activation has been implicated in oncogenic
transformation, tumor formation and metastasis [57-59]. This
suggests that the MKPs could have a role in tumorigenesis,
perhaps as tumor suppressors. Several MKPs have been
mapped to regions of the human genome altered in human
cancer, but direct evidence for such a role is at present lacking.
It will be interesting to see whether this family of genes plays a
part in the development of cancer or other diseases.

The lack of relevant mammalian models makes it difficult to
assign a physiological role to these phosphatases. Given the
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overlapping substrate specificity displayed by members of
the various subgroups, in addition to the similar tissue dis-
tributions, it seems likely that there will be a certain degree
of redundancy. This issue could be addressed by combined
gene targeting of the members of each subgroup. Such an
approach, in conjunction with further genetic biochemical
and cell biological analyses of other model organisms should
result in the elucidation of the precise biological roles of
these enzymes in controlling key signaling pathways.
Further insight into the regulation of these phosphatases by
their substrates will be gained by determining the three-
dimensional structures of representative members of each
subgroup, both free and in complex with their targets.

Finally, the adoption by the community of a common nomen-
clature (such as the DUSP system used here and recom-
mended by the Human Gene Nomenclature committee) will
considerably facilitate progress in this important area.
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