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Summary

Transcription factors of the T-box family are required both for early cell-fate decisions, such as
those necessary for formation of the basic vertebrate body plan, and for differentiation and
organogenesis. When mutated, T-box genes give dramatic phenotypes in mouse and zebrafish,
and they have been implicated both in fundamentals of limb patterning and in a number of human
congenital malformations such as Holt-Oram, ulnar-mammary and DiGeorge syndromes, as well
as being amplified in a subset of cancers. Genes encoding members of the T-box family have
recently been shown to comprise approximately 0.1% of genomes as diverse as those of
nematodes and humans and have been identified in a wide variety of animals from ctenophores
(comb jellies) to mammals; they are, however, completely absent from genomes from other
organisms (such as the model plant Arabidopsis thaliana).
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Gene organization and evolutionary history
Positional cloning and sequencing of the genes defective in

the mouse gastrulation mutant Brachyury, also known as T,

and of the Drosophila behavior mutant optomotor-blind

(omb), show extensive sequence similarity between the

amino-terminal regions of the two proteins [1,2]; the region

of similarity contains a unique sequence-specific DNA-

binding domain. Since these initial observations, over 50

proteins have been identified with sequence similarity to the

DNA-binding domain of Brachyury and Omb. This domain

is now referred to as the T-box and the genes are collectively

referred to as the T-box gene family. Members of this family

are expressed in, and are required for, the development of

multiple cell types in diverse organisms, as demonstrated by

genetic studies in flies, worms, fish, mice, dogs, and humans

[3-7]. For many of these genes, such as Brachyury, there are

clear orthologs (direct homologs), with a high degree of

sequence similarity, expression pattern, and function

between a variety of vertebrates, including fish, frogs, dogs,

and mice [1-7]. Other T-box genes appear to be unique to a

particular species; for instance, VegT, a T-box gene thought

to be required for endoderm formation in Xenopus, has no

apparent ortholog in mice or humans. The family has 18

members in mammals; representatives have been identified

from a wide range of animals, including various chordates,

Drosophila melanogaster (11 members), Caenorhabditis

elegans (14 members), annelids, and cnidarians. 

Analysis of T-box genes shows most of their loci to be dis-

persed randomly throughout chordate genomes (see Table 1

for their locations in the human genome), although several

examples of clustering have been reported. One instance

occurs in C. elegans, for which genomic sequencing has

shown a tight linkage between Tbx8 and Tbx9 [8]; a second

is in mouse, where Tbx2 and Tbx4 are tightly linked on chro-

mosome 11 and Tbx3 and Tbx5 are linked on chromosome 5.

The association between these latter T-box genes appears to

be conserved in other mammals, as human Tbx2 and Tbx4,

and Tbx3 and Tbx5, have a similar arrangement on chromo-

somes 17 and 12, respectively [9,10]. Phylogenetic analysis of

these cognate pairs suggests they arose through initial dupli-

cation of an ancestral gene by an unequal crossover event
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between two alleles; in the case of Tbx2 and Tbx4, and Tbx3

and Tbx5, these events occurred at least 600 million years

ago [8,11]. Although possible mechanisms for the duplica-

tion have been put forward, such as duplication of entire

chromosomes or genomes, the functional consequences of

the pairs of linked Tbx genes remains to be established. 

T-box genes contain multiple exons, and the T-box is gener-

ally encoded by at least five exons dispersed over a relatively

large distance. For example, the human Tbx5 gene contains

eight exons distributed over 53 kilobases (kb) of chromo-

some 12 [10]. As has been found for other gene families, the

intron-exon boundaries of T-box homologs are conserved

throughout evolution, but the lengths of the introns vary

between species [10,12]. Most T-box family members encode

a single transcript and there are few direct demonstrations

of alternative exon splicing. One exception is Xenopus

VegT/Antipodean protein, which is found in two different

isoforms resulting from alternative splicing of the 3� end of

the VegT gene. Interestingly, the isoforms appear to be

tissue-specific: one is present maternally in the endodermal

layer of the embryo and the other is expressed zygotically in

the mesodermal layer [13].

Characteristic structural features
T-box proteins generally range in size from 50 kDa to

78 kDa. Brachyury, the founding member of the T-box gene

family, has been shown to encode a sequence-specific DNA-

binding protein that functions as a transcriptional activator

[1,14-17]. Although crystallographic analysis of T-box pro-

teins has been achieved only for a truncated version of the

Xenopus homolog of Brachyury, Xbra, and a truncated

version of Tbx3, the results clearly demonstrate that the

T-box is unlike any other DNA-binding domain [18]

(Figure 1). Studies with a number of T-box proteins have

shown that they comprise at least two structural and func-

tional domains: a sequence-specific DNA-binding domain

(the T-box) and a transcriptional activator or repressor

domain [3,4]. The relative position of the domains varies

between different members of the family, but the order is

conserved for any one member of the T-box family and its

orthologs [10,12]. 

The T-box
The T-box is defined as the minimal region within the T-box

protein that is both necessary and sufficient for sequence-

specific DNA binding [3-5,14,17]. Despite the sequence vari-

ations within the T-box between family members,

examination of downstream targets and binding-site selec-

tion experiments for a number of T-box proteins show that

all members of the family so far examined bind to the DNA

consensus sequence TCACACCT. In several binding-site

selection studies, members of the T-box family preferentially

bound sequences that contain two or more core motifs

arranged in various orientations. The ability to bind the

sequence is protein-specific; for example, Xbra can bind to

two core motifs arranged head-to-head, whereas VegT

cannot; conversely, VegT can bind to two core motifs

arranged tail-to-tail whereas Xbra cannot. The biological rel-

evance of these findings remains unknown, as no down-

stream target of any T-box gene has been found to contain a

double site [17]. 

The T-box is a relatively large DNA-binding domain, gener-

ally comprising about a third of the entire protein

(17-26 kDa), and individual T-box gene family members

show varying degrees of homology across the domain. Spe-

cific residues within the T-box are 100% conserved in all

members of the family, however. This observation has pro-

vided the basis for subdivision of the family (see Figure 2)

[19]. It has recently been demonstrated that the specificity of

several T-box proteins for their target sites lies mainly within

the T-box. But specificity does not appear to reflect binding

affinity [17], suggesting that other functions may lie in the

T-box, such as regions required for protein-protein interac-

tions. Consistent with this proposal, our mutational analysis

has identified a single amino-acid residue within the T-box

of Xenopus Xbra, Eomesodermin, and VegT (Lys149, Asn155

or Asn353, respectively) that is required for the correct

target specificity of the respective proteins [17]. In addition,

one T-box protein, Mga, contains both a T-box and a basic

helix-loop-helix leucine zipper (bHLH-zip) domain [20].

When heterodimerized with the bHLH protein Max, Mga is

converted to a transcriptional activator with apparent dual

specificity, regulating genes containing either a Max-binding

or a T-box-domain-binding site [20]. Conversely, human

Tbx22 has been found to contain a truncated T-box lacking

residues found in the amino-terminal portion of all other

family members and would be predicted not to bind DNA

[21]. Tbx22 may therefore represent a case in which the

T-box has functions other than DNA binding. 

Transcriptional regulatory domains 
T-box proteins have been demonstrated to function both as

transcriptional activators and as repressors. In all cases

studied, the transcriptional regulation activity has been shown

to require sequences located in the carboxy-terminal portion

of the protein. Only in the case of Brachyury and its frog and

zebrafish orthologs, however, has the region both necessary

and sufficient for transcriptional regulation been accurately

mapped [16,22]. Interestingly, there are only a few small

blocks of conservation between the Brachyury orthologs in

this region, and the overall level of similarity is low. 

Localization and function
The T-box genes share two characteristics of interest to

researchers studying cell specification and differentiation:

they tend to be expressed in specific organs or cell types,

especially during development, and they are generally

required for the development of those tissues (Table 1). In the
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few cases for which intracellular localization has been ana-

lyzed, T-box proteins have shown to be localized exclusively

in the nucleus. These considerations, together with their

DNA-binding and transcriptional activation/repression

capacity, mean that T-box proteins are well placed to fulfill a

wide array of important regulatory roles in development. This

is supported by the observation that mutant alleles com-

monly give a phenotype even in heterozygotes (that is, they

show haploinsufficiency), indicating that the level of a T-box

protein is important for determining its function. In addition,

mutational studies have demonstrated that T-box genes are

required cell-autonomously (active in the cell in which they

are expressed). For example, Brachyury is expressed in poste-

rior mesoderm and in the developing notochord, and it is

required for the formation of these cells in mice [1,23-28]. 

T-box genes are also required in specific tissue types at later

stages of development: for example, Tbx2, Tbx3, Tbx4 and

Figure 1
Ribbon diagram of crystal structures of (a,b) Xenopus Xbra and (c) human TBX3 bound to DNA. Beta strands are depicted in red and alpha helices in
(a,b) orange or (c) turquoise. Reproduced with permission from [18,61].

(a) (b) (c)

Figure 2 
Conservation of selected T-box residues and the presence of diagnostic residues for different members of the family. Position 149 is always a lysine in
Xbra proteins from different species (blue) but not in other T-box proteins (red). A diagram of Xenopus Xbra is above, showing the relative positions of
the DNA-binding domain, the nuclear localization signal, and the transcriptional activation domain. 
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Tbx5 in the developing limb (reviewed in [29]). Tbx2 and

Tbx3 are expressed in the anterior and posterior margins of

both forelimb and hindlimb buds [30]. The posterior expres-

sion of Tbx3 is crucial for the development of the more distal

limb elements, as shown in human patients lacking TBX3,

who have ulnar-mammary syndrome and lack the ulna (a

forearm bone) and digits [31,32]. 

In contrast to the overlap in expression of Tbx2 and Tbx3,

their close homologs, Tbx4 and Tbx5, are expressed exclu-

sively in the hindlimb bud and the forelimb bud, respectively

[30]. Although the signals that direct expression of these

genes to the forelimb or hindlimb are unknown, it is likely

that at least part of this involves an interpretation of the

‘Hox code’, the set of Hox genes expressed in the mesoderm

that eventually produces the mesenchyme cells that migrate

into the limb buds [33,34]. The expression of Tbx4 lies

downstream of Ptx1, a homeobox-containing gene expressed

in posterior lateral plate mesoderm. Expression is, however,

independent of the signals that direct limb-bud outgrowth.

Significantly, these genes not only delineate forelimb and

hindlimb territories but also specify forelimb or hindlimb

type [33,34]. Retroviral overexpression of Tbx4 inappropri-

ately in forelimb mesenchyme of chick embryos, or of Tbx5

in the hindlimb, can transform the tissue into hindlimb or

forelimb type, respectively [33]. The transformation includes

both the mesodermally derived skeletal elements and the

overlying ectoderm, which develops feathers or scales

depending on which gene is expressed [33]. Tbx4 and Tbx5

are thus thought to act as ‘selector’ genes for the limb bud,

defining what type of limb develops; this is corroborated by

the correlation of Tbx4 or Tbx5 expression with hindlimb or

4 Genome Biology Vol 3 No 6 Wilson and Conlon

Table 1

Mouse and human T-box-containing genes

Subfamily Gene Human Expression Heterozygous phenotype in human Reference 
Chromosome (null phenotype of mouse homolog) (mutations only)

Brachyury BRACHYURY 6 Primitive streak, tail bud, Spinal cord defects (anteroposterior [22-26]
and notochord axis defects)

TBX19 (TPIT) 1 Pituitary [49,50]

T-brain1 T-BRAIN1 2 Cerebral cortex [51]

EOMESODERMIN/

(?T-BRAIN2) 3 Trophoblast, early primitive (Early postimplantation failure) [44,45]
streak, and cerebral cortex

TBX21 (T-BET) 17 Th1 lineage, lung, and [52]
spleen (adult)

Tbx1 TBX1 22 Heart and pharyngeal DiGeorge syndrome [38-40]
arges

TBX10 11 [53]

Tbx13 (MmTbx7)* [10]

Tbx14 (MmTbx8)* [10]

TBX15 1 Craniofacial region [54]
and limbs

TBX18 6 Heart, somites, and limbs [55]

TBX20 (TBX12) 7 Heart, eye, ventral [56,57]
neural tube, and limb

TBX22 X Fetus [21,58]

Tbx2 TBX2 17 Limbs and heart X-linked cleft palate [59]

TBX3 (including an 12 Limbs and heart Ulnar-mammary syndrome [31,32]
alternative splice form)

TBX4 17 Allantois, hindlimb [30,60]

TBX5 (including an 12 Forelimb Holt-Oram syndrome [30,31,35-37]
alternative splice form) (failure of heart development)

Tbx6 TBX6 16 Primitive streak and (Respecification of posterior [60]
tail bud paraxial mesoderm as neurectoderm)

*These sequences have been reported in mouse but not human; the human genes are hypothetical.



forelimb identity in the limb buds induced by ectopic expres-

sion of fibroblast growth factors in the flank [34]. Finally,

mutations in human TBX5 affect forelimb growth and heart

development [35,36]. Interestingly, missense mutations

within the T-box of human TBX5 that contact the minor

groove of DNA (such as Arg237Gln) result primarily in limb

abnormalities, whereas the other aspect of Holt-Oram syn-

drome, aberrant heart development, is predominantly seen

as a result of a missense mutation that alters a residue that

contacts the major groove (Gly80Arg) [37]. This suggests

that tissue-specific target genes are affected by mutations in

different residues within the T-box of TBX5. 

Mutations in T-box proteins have also been implicated in

DiGeorge syndrome, a complex disease that includes abnor-

malities of the heart’s outflow tract [38-40], and Tbx2 is

amplified in some types of breast cancer [41].

Frontiers
Despite the essential role for individual members of the

T-box gene family in a wide variety of developmental

processes, relatively little is known about the genetic and

biochemical pathways in which T-box genes act [42,43].

Thus, one of the critical areas for future research is to iden-

tify the factors that act directly upstream and downstream of

individual T-box genes. 

At the cellular level, genetic mutations have provided clues

about the requirement for T-box genes in a variety of develop-

mental processes, but the exact function of T-box genes,

including questions of genetic redundancy, still needs to be

established. For example, in ulnar-mammary syndrome

patients it is not clear why there is no corresponding defect in

the legs, a region that normally expresses Tbx3 [30,31]. This

may perhaps be due to a redundant function with other T-box

genes expressed in the hindlimb, such as Tbx2 or Tbx4.

In order to dissect the function of individual T-box genes, it

will also be necessary to generate allelic series (as has been

useful for the study of Holt-Oram syndrome) and condi-

tional mutations. A case for the latter has already been

demonstrated for Eomesodermin, a gene expressed in all

vertebrates just prior to gastrulation in the prospective

mesoderm and, in the mouse, in the trophectoderm, an

extraembryonic tissue that is required for placenta forma-

tion and is thus unique to mammals [44]. Mice lacking

Eomesodermin fail at, or shortly after, implantation,

because of a defect in the trophectoderm. This phenotype

can be rescued by wild-type trophectoderm, even if the

embryo itself is mutant, but when embryonic tissues lack

Eomesodermin, mesoderm differentiation and migration

fails completely [45]. 

Finally, relatively little is known about post-translational

processing, protein turnover, or protein stability for any

T-box protein. In addition, only in the case of Tbx5 [46,47],

Tbr1 [48], and Mga [20] has a protein-protein interaction

domain been reported and, with the exception of Mga, the

biological significance of these interactions has not yet

been determined.
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