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Abstract

Background: Gene-expression analysis is increasingly important in biological research, with real-
time reverse transcription PCR (RT-PCR) becoming the method of choice for high-throughput
and accurate expression profiling of selected genes. Given the increased sensitivity,
reproducibility and large dynamic range of this methodology, the requirements for a proper
internal control gene for normalization have become increasingly stringent. Although
housekeeping gene expression has been reported to vary considerably, no systematic survey has
properly determined the errors related to the common practice of using only one control gene,
nor presented an adequate way of working around this problem.

Results: We outline a robust and innovative strategy to identify the most stably expressed
control genes in a given set of tissues, and to determine the minimum number of genes required to
calculate a reliable normalization factor. We have evaluated ten housekeeping genes from different
abundance and functional classes in various human tissues, and demonstrated that the conventional
use of a single gene for normalization leads to relatively large errors in a significant proportion of
samples tested. The geometric mean of multiple carefully selected housekeeping genes was
validated as an accurate normalization factor by analyzing publicly available microarray data.

-
o
o
2
o
©
Q.
-
©
(7
[]
5}
2
fal
>

Conclusions: The normalization strategy presented here is a prerequisite for accurate RT-PCR
expression profiling, which, among other things, opens up the possibility of studying the biological
relevance of small expression differences.

Background

Gene-expression analysis is increasingly important in many
fields of biological research. Understanding patterns of
expressed genes is expected to provide insight into complex
regulatory networks and will most probably lead to the iden-
tification of genes relevant to new biological processes, or
implicated in disease. Two recently developed methods to
measure transcript abundance have gained much popularity
and are frequently applied. Microarrays allow the parallel

analysis of thousands of genes in two differentially labeled
RNA populations [1], while real-time RT-PCR provides the
simultaneous measurement of gene expression in many dif-
ferent samples for a limited number of genes, and is espe-
cially suitable when only a small number of cells are
available [2-4]. Both techniques have the advantage of
speed, throughput and a high degree of potential automation
compared to conventional quantification methods, such as
northern-blot analysis, ribonuclease protection assay, or
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competitive RT-PCR. Nevertheless, these new approaches
require the same kind of normalization as the traditional
methods of mRNA quantification.

Several variables need to be controlled for in gene-expres-
sion analysis, such as the amount of starting material, enzy-
matic efficiencies, and differences between tissues or cells in
overall transcriptional activity. Various strategies have been
applied to normalize these variations. Under controlled con-
ditions of reproducible extraction of good-quality RNA, the
gene transcript number is ideally standardized to the
number of cells, but accurate enumeration of cells is often
precluded, for example when starting with solid tissue.
Another frequently applied normalization scalar is the RNA
mass quantity, especially in northern blot analysis. There are
several arguments against the use of mass quantity. The
quality of RNA and related efficiency of the enzymatic reac-
tions are not taken into account. Moreover, in some
instances it is impossible to quantify this parameter, for
example, when only minimal amounts of RNA are available
from microdissected tissues. Probably the strongest argu-
ment against the use of total RNA mass for normalization is
the fact that it consists predominantly of rRNA molecules,
and is not always representative of the mRNA fraction. This
was recently evidenced by a significant imbalance between
rRNA and mRNA content in approximately 7.5% of
mammary adenocarcinomas [5]. Also, it has been reported
that rRNA transcription is affected by biological factors and
drugs [6-8]. Further drawbacks to the use of 18S or 28S
rRNA molecules as standards are their absence in purified
mRNA samples, and their high abundance compared to
target mRNA transcripts. The latter makes it difficult to
accurately subtract the baseline value in real-time RT-PCR
data analysis.

To date, internal control genes are most frequently used to
normalize the mRNA fraction. This internal control - often
referred to as a housekeeping gene - should not vary in the
tissues or cells under investigation, or in response to experi-
mental treatment. However, many studies make use of these
constitutively expressed control genes without proper vali-
dation of their presumed stability of expression. But the lit-
erature shows that housekeeping gene expression - although
occasionally constant in a given cell type or experimental
condition - can vary considerably (reviewed in [9-12]). With
the increased sensitivity, reproducibility and large dynamic
range of real-time RT-PCR methods, the requirements for a
proper internal control gene have become increasingly strin-
gent. In this study, we carried out an extensive evaluation of
10 commonly used housekeeping genes in 13 different
human tissues, and outlined a procedure for calculating a
normalization factor based on multiple control genes for
more accurate and reliable normalization of gene-expression
data. Furthermore, this normalization factor was validated
in a comparative study with frequently applied microarray
scaling factors using publicly available microarray data.

Results

Expression profiling of housekeeping genes

Primers were designed for ten commonly used housekeeping
genes (ACTB, B2M, GAPD, HMBS, HPRT1, RPL13A, SDHA,
TBP, UBC and YWHAZ) (see Table 1 for full gene name,
accession number, function, chromosomal localization, alias,
existence of processed pseudogenes, and indication that
primers span an intron; see Table 2 for primer sequences).
Special attention was paid to selecting genes that belong to
different functional classes, which significantly reduces the
chance that genes might be co-regulated. The expression
level of these 10 internal control genes was determined in 34
neuroblastoma cell lines (independently prepared in differ-
ent labs from different patients), 20 short-term cultured
normal fibroblast samples from different individuals, 13
normal leukocyte samples, 9 normal bone-marrow samples,
and 9 additional normal human tissues from pooled organs
(heart, brain, fetal brain, lung, trachea, kidney, mammary
gland, small intestine and uterus). The raw expression
values are available as a tab-delimited file (see Additional
data files).

Single control normalization error

To determine the possible errors related to the common
practice of using only one housekeeping gene for normaliza-
tion, we calculated the ratio of the ratios of two control genes
in two different samples (from the same tissue panel) and
termed it the single control normalization error, E (see
Materials and methods). For two ideal internal control genes
(constant ratio between the genes in all samples), E equals 1.
In practice, observed E values are larger than 1 and consti-
tute the erroneous E-fold expression difference between two
samples, depending on the particular housekeeping gene
used for normalization. E values were calculated for all 45
two-by-two combinations of control genes and 865 two-by-
two sample combinations within the available tissue panels
(neuroblastoma, fibroblast, leukocyte, bone marrow and a
series of normal tissues from Clontech; that is, a total of
38,925 data points) (Figure 1). In addition, the systematic
error distribution was calculated by analysis of repeated
runs of the same control gene. The average 75th and goth
percentile E values are 3.0 (range 2.1-3.9), and 6.4 (range
3.0-10.9), respectively.

Gene-stability measure and ranking of selected
housekeeping genes

It is generally accepted that gene-expression levels should be
normalized by a carefully selected stable internal control
gene. However, to validate the presumed stable expression of
a given control gene, prior knowledge of a reliable measure to
normalize this gene in order to remove any nonspecific varia-
tion is required. To address this circular problem, we devel-
oped a gene-stability measure to determine the expression
stability of control genes on the basis of non-normalized
expression levels. This measure relies on the principle that
the expression ratio of two ideal internal control genes is
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Internal control genes evaluated in this study

Symbol  Accession Name Function Localization Pseudo- Primerst  Alias IMAGE#
number gene™
ACTB NM_001101  Beta actin Cytoskeletal structural 7pl5-pl2 + S 510455
protein
B2M NM_004048 Beta-2-microglobulin Beta-chain of major 15q21-q22 - S 51940
histocompatibility complex
class | molecules
GAPD NM_002046  Glyceraldehyde-3- Oxidoreductase in glycolysis ~ 12p13 + D 510510
phosphate dehydrogenase and gluconeogenesis
HMBS  NM_000190 Hydroxymethyl-bilane Heme synthesis, porphyrin 11923 - D Porphobilinogen 245564
synthase metabolism deaminase
HPRTI  NM_000194 Hypoxanthine Purine synthesis in salvage Xq26 + D 345845
phosphoribosyl-transferase |  pathway
RPLI3A° NM_012423 Ribosomal protein L13a Structural component of the  19q13 + D 23 kDa highly -
large 60S ribosomal subunit basic protein
SDHA NM_004168  Succinate dehydrogenase Electron transporter in the 5pl5 + D 375812
complex, subunit A TCA cycle and respiratory
chain
TBP NM_003194 TATA box binding protein General RNA polymerase Il 6q27 - D 280735
transcription factor
UBC M26880 Ubiquitin C Protein degradation 12924 - D 510582
YWHAZ NM_003406 Tyrosine 3-monooxygenase/  Signal transduction by 2p25 + S8 Phospholipase 416026
tryptophan 5-monooxygenase binding to phosphorylated A2

activation protein, zeta
polypeptide

serine residues on a variety
of signaling molecules

*Presence (+) or absence (-) of a retropseudogene in the genome determined by BLAST analysis of the mRNA sequence using the high-throughput
genomic sequences database (htgs) or human genome as database. fLocalization of forward and reverse primer in different exons (D) or the same exon

(S). IMAGE cDNA clone number according to [14]. JA single-exon gene.

Table 2

Primer sequences for internal control genes

Symbol* Forward primer Reverse primer

ACTB CTGGAACGGTGAAGGTGACA AAGGGACTTCCTGTAACAATGCA
B2M TGCTGTCTCCATGTTTGATGTATCT TCTCTGCTCCCCACCTCTAAGT
GAPD TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG
HMBSt GGCAATGCGGCTGCAA GGGTACCCACGCGAATCAC

HPRTI TGACACTGGCAAAACAATGCA GGTCCTTTTCACCAGCAAGCT
RPLI3A CCTGGAGGAGAAGAGGAAAGAGA TTGAGGACCTCTGTGTATTTGTCAA
SDHA TGGGAACAAGAGGGCATCTG CCACCACTGCATCAAATTCATG

UBC ATTTGGGTCGCGGTTCTTG TGCCTTGACATTCTCGATGGT
YWHAZ ACTTTTGGTACATTGTGGCTTCAA CCGCCAGGACAAACCAGTAT

*TBP primer sequences are described in [24]. THMBS primer sequences kindly provided by E. Mensink and L. van de Locht (Nijmegen, The Netherlands).

identical in all samples, regardless of the experimental condi-
tion or cell type. In this way, variation of the expression
ratios of two real-life housekeeping genes reflects the fact
that one (or both) of the genes is (are) not constantly
expressed, with increasing variation in ratio corresponding

to decreasing expression stability. For every control gene we
determined the pairwise variation with all other control
genes as the standard deviation of the logarithmically
transformed expression ratios, and defined the internal
control gene-stability measure M as the average pairwise
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Single control normalization error values (E) were calculated as the ratio of the ratio of two control genes in two different samples (see Materials and
methods), and summarized here as cumulative distribution plots for the different tissue panels, pointing at considerable variation in housekeeping gene

expression.

variation of a particular gene with all other control genes.
Genes with the lowest M values have the most stable expres-
sion. Assuming that the control genes are not co-regulated,
stepwise exclusion of the gene with the highest M value
results in a combination of two constitutively expressed
housekeeping genes that have the most stable expression in
the tested samples. To manage the large number of calcula-
tions, we have written a Visual Basic Application (VBA) for
Microsoft Excel - termed geNorm - that automatically calcu-
lates the gene-stability measure M for all control genes in a
given set of samples (geNorm is freely available from the
authors on request). The program enables elimination of the
worst-scoring housekeeping gene (that is, the one with the
highest M value) and recalculation of new M values for the
remaining genes. Using this VBA applet, we ranked the ten
control genes in the five tissue panels tested according to their
expression stability (Figure 2, Table 3). In addition, the sys-
tematic variation was calculated as the pairwise variation, V,
for repeated RT-PCR experiments on the same gene, reflect-
ing the inherent machine, enzymatic and pipet variation.

Normalization factor calculation based on the
geometric mean of multiple control genes

We concluded that in order to measure expression levels
accurately, normalization by multiple housekeeping genes
instead of one is required. Consequently, a normalization
factor based on the expression levels of the best-performing
housekeeping genes must be calculated. For accurate averag-
ing of the control genes, we propose to use the geometric

mean instead of the arithmetic mean, as the former controls
better for possible outlying values and abundance differ-
ences between the different genes. The number of genes
used for geometric averaging is a trade-off between practical
considerations and accuracy. It is obvious that an accurate
normalization factor should not include the rather unstable
genes that were observed in some tissues. On the other hand,
it remains relatively impractical to quantify, for example,
eight control genes when only a few target genes need to be
studied, or when only minimal amounts of RNA are avail-
able. Furthermore, it is a waste of resources to quantify more
genes than necessary if all genes are relatively stably
expressed and if the normalization factor does not signifi-
cantly change whether or not more genes are included.
Taking all this into consideration, we recommend the
minimal use of the three most stable internal control genes
for calculation of an RT-PCR normalization factor (NF,,
n = 3), and stepwise inclusion of more control genes until
the (n + 1)th gene has no significant contribution to the
newly calculated normalization factor (NF,,,,). To determine
the possible need or utility of including more than three
genes for normalization, the pairwise variation V, ., was
calculated between the two sequential normalization factors
(NF,, and NF,,, ) for all samples within the same tissue panel
(with a;=NF, ; and a;=NF,, ;, n the number of genes used
for normalization (3 < n < 9), and i the sample index; see
Equations 2 and 3 in Materials and methods). A large varia-
tion means that the added gene has a significant effect and
should preferably be included for calculation of a reliable
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Figure 2

Average expression stability values (M) of remaining control genes during stepwise exclusion of the least stable control gene in the different tissue panels
(black circle, neuroblastoma; white circle, normal pool; white square, bone marrow; black square, leukocyte; gray circle, fibroblast; gray square,
systematic error). See also Table 3 for the ranking of the genes according to their expression stability.

normalization factor. For all tissue types, normalization
factors were calculated for the three most stable control
genes (that is, those with the lowest M value) and for seven
additional factors by stepwise inclusion of the most stable
remaining control gene. Pairwise variations were subsequently

calculated for every series of NF, and NF,,  normalization

Table 3

Control genes ranked in order of their expression stability*

Neuro- Fibroblast Leukocyte Bone Normal
blastoma marrow pool
B2M HMBS ACTB ACTB B2M
RPLI3A B2M HMBS B2M ACTB
ACTB RPLI3A HPRTI HMBS YWHAZ
TBP SDHA SDHA TBP RPLI3A
YWHAZ TBP TBP SDHA UBC
HMBS ACTB RPLI3A GAPD TBP
UBC UBC GAPD HPRTI HPRTI
SDHA YWHAZ B2M YWHAZ HMBS

HPRTI - GAPD HPRTI - GAPD UBC- YWHAZ UBC-RPLI3A SDHA - GAPD

*Increasing from top to bottom; the two most stable control genes in
each cell type, for example HPRT/ and GAPD in fibroblasts, cannot be
ranked in order because of the required use of gene ratios for gene-

stability measurements.

factors, reflecting the effect of adding an (n+1)th gene
(Figure 3a). It is apparent that the inclusion of a fourth gene
has no significant effect (that is, low Vi value) for leuko-
cytes, fibroblasts and bone marrow. This is also illustrated
by the nearly perfect correlation between NF, and NF,
values, as shown for fibroblasts in Figure 3b. On the basis of
these data, we decided to take 0.15 as a cut-off value, below
which the inclusion of an additional control gene is not
required. For neuroblastoma and the pool of normal tissues,
one and two additional genes, respectively, are necessary for
reliable normalization (see also Figure 3b). The high Vg,
and V,,, values for the normal pool, neuroblastoma and
leukocytes corroborate very well the findings obtained by
stepwise exclusion of the worst-scoring control gene
(Figure 2). This analysis showed an initial steep decrease in
average M value, pointing at two aberrantly expressed
control genes for leukocytes and one unstable gene for neu-
roblastoma and the pool of normal tissues. Furthermore, the
need to include additional control genes for these last two
tissue panels is in keeping with the high variation in control-
gene expression, as evidenced from Figure 2.

Validation of proposed real-time RT-PCR
normalization factors

To assess the validity of the established gene-stability
measure, that is, that genes with the lowest M values have
indeed the most stable expression, we determined the gene-
specific variation for each control gene as the variation coef-
ficient of the expression levels after normalization. This
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Figure 3

Determination of the optimal number of control genes for normalization. (a) Pairwise variation (V, ., ) analysis between the normalization factors NF
and NF,,, to determine the number of control genes required for accurate normalization (arrowhead = optimal number of control genes for
normalization). (b) Selected scatterplots of normalization factors before (x-axis) and after (y-axis) inclusion of an (n + I)th control gene (r = Spearman
rank correlation coefficient). Low variation values, V, correspond to high correlation coefficients. It is clear that there is no need to include more than
three, four or five control genes for fibroblast (A), neuroblastoma (B) and the normal pooled tissues (D), respectively. In contrast, panel C demonstrates
that inclusion of at least a fourth control gene is required for the normal pooled tissues.

coefficient should be minimal for proper housekeeping
genes. Three different normalization factors were calculated,
based on the geometric mean of three genes with, respec-
tively, the lowest (NF3(1_3)), the highest (NF3(8—10))7 and inter-
mediate M values (NF 3(6_8)) (as determined by geNorm). We

subsequently determined the average gene-specific variation
of the three genes with the most stable expression (that is,
the lowest variation coefficient) for each normalization
factor and within each tissue panel (Figure 4a). It is clear
that the gene-specific variation in all tissue panels is by far
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Validation of the gene-stability measure and the geometric averaging of carefully selected control genes for normalization. (a) Validation of the gene-
stability measure. The average gene-specific variation (determined as coefficient of variation, in percent) for the three control genes with the smallest
variation within each tissue panel after normalization with three different factors calculated as the geometric mean of the three control genes with the
lowest (NF5, 3), highest (NF;g () and intermediate (NF; , g)) gene stability values (as determined by geNorm). NB, neuroblastoma; POOL, normal
pooled tissues; LEU, leukocytes; BM, bone marrow; FIB, fibroblasts. (b) Geometric averaging. Comparison of frequently applied microarray scaling
factors and the proposed RT-PCR normalization factor based on the geometric mean of selected control genes (NF;, geometric mean of the five control
genes with the lowest M value; NF,,_ ;, geometric mean of control genes with M < 0.7; see Results), calculated for eight hybridizations from publicly

available microarray data [14].

the smallest when the data are normalized to NF,, .,. This
demonstrates that the gene-stability measure effectively
identified the control genes with the most stable expression.
To verify that a high M value is characteristic of an unstable
or differentially expressed gene, we analyzed the expression
level of MYCN - a highly differentially expressed proto-
oncogene in neuroblastoma with prognostic value [13] -
together with the set of ten housekeeping genes. MYCN was
readily identified as the most differentially expressed gene,
with an M value of 6.02 compared to 2.17 for the least stable
control gene (B2M) in neuroblastoma. It was further
observed that normalization with a single control gene con-
sistently resulted in significantly higher gene-specific varia-
tions of the other control genes (data not shown), which
underscores the improvement in normalization by using
multiple housekeeping genes.

To show that the associations between the best control genes
are independent of cell proliferation, we analyzed the
expression level of the proliferation marker PCNA in the
neuroblastoma cancer cell lines, and determined the Spear-
man rank correlation coefficient between the raw expression
levels of the four best housekeepers and the marker gene
PCNA. From this analysis, it was clear that the control genes
were - as expected - significantly correlated (p < 0.001, cor-
relation coefficient between 0.60 and 0.76). In contrast, no
correlation was observed between PCNA and three of the
four control genes, and only a weak correlation (p = 0.024,
coefficient = 0.43) between PCNA and control gene HPRT1.
These data firmly demonstrate that the most stable control

genes (identified by the geNorm algorithm) are not per se
linked to the state of cell proliferation of the samples.

To further validate the accuracy of geometric averaging of
carefully selected control genes for normalization, the geo-
metric means of housekeeping-gene expression levels
obtained from publicly available microarray data were com-
pared with commonly applied microarray normalization
factors calculated for the same data. For this purpose, an
8,000-gene array data set [14] was chosen, containing nine
of the ten control genes evaluated in this RT-PCR study. Two
commonly applied microarray normalization factors (based
on median ratio normalization, and total intensity normal-
ization) [15-17] were determined for eight randomly selected
hybridization sets. Subsequently, for each hybridization set,
the background-corrected expression levels of nine house-
keeping genes for the two fluorescence channels were
imported into geNorm and ranked, as described for the RT-
PCR data. As these microarray data originate from
hybridizations of cell lines from various histological origin
versus a reference pool of multiple cell lines, we have calcu-
lated the geometric mean of the five most stable control
genes (NF,) for each hybridization set, in accordance to the
recommendations for reliable normalization within a hetero-
geneous tissue panel (see previous paragraph). Alternatively,
internal control genes were excluded in a stepwise manner
until the M values of the remaining genes were below 0.7
(experimental value shown to eliminate the most variable and
outlying genes in this microarray dataset). Depending on the
hybridization set, seven to nine genes fitted this criterion,
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Logarithmic histogram of the expression levels of 10 internal control genes determined in |3 different human tissues, normalized to the geometric mean
of 6 control genes (GAPD, HPRT I, SDHA, TBP, UBC, YWHAZ). An approximately 400-fold expression difference is apparent between the most and least
abundantly expressed gene, as well as tissue-specific differences in expression levels for particular genes (for example, B2M).

upon which the geometric mean was calculated (NFy,_, ).
Both normalization factors (NF, and NF,,_, ,) were shown to
be similar to the calculated microarray normalization factors
(Figure 4b).

Tissue-specific housekeeping gene expression

To compare the control gene-expression levels within the
heterogeneous group of all 13 tested tissues, the same set of
control genes should be used for normalization. We there-
fore calculated the geometric mean of six control genes that
were withheld from the set of ten genes after elimination of
the two genes with the highest M value within each tissue
panel (that is, B2M, RPLi3A, ACTB and HMBS) (see
Table 3). Given the large variety of tested tissues, this is the
optimal strategy to eliminate most variation, and to allow
direct comparison between the different samples. Under the
assumption of equal PCR threshold cycle values for equal
transcript numbers of different genes, an estimation of the
transcript abundance of the various control genes can be
made. Figure 5 shows that the ten tested genes belong to
various abundance classes, with an approximately 400-fold
expression difference between the most abundant (ACTB)
and the rarest (HMBS) transcript. Although the overall

abundance of a given control gene in the different tissues is
relatively similar, we clearly observe tissue-specific expres-
sion differences, for example, B2M expression level is
112-fold higher in leukocytes compared to fetal brain, and
ACTB shows an expression difference of 22-fold between
fibroblasts and heart tissue. It is also clear that some genes
have a relatively constant expression level (for example, UBC
and HPRT1) compared to the differential expression pattern
of others (for example, B2M and ACTB).

Discussion

Accurate normalization of gene-expression levels is an
absolute prerequisite for reliable results, especially when the
biological significance of subtle gene-expression differences is
studied. Still, little attention has been paid to the systematic
study of normalization procedures and the impact on the con-
clusions. For RT-PCR, there is a general consensus on using a
single control gene for normalization purposes. A comprehen-
sive literature analysis of expression studies that were pub-
lished in high-impact journals during 1999 indicated that
GAPD, ACTB, 18S and 28S rRNA were used as single control
genes for normalization in more than 90% of cases [11]. As



numerous studies reported that housekeeping gene expression
can vary considerably [6,9-12], the validity of the conclusions
is highly dependent on the applied control. Some laboratories
have tried to find the optimal control gene for their experi-
mental system, and often rRNA molecules were proposed as
best references. These studies should be approached with
some caution, as often only the variation in expression of the
tested genes with respect to the mass loading of total RNA was
assessed. As rRNA molecules make up the bulk of total RNA,
they should indeed correlate very well with the total RNA
mass, but that does not necessarily make them good control
genes. As outlined in the introduction, total RNA and rRNA
levels are not proper references, because of the observed
imbalance between rRNA and mRNA fractions.

In addition to searching for a stable control gene, we aimed
at determining the errors related to the common practice of
single control normalization. In this study, we provide
evidence that a conventional normalization strategy based
on a single housekeeping gene leads to erroneous normaliza-
tion up to 3.0- and 6.4-fold in 25% and 10% of the cases,
respectively, with sporadic cases showing error values above
20. This analysis showed that a few control genes were
unstable and significantly differentially expressed in some
tissue panels, as evidenced by the decrease from 5.9 to 4.5
for the goth-percentile single control normalization error
value for neuroblastoma when the B2M gene is omitted
(data not shown). This finding agrees with the reported dif-
ferential expression of B2M in neuroblastoma, correspond-
ing to the stage of differentiation of the tumor cells [18]. The
error-distribution curves not only reflect the stability of
expression of the applied controls, but also the sample het-
erogeneity within a tissue panel, as noted from the less steep
curve for the heterogeneous set of normal pooled tissues
compared to the other, relatively homogeneous, tissue
panels. In this regard, the issue has been raised that finding
proper control genes is even more important when working
with tissues of different histological origin [9].

The single control normalization error values point to inher-
ent noisy oscillations in expression levels of the control
genes, a finding which has been corroborated in other large-
scale studies where several thousand genes were measured
in different cells or tissues by microarray analysis. No gene
was found on an 8,000-feature array that did not vary by
ratios of at least twofold across a panel of 60 cell lines [14],
and a set of genes frequently used for normalization (includ-
ing GAPD and ACTB) was found to vary in expression by 7-
to 23-fold [9]. Taken together, our data and these studies
clearly show that ideal and universal control genes do not
exist. This warrants the search for stably expressed genes in
each experimental system, and for the development of an
accurate normalization strategy.

To validate the expression stability of the tested control genes
without any prior assumption of a metric for standardization,

http://genomebiology.com/2002/3/7/research/0034.9

we had initially measured the correlation between the raw,
non-normalized expression levels of any two control genes,
which should be nearly perfect for proper control genes. We
observed, however, that the data range between the
minimum and maximum expression levels, or any outlying
value, could have a profound influence on the slope of the
regression line, and consequently on the value of the
correlation coefficient. This made Pearson and Spearman
correlation coefficients unsuitable for this kind of analysis.
We have therefore developed a new stability measure, based
on the principle that the expression ratio of two proper
control genes should be identical in all samples, regardless
of the experimental condition or cell type, with increasing
ratio variation corresponding to decreasing expression sta-
bility of one (or both) of the tested genes. The proposed stan-
dard deviation of log-transformed control gene ratios is a
robust measure for the variation between two control genes,
as it does not impose any requirements for normality or
homoscedasticity of the data points. Furthermore, this
measure is independent of the abundance difference
between the genes, and is equally affected by any outlying or
extreme ratio (that is, outliers for a sample with low or high
overall expression, or outliers caused by an upregulated or
downregulated gene have an equivalent increase in pairwise
variation V). Logarithmic transformation of the ratios is
required for symmetrical distribution of the data around
zero, resulting in equal absolute values (but opposite signs)
for a given ratio and the inverse ratio. As a result, the stan-
dard deviation of log-transformed ratios is identical to the
standard deviation of log-transformed inverse ratios, which
makes this measure characteristic for every combination of
two genes.

Having established a robust measure to assess the variation
in expression of two control genes, we subsequently defined
a gene-stability measure M as the average pairwise variation
between a particular gene and all other control genes. Using
a VBA applet geNorm developed in-house, we ranked ten
commonly used housekeeping genes belonging to different
functional and abundance classes according to their expres-
sion stability in five tested tissue panels. The clear decrease
of M of the remaining control genes during stepwise exclu-
sion of the worst-scoring gene points at differences in the
stability of gene-specific expression and demonstrates that
the remaining genes are more stably expressed than the
excluded genes. Some tissue panels show a relatively steep
initial decline, which reflects the exclusion of one or more
aberrantly expressed control genes (for example, ACTB and
HMBS for leukocytes), as also noticed from the single
control normalization error analyses (see above). The
average gene stability values of the remaining genes during
stepwise elimination of the least stable control genes also
indicates tissue-specific differences, with bone marrow and
the pool of normal tissues having the lowest and highest
overall expression variation, respectively. The latter is no
surprise, given the larger tissue heterogeneity in this panel.
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The question of whether the observed high variation for neu-
roblastoma is a cancer-related phenomenon of deregulated
expression is currently under further investigation. From
these analyses, it is clear that there is no universal control
gene suitable for all cell types. ACTB and B2M appear to be
the worst-scoring genes, whereas UBC, GAPD and HPRT1
seem to be the best overall control genes, each belonging to
the four most stable genes in four out of five tested tissues.
However, these generalizations should be treated with
caution. B2M appears to be one of the least stable control
genes, but is nevertheless a good choice for normalization of
leukocyte expression levels. This clearly demonstrates that a
proper choice of housekeeping genes is highly dependent on
the tissues or cells under investigation. This is even more
important when considering the differences in transcript
abundance of some control genes between different tissues.
The large expression differences between the tissues tested
for B2aM and ACTB, for instance, would definitely result in
large normalization errors if they were used for standardiza-
tion. Interestingly, the observed tissue-specific expression of
these control genes is in keeping with their known role or
function: there is high B2M expression in leukocytes, where
it is a major cell-surface marker, and relatively low non-
muscle cytoskeletal ACTB expression in heart tissue, which
is predominantly of muscular origin.

In view of the inherent variation in expression of housekeep-
ing genes, we recommend the use of at least three proper
control genes for calculating a normalization factor, and
present a procedure to determine whether or not more - and
if so, how many - control genes were required for reliable
normalization. This analysis clearly showed that three stable
control genes sufficed for accurate normalization of samples
with relatively low expression variation, whereas other tissue
panels required a fourth, or even a fifth control gene to
capture the observed variation.

The purpose of normalization is to remove the sampling dif-
ferences (such as RNA quantity and quality) in order to iden-
tify real gene-specific variation. For proper internal control
genes, this variation should be minimal or none. To validate
the gene-stability measure M and the geNorm algorithm to
identify the most stable control genes in a set of samples, we
have calculated the gene-specific variation for each gene as
the coefficient of variation of normalized expression levels.
To this end, the raw expression values were standardized to
different normalization factors, calculated as the geomean of
the most, intermediate, or least stable control genes (as
determined by geNorm). The rationale of this analysis is that
a normalization factor based on proper internal control
genes should remove all nonspecific variation. In contrast,
unstable control genes cannot completely remove the non-
specific variation, and even add more variation, resulting in
larger so-called gene-specific variations for the tested
control genes. This analysis clearly demonstrated that most
nonspecific variation was removed when the most stable

control genes (as determined by geNorm) were used for nor-
malization, which proves that the novel stability measure
and strategy presented here effectively allowed the stability
of gene expression in the different tissue panels to be
assessed.

Further validation demonstrated that the geometric mean of
carefully selected control genes is an accurate estimate of the
mRNA transcript fraction, as determined by comparison
with frequently applied microarray normalization factors.
Although both RT-PCR normalization factors based on geo-
metric averaging are relatively similar, the one based on at
least seven control genes (that is, NFM<O.7) is slightly more
equivalent to the microarray-scaling factors. Two possible
explanations can account for this observation. First, the five
most stable control genes as determined by geNorm are
based on only two RNA samples (that is, a Cy3-labeled refer-
ence pool, and a Cys-labeled test sample), in contrast to the
RT-PCR data, where 9 to 34 samples were used, resulting in
more reliable estimation of the expression stability. Second,
recent technical reports clearly state that array hybridization
analyses experience considerable - often underestimated -
variation and uncertainty at several levels. Accurate back-
ground fluorescence correction and spot quality assessment,
among others, have been described as critical issues for reli-
able ratio estimation [19-21]. The higher variability associ-
ated with array hybridization results might thus explain the
need for more control genes to normalize the data. Never-
theless, this study clearly showed that normalization based
on the geometric mean of carefully selected control genes
results in equivalent ratio estimation compared to com-
monly applied array scale factors, which validates its use for
RT-PCR normalization. In addition, the method presented
could easily be applied to normalize gene-expression levels
resulting from microarray hybridization experiments, where
only a limited number of genes are spotted, including some
housekeeping genes.

In conclusion, we described and validated a procedure to
identify the most stable control genes in a given set of tissue
samples, and to determine the optimal number of genes
required for reliable normalization of RT-PCR data. The
strategy presented can be applied to any number or kind of
genes or tissues, and should allow more accurate gene-
expression profiling. This is of utmost importance for study-
ing the biological significance of subtle expression
differences, and for confirmatory and/or extended analyses
of microarray results by means of RT-PCR.

Materials and methods

Sample preparation

Thirty-four neuroblastoma cell lines were grown to subcon-
fluency according to standard culture conditions. RNA was
isolated using the RNeasy Midi Kit (Qiagen) according to the
manufacturer’s instructions. Nine RNA samples from pooled



normal human tissues (heart, brain, fetal brain, lung,
trachea, kidney, mammary gland, small intestine and
uterus) were obtained from Clontech. Blood and fibroblast
biopsies were obtained from different normal healthy indi-
viduals. Thirteen leukocyte samples were isolated from 5 ml
fresh blood using Qiagen’s erythrocyte lysis buffer. Fibrob-
last cells from 20 upper-arm skin biopsies were cultured for
a short time (3-4 passages) and harvested at subconfluency
as described [22]. Bone marrow samples were obtained from
nine patients with no hematological malignancy. Total RNA
of leukocyte, fibroblast and bone marrow samples was
extracted using Trizol (Invitrogen), according to the manu-
facturer’s instructions.

Real-time RT-PCR

DNase treatment, cDNA synthesis, primer design and SYBR
Green I RT-PCR were carried out as described [23]. In brief,
2 ug of each total RNA sample was treated with the RQ1
RNase-free DNase according to the manufacturer’s instruc-
tions (Promega). Treated RNA samples were desalted (to
prevent carry over of magnesium) before ¢cDNA synthesis
using Microcon-100 spin columns (Millipore). First-strand
c¢DNA was synthesized using random hexamers and Super-
scriptIl reverse transcriptase according to the manufactur-
er’s instructions (Invitrogen), and subsequently diluted with
nuclease-free water (Sigma) to 12.5 ng/ul ¢cDNA. RT-PCR
amplification mixtures (25 ul) contained 25 ng template
c¢DNA, 2x SYBR Green I Master Mix buffer (12.5 ul) (Applied
Biosystems) and 300 nM forward and reverse primer. Reac-
tions were run on an ABI PRISM 5700 Sequence Detector
(Applied Biosystems). The cycling conditions comprised 10
min polymerase activation at 95°C and 40 cycles at 95°C for
15 sec and 60°C for 60 sec. Each assay included (in dupli-
cate): a standard curve of four serial dilution points of SK-N-
SH or IMR-32 c¢cDNA (ranging from 50 ng to 50 pg), a
no-template control, and 25 ng of each test cDNA. All PCR
efficiencies were above 95%. Sequence Detection Software
(version 1.3) (Applied Biosystems) results were exported as
tab-delimited text files and imported into Microsoft Excel
for further analysis. The median coefficient of variation
(based on calculated quantities) of duplicated samples was
6%.

Single control normalization error E

For any given m tissue samples, real-time RT-PCR gene-
expression levels q;; of n internal control genes are measured.
For every combination of two tissue samples p and g, and
every combination of two internal control genes j and k, the
single control normalization error E was calculated (Equation
1). This is the fold expression difference between samples p
and g when normalized to housekeeping gene j or k.

(Vjkel1n],Vp,qelm] j£kandp=q):

aq}' apk .
Rjkpq =—.— (ifR<1,thenE=R"else E=R) (1)
Ak Ay
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Internal control gene-stability measure M

For every combination of two internal control genes j and k,
an array Ay of m elements is calculated which consist of
log,-transformed expression ratios a;/a; (Equation 2). We
define the pairwise variation Vj for the control genes j and k
as the standard deviation of the Ajk elements (Equation 3).
The gene-stability measure M, for control gene j is the arith-
metic mean of all pairwise variations ij (Equation 4).

(Vj,k € [1,n] andj = k):

_ Gy @y Gmi\| %
Ajk = {10g2(q>7 1Og2(a_2k>5 ey 1Og2(a_mk>]’ = {10g2 <a_1k i=1->m

(2

Vi = st.dev (A;) (3)
2 Vi

M =" (4)

J n-1

Normalization of array data

Publicly available raw microarray data [14] were down-
loaded as tab-delimited files. Eight hybridization data sets
were randomly selected and imported into Microsoft Excel
software for further manipulation (MCF7, DU-145, 786-0,
BC2, K562, A549, U251, and SK-OV-3). For each hybridiza-
tion array, all spots with Cy3 or Cys fluorescence intensities
below the average overall background level plus one stan-
dard deviation were discarded. Subsequently, a local back-
ground correction for each spot was applied. Two scale
factors were calculated for each slide on the basis of median
ratio normalization (median ratio set to 1) and total intensity
normalization (equalized sum of fluorescence intensities for
both channels). Nine housekeeping genes were identified by
BLAST similarity or keyword search against the database of
cDNA clones present on the array (see IMAGE clones listed
in Table 1).

Additional data files
The raw expression values are available as a tab-delimited
file with the online version of this paper.
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