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The diagnosis and classification of human cancers currently

relies upon microscopic examination of tissue supplemented

by findings from ancillary studies such as immunohisto-

chemistry. Pathologic classification combined with clinical

information can be used to differentiate distinct tumor

classes that differ in both prognosis and response to therapy.

The diversity of clinical behaviors exhibited by tumors

within recognized classes suggests, however, that biologically

distinct subtypes remain to be identified. Progress in the

systematic identification and validation of novel clinical

classes has been hampered both by the technical limitation

of the number of markers that can be examined efficiently,

and by the difficulty in comparing numerous small-scale

studies that use different reagents and different sample sets.

The recent completion of the first draft of the human genome

sequence has raised hopes that a more accurate classification

of human neoplasia will emerge that relies on a better charac-

terization of the patterns of mutation and expression of genes

in tumors. The most striking progress has been made using

microarray technology, which measures gene expression for

tens of thousands of genes in simple overnight experiments.

The expectation is that this genomic-scale measurement of

gene expression in thousands of clinical specimens will reveal

a detailed molecular classification of malignant tumors and

will allow more reliable prediction of clinical behavior, better

stratification of patients, and the development of novel

therapeutics targeted to the distinguishing characteristics of

different tumor classes. 

It should be noted that microarrays are not the optimal

technology for the measurement of expression of individual

genes; rather, their utility is in the identification of patterns of

coordinately expressed genes. Although any single measure-

ment out of the tens of thousands of measurements on a

single hybridization array may be problematic, the patterns of

gene expression represented by large sets of genes have

proven highly reproducible when compared between many

related samples. The power of the microarray tool-kit thus lies

in the identification and interpretation of patterns. The danger

is that artifacts can be systematic, and the interpretation of

patterns can be fraught with error. In this article, we briefly

review the methods used to obtain and analyze tumor

microarray data, and the types of conclusions that can be

drawn, as well as considering in more detail the insights from

several recent studies of breast tumors and lymphomas. 

The search for meaning
The primary goals of large-scale gene-expression studies

include, firstly, discovering the common patterns of variation

of genes across measured experimental samples and, secondly,
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extrapolating from the particular genes that comprise these

patterns to understand function or to identify potential

therapeutic targets. In order to study novel and clinically

relevant features of malignancies, analyses of microarray

data have therefore largely focused on two broad analytical

goals. The first is the discovery of novel biologically signifi-

cant features; this requires the correlation of patterns of

gene expression with various biological characteristics of

clinical samples. The second is the development of clinical

prognostic tools, which requires the identification of ‘predictor’

genes - a pattern of gene expression that predicts clinical

outcome - and the verification of their utility in independent

patient groups. 

To a large degree, biochemical pathways, responses to

environmental stimuli, and other variations in physiology

are governed by the coordinated regulation of large sets of

genes. Cluster analysis, which identifies genes that have

similar expression patterns, allows the dominant gene-

expression patterns in a dataset to drive the separation of

clinical samples into groups on the basis of overall similarity

in expression pattern, without allowing experimenter-bias to

influence the outcome. One of the most widely used clustering

algorithms relies on agglomerative hierarchical clustering,

which involves the determination of the pair-wise distance

measurements between all genes in a set of experiments,

and subsequent agglomeration of clustered pairs into larger

clusters, again on the basis of distance [1]. Patterns can be

visualized as dendrograms (hierarchical tree diagrams) that

depict relationships between genes and samples, and as

pseudo-color tables that allow exploration of the underlying

data (see Figure 1). It is worth noting that similar methods

are used when analyzing data acquired using either of the

two most popular microarray platforms that are in use at

present: ‘home-made’ DNA arrays of the type pioneered at

Stanford University, and oligonucleotide arrays of the type

manufactured by Affymetrix Inc. 

The discovery of novel tumor classes by cluster analysis has

the problem that the relationships revealed are highly

dependent upon the set of genes chosen for analysis.

‘Agnostic’ approaches are most often used: these select

gene sets on the basis of data quality and/or select for

unbiased features of datasets. Although these methods are

useful for distinguishing novel tumor classes, they also

tend to be dominated by shared characteristics of the

samples distinguished by large sets of genes. The result is

that physiological attributes of specimens that could in

theory be distinguished by variations in the expression of a

small set of genes (for example, drug resistance) can in fact

be lost in clustering patterns that are dominated by more

pervasive aspects of the tumor’s biology (such as differentiated

versus undifferentiated cell types). Because medical

genomic research has the more specific goal of associating

gene-expression patterns with clinically relevant knowledge

about patient samples, such as tissue of origin, tumor grade,

treatment susceptibility, or eventual outcome, a number of

supervised techniques for analyzing gene-expression data

have been proposed, including weighted voting [2],

support vector machines (SVM) [3], and statistical analysis

of microarrays (SAM) [4]. These methods differ in underlying

algorithm, but all aim to identify genes that are significantly

associated in their pattern of expression with measured

attributes of the samples (such as outcome data, pathological

classification, or proliferative index). One current

problem with these techniques is that the present lack of

standardized public experimental datasets means there is

a lack of ‘training’ data with which to guide the methods.

Most reported results therefore lack testing on indepen-

dent data sets, but they nevertheless serve as important

initial steps towards the identification of candidate

markers of tumor class, for subsequent verification in

larger independent studies. 
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Figure 1
Gene-expression patterns of 85 different breast cancer specimens for the
456-gene ‘intrinsic gene list’ identified by Sorlie et al. [17], depicted as a
pseudo-color hierarchical cluster-diagram. Highlighted areas depict sets of
genes whose expression has been inferred to distinguish classes of breast
cancer as determined by cluster analysis. The luminal class and erbb2 class
are candidates for treatment with tamoxifen and herceptin, respectively.
Other identified classes may be useful for the identification of novel
markers of prognosis and for the identification of targets for rational drug
design. Figure adapted from [17].
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Tumor analysis
Human cancer is currently classified according to a standard

set of clinical parameters and a limited array of molecular

and immunological markers. Here, we consider in more detail

how microarray data analysis is contributing to comparisons

of normal tissues with tumor cells, analyses of tissue of

origin, and, in particular, to the discrimination of novel

classes of tumor and their prognostic significance. 

Comparing tumors and normal tissues
There was great initial interest in the use of gene-expression

microarrays to identify gene-expression differences in a

simple comparison between tumor and normal cells.

Although it might seem logical that this would be an efficient

means of determining tumor-specific markers, perhaps

related to oncogenesis, the analysis has in fact proven to be

more complex. Large-scale gene-expression studies have

demonstrated that dominant gene-expression patterns in

tumors in fact reflect the overall biology of the samples and

reveal little about the critical differences that contribute to

the oncogenic physiology to the cells. Tumors and normal

tissues differ dramatically in the proportion of different

types of tissue present (for example, stroma, lymphocytic, or

epithelial tissue), in the overall fraction of cells that are

actively dividing, and in the relationships of tissue compo-

nents to one another; a simple comparison of tumor versus

normal largely yields gene-expression differences that can be

interpreted in the context of these self-evident tissue differ-

ences. For example, the variation in the expression of a set of

genes enriched for those regulated in relation to the cell

cycle, such as genes that encode DNA repair proteins,

cyclins, and PCNA (proliferating cell nuclear antigen) , often

reflects the overall differences in proliferative index of the

samples [5,6]. Similar sets of genes have been identified as

being differentially expressed when comparing many differ-

ent types of sample that vary in overall proliferation rate,

and these differences have often been misinterpreted as

reflecting functional disregulation of sets of genes that have

previously been implicated in oncogenic processes. Although

this may be an interesting result in and of itself, it does not

further the goal of identifying relevant tumor markers, given

that there are already adequate immunohistochemical indi-

cators of proliferation.

Identifying the tissue of origin
Although the clinical finding of a cancer of unknown origin

is a relatively rare occurrence, appropriate treatment does

depend on ascertaining the tissue of origin of a patient’s

tumor. It is therefore obviously useful to identify markers

that could aid in determining the origin of tumors. Two

recent studies [7,8] describe surveying a panel of tumors of

disparate tissue origins, using Affymetrix oligonucleotide

arrays, with the goal of identifying genes characteristic of

each tumor type. Each of the studies used support vector

machines on an initial training set of tumor samples to

determine the genes that best discriminated tumor classes

from one another, and then evaluated the derived predictors

on a separate test set of tumors. Su et al. [7] correctly identi-

fied the tissue of origin of 87% of a test set of primary

tumors, and were also able to classify 75% of a test set of

metastatic carcinomas. Ramaswamy et al. [8] reported a

78% success rate with their test set of tumors but interest-

ingly reported a significantly lower success rate (30%) with

tumors previously classified as poorly differentiated (for

which the tissue-of-origin features may be less prominent).

Both studies reported that the predominant classifier genes

are expressed in a tissue-specific manner in the tissue from

which the tumors were presumed to be derived. Further-

more, each study demonstrated that tumor metastases were

in general classified correctly by microarray analysis,

demonstrating that tissue-of-origin identity of a malignancy

is preserved through the process of metastatic development.

A significant difference between the two studies was the

number of genes found to be optimal for distinguishing the

tumor types. Su et al. [7] found that 10 genes for each tumor

type most accurately predicted the origin of the tumor

samples, while Ramaswamy et al. [8] found the greatest

classification accuracy when the predictor used all the tested

(> 16,000) probes, with a significant decrease in predictive

powers as the number of genes used fell below 50 per type. It

is difficult to determine whether this difference is due to the

more iterative statistical analysis of Su et al. [7], differences

in the tumor samples examined, or technical differences in

the datasets. Nevertheless, the results from the two studies

are very encouraging for the clinical objective of being able

to use gene-expression patterns to identify the tissue-origins

of tumors that are identified initially as metastases.

Tumor subclassification
The most compelling impact of gene-expression profiling on

the care of cancer patients comes from its promise in distin-

guishing biologically and clinically distinct classes of cancer.

The utility of subclassifying cancers lies in the promise that

it will be useful for distinguishing which patients could best

benefit from particular patient-care algorithms, or that it can

serve as the basis for development of novel therapies tar-

geted to the genes that distinguish each tumor class. A large

number of recent studies have aimed to identify gene-

expression patterns that predict the clinical outcome of dif-

ferent cancer types [9-20]. We focus here on recent studies

of breast carcinomas and lymphomas, as these have been the

subject of comparable studies using similar samples but dif-

ferent array and analysis technologies. 

The current methods used to assess prognosis for individual

breast cancer patients are primarily based on clinical

parameters such as the size of tumor at diagnosis and the

presence or absence of local and distant metastases. In

addition, estrogen-receptor expression and over-expression

or amplification of the erbb2 gene is routinely assessed in

order to stratify patients into those who might benefit from

therapy with tamoxifen (estrogen-receptor antagonist) or
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Herceptin© (Trastuzumab; anti-Erbb2 antibody), respec-

tively. There is still marked variability in patients’ clinical

course, however: current diagnostic and stratification algo-

rithms clearly do not adequately detect the biological and

clinical heterogeneity of breast cancer. Given that breast

cancer is now being detected much earlier in its natural

history, as a result of better radiographic detection and clini-

cal surveillance, great potential benefit could come from

improved markers of tumor prognosis. 

A study last year by Sorlie et al. [17] used cDNA microarrays

and hierarchical clustering analysis to explore whether

breast-cancer patient samples could be grouped on the

basis of distinguishing patterns of gene expression. In order

to objectively identify a set of genes useful for the classifica-

tion of patients, they exploited the unusual opportunity

afforded by a clinical study in which two independent

tumor biopsy specimens were sampled from each patient at

two time points separated by sixteen weeks of chemother-

apy. They selected the subset of genes that varied least

between the two independent samplings of each patient

tumor, working on the logic that those genes that remained

relatively consistent over time would be involved in ‘intrin-

sic properties’ of each tumor, as opposed to other variables

such as sampling error. Hierarchical clustering analysis of

78 tumors using this ‘intrinsic gene list’ revealed a dendro-

gram of branching patterns that distinguished five, and pos-

sibly six, classes of tumor (see Figure 1). Two of the classes

were distinguished by gene sets that included genes already

known to be useful for identifying clinically significant

classes of breast tumors, namely the estrogen-receptor-

expressing and erbb2-overexpressing classes. In addition,

classes of patients could be identified whose tumors

expressed gene sets that did not correlate with any com-

monly recognized tumor-class distinctions. For example, a

distinct subset of the tumors expressed genes reminiscent of

basal epithelial cells of the normal breast’s lactation ducts;

this feature of some breast cancers had been recognized pre-

viously on the basis of cytokeratin staining patterns [21] but

had not generally been thought to be clinically significant.

When patients were grouped according to which terminal

dendrogram branch their tumor fell on, statistically signifi-

cant differences in clinical outcome were apparent between

classes. As expected, patients classified into the erbb2 sub-

class had poor overall survival, whereas patients classified in

the ‘luminal’ estrogen-receptor-expressing subclass had

much better overall survival. In addition, those patients

whose tumors expressed features reminiscent of breast basal

epithelial cells had long-term survival rates as poor as those

classified in the erbb2 class; a subgroup of patients within

the luminal class also had relatively poor overall survival.

This study therefore confirmed that gene-expression-based

classification of tumors by cluster analysis can not only iden-

tify patients who are most likely to benefit from current

treatments but also identify tumor types with poor prognosis

that are not specifically targeted by current therapies.

The set of genes that distinguished these novel classes are

candidates not only for biomarkers of the stratification of

patients but also for providing targets for the development

of novel therapeutics.

Gene-expression analysis of patient cohorts for whom long-

term clinical follow-up is available provides an opportunity

to search directly for correlates with outcome, independent

of tumor classification. The study by Sorlie et al. [17] thus

used supervised analysis to identify genes associated with

outcome amongst all patient samples, regardless of the

tumor subclass identified by cluster analysis. They found

that 264 cDNA spots on the array were significantly associ-

ated with patient survival. In a separate study on a similar

patient cohort, van’t Veer et al. [20] used oligonucleotide

arrays to compare gene-expression patterns of breast

cancers from 44 patients who were free from metastases

five years after initial treatment with patterns from tumors

from 34 patients who developed metastases within five

years of treatment. Of a set of approximately 5,000 genes

(of the 25,000 measured) that varied significantly in

expression level across their sample set, van’t Veer et al.

[20] identified 231 genes associated with metastasis; they

then optimized this gene set to identify 70 genes that best

predicted poor clinical outcome. Expression levels of this

set of genes were then used to classify an independent set of

patients according to predicted outcome, and this correctly

classified seventeen of nineteen patients. Our own (unpub-

lished) comparison of the two studies [17,20] revealed only

fifteen genes in common between the two lists of prognosti-

cator genes. The difference between the gene lists may in

part be due to the different clinical endpoints measured

(survival versus metastasis), or to technical differences in

experimentation, including the gene sets analyzed. Both

groups did identify genes involved in transit through the

cell cycle as common amongst those that conveyed a poor

prognosis, however. In the cohort studied by van’t Veer et

al. [20], the classification of patients according to their

gene-expression patterns was superior, for identifying poor

outcomes, to that found when the patients were classified

according to the application of the conventional algorithm

that relies on clinical parameters. These results hold great

promise for the development of improved markers for the

prediction of clinical course, even in patients for whom

disease is detected prior to the development of clinical indi-

cators of poor prognosis. 

Diffuse large B-cell lymphoma (DLBCL) is the most common

subtype of non-Hodgkin’s lymphoma and is treated primarily

with conventional chemotherapy. As in breast cancer, clinical

prognostic indices are primarily used in DLBCL for the iden-

tification of subsets of patients who are likely to have a poor

response to treatment. There is still marked heterogeneity of

clinical course within prognostic classes, however, so it is

likely that there is greater variability in tumor types than is

sampled by clinical parameters. In one of the earliest
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examples of class discrimination by microarray Alizadeh et

al. [9] used cDNA arrays to characterize gene-expression

profiles in a diverse set of lymphoid malignancies including

43 DLBCLs, as well as numerous samples of both trans-

formed and normal lymphoid cells manipulated in culture.

Hierarchical clustering analysis demonstrated that the

DLBCL cases could be classified by gene-expression patterns

into subclasses that could be interpreted as suggesting that

the tumor cells were immortalized at different stages of B-

cell maturation. One class expressed genes that have been

previously shown to be expressed exclusively in germinal

center B cells, for example, while a second-class expressed

genes characteristic of activated B cells. A follow-up study

demonstrated that the somatic mutation of antibody genes

had occurred in all of the cases classified as ‘germinal-

center-cell-like’ and was absent or rare in the ‘activated-B-

cell-like’ cases [22]. Kaplan-Meier survival-curve analysis

demonstrated that the two morphologically indistinguish-

able classes had dramatically different overall survival char-

acteristics; now, the differential expression of hundreds of

genes has identified a large set of candidate markers that

might discriminate between them. 

In a similar recent study, Shipp et al. [16] used Affymetrix

arrays to measure gene-expression patterns in 58 cases of

DLBCL, including 32 patients who were subsequently appar-

ently ‘cured’ of disease and 26 for whom the disease was fatal

or refractory to treatment. Shipp et al. [16] used a supervised-

learning classification approach to identify sets of genes that

could predict outcome, and they found that a set of 13 genes

could optimally predict outcome; this set included some

genes that had previously been associated with DLBCL

outcome. A comparison of the two studies [9,16] reveals

rather poor concordance between the identified prognostica-

tors, however. Only three of the best prognosticator genes

identified by Shipp et al. [16] were also found by Alizadeh et

al. [9]. The pattern of expression of these genes in the

datasets of Alizadeh et al. [9] did in fact predict poor outcome

for this independent patient cohort. Conversely, the

Affymetrix dataset [16] included 90 of the genes implicated in

distinguishing germinal-center from activated B cells in the

cDNA array dataset of Alizadeh et al. [9]. Although a subset

of these 90 genes measured by the Affymetrix approach

appeared to subdivide the tumors into subsets in a manner

similar to the division in the study by Alizadeh et al. [9], the

classes as distinguished by hierarchical clustering in this

experiment did not show statistically different overall sur-

vival characteristics. But a large proportion of these 90 genes

were measured with low confidence in the second set of

experiments [16] (as assessed by the Affymetrix software),

raising the possibility that these genes were not measured

with adequate precision to be used as classifiers in this exper-

iment. It is possible that much heterogeneity has yet to be

discovered in DLBCL and these studies have uncovered only

the beginning of candidate biomarkers that may distinguish

clinically distinct DLBCL subtypes.

Open questions
The studies discussed above, involving breast cancer and

lymphoma, demonstrate the two fundamentally different

approaches that are most often used in the identification of

genes useful for prognostication and stratification of cancer.

Analysis of patient cohorts by hierarchical clustering

assumes that biologically distinct tumor types can be identi-

fied by their characteristic patterns of expressed genes and

that some of these classes will prove clinically distinct. In

contrast, the direct search for correlates with clinical

outcome assumes that among the heterogeneity within cur-

rently identified tumor classes there will be sets of genes that

are highly correlated with survival, independent of tumor

class. One theme to emerge from the latter approach has

been the identification of proliferation markers, which were

already well known to be predictive of aggressive tumor

types in many different cancers. Perhaps the most instruc-

tive insights will come from much larger studies, where cor-

relates with clinical outcome can be identified in patient

samples for which the contribution of tumor subtype can be

factored out by multivariate analysis.

In the few comparable pairs of experiments that have been

published, researchers are identifying markedly different

numbers of genes as optimal for identifying tumor classes,

and different genes that appear useful for prognostication in

similar patient cohorts. There are many possible explanations

for this divergence. Firstly, some disparity is expected until

the entire human transcriptome has been defined and is rep-

resented in a microarray format. Currently, differences in the

technologies and in the gene sets analyzed make it difficult

simply to compare and contrast independent datasets gener-

ated in different labs. Secondly, the population size of current

published gene-expression datasets (usually involving less

than 100 patients) may be inadequate for tumor types that

exhibit great complexity. Perhaps most importantly, manipu-

lation of microarray data has yet to be standardized; differ-

ences in chip-to-chip normalization, filtering for data quality,

and the analytical methods used to identify genes of interest

can all lead to varying results. Our (unpublished) survey of

the available data suggests that, probably because of the diffi-

culty in performing microarray experiments, there is inade-

quate filtering for poor measurements in many experiments,

and this is likely to be a significant contributor to the dispar-

ity in the results of separate experiments. 

Gene-expression microarrays are cumbersome tools for the

analysis of sparse clinical material. Nevertheless, the

studies reviewed here, as well as numerous others involving

other tumor types, are rapidly identifying candidate genes

and gene sets that appear useful for the development of a

novel molecular-based classification of human cancers. It

remains unclear what number of genes will be needed to

reliably identify all clinically distinct tumor classes. Some

clinically relevant tumor classes may prove to be easily dis-

tinguished by immunohistochemical reagents directed at
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key markers identified in gene-expression studies. Other

classes may require measurement of the expression of

numerous markers that can most conveniently be analyzed

by quantitative measurement of RNA. The evolution of clin-

ical practice awaits the exploration of these nascent tools

for tumor classification in large prospective and retrospec-

tive studies where their true utility in the management of

patients can be discovered.
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