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Abstract

Background: Data from thousands of transcription-profiling experiments in organisms ranging
from yeast to humans are now publicly available. How best to analyze these data remains an
important challenge. A variety of tools have been used for this purpose, including hierarchical
clustering, self-organizing maps and principal components analysis. In particular, concepts from
vector algebra have proven useful in the study of genome-wide expression data.

Results: Here we present a framework based on vector algebra for the analysis of transcription
profiles that is geometrically intuitive and computationally efficient. Concepts in vector algebra such
as angles, magnitudes, subspaces, singular value decomposition, bases and projections have natural
and powerful interpretations in the analysis of microarray data. Angles in particular offer a rigorous
method of defining ‘similarity’ and are useful in evaluating the claims of a microarray-based study.
We present a sample analysis of cells treated with rapamycin, an immunosuppressant whose effects
have been extensively studied with microarrays. In addition, the algebraic concept of a basis for a
space affords the opportunity to simplify data analysis and uncover a limited number of expression
vectors to span the transcriptional range of cell behavior.
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Conclusions: This framework represents a compact, powerful and scalable construction for
analysis and computation. As the amount of microarray data in the public domain grows, these
vector-based methods are relevant in determining statistical significance. These approaches are
also well suited to extract biologically meaningful information in the analysis of signaling networks.

Background

The three goals of most microarray experiments are descrip-
tion, classification, or characterization. For example,
microarrays have been used to describe comprehensively the
diauxic shift, progression through the cell cycle, sporulation
and the effects of treatment with a small molecule [1-4].
They have been used to classify the cancer type of a given
sample or classify groups of co-regulated genes [5-8].
Finally, microarrays have been used to characterize biologi-
cal systems using comparisons of wild-type and mutant cells,
with the goal of obtaining mechanistic insights [9-11].

Searching for concerted, dramatic changes in gene expression
or searching for differential expression of a given gene has
been a successful method in analyzing transcription-profiling
data, especially in description or characterization [4,12].
Often, investigators take a manual approach to accomplish-
ing these tasks. However, manual approaches to data analy-
sis are sometimes impractical or cumbersome, inspiring the
development of tools to accomplish the three goals described
above. A variety of techniques such as hierarchical cluster-
ing, k-means clustering and self-organizing maps have been
implemented with success, especially in classification [13].
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As the number of publicly available profiles in Saccha-
romyces cerevisiae alone now exceeds 500, a great need
exists to exploit this information properly to understand cell
function. At least three independent international projects
have been set up to serve as database-driven repositories of
genome-wide expression data [14]. A major effort is being
made to systematize data storage, especially involving XML
(extensible markup language), to ensure interoperability of
these databases and associated analysis tools.

A related need that has been less addressed is the systemati-
zation of expression data analysis. This requirement extends
not only to analysis but also to pedagogy and to practical
aspects of algorithm implementation. Various studies in the
literature have successfully implemented tools from vector
algebra in analyzing genome-wide expression data [11,15,16].
However, a framework for the analysis of transcription pro-
files using vector algebra has not yet been codified. Here we
present such a framework. Common statistical measures
have natural counterparts in vector algebra that have visual
interpretations and are easily implemented on a computer.
Within this framework, the analysis of genome-wide expres-
sion data is converted to the study of high-dimensional
vector spaces. The many powerful theorems that have been
developed in vector algebra can be applied to these spaces,
and these theorems offer biologically relevant insights. Ele-
ments of the vector space can also be analyzed statistically.
This construction has analytic and pedagogic appeal.

Results and discussion

Constructing expression vectors

Transcription-profiling experiments offer different kinds of
measurements depending on the technology used. One type
of technology (using noncompetitive hybridization) mea-
sures absolute gene expression, while a second type (using
competitive hybridization) measures relative gene expres-
sion. A microarray that uses competitive hybridization yields
a list of fold changes for each gene between the conditions or
cell types measured. The data from a microarray that uses
noncompetitive hybridization can be ‘divided’ (after proper
normalization) into another microarray of the same type to
produce the fold change of each gene from one condition to
another. In practice, even those investigators who use non-
competitive technology platforms generally interpret and
publish the fold changes between conditions or strains
rather than absolute gene-expression levels. Therefore this
study will focus on analysis of fold-change values, hereafter
called a transcription or expression profile.

There are three common types of values that can be associ-
ated with the fold change of a gene. The first, a signed fold
change (such as a +1.6 or -2.3 fold change, corresponding to
induction or repression, respectively) has the most intuitive
appeal but has a discontinuity spanning from -1.0 to +1.0
that can be problematic. The second type, an unsigned fold

change (such as 1.6 or 0.43 fold change, again correspond-
ing to induction or repression, respectively) has no such
discontinuity but is bounded on the left by zero and is
unbounded on the right. This asymmetry about unity
hinders analysis. The third type, a logarithm (base 2, base
10, or natural) of the unsigned fold change, is undoubtedly
the most tractable. No fold change in expression is repre-
sented by zero, induction is positive and repression is nega-
tive. Most importantly, there are no discontinuities
or asymmetries.

Once a set of transcription profiles is obtained (where each
profile represents a set of fold changes for a set of genes), a
data matrix can be generated with genes as rows and experi-
ments as columns (Figure 1a). With this picture in mind,
generating vectors from the data matrix (the logarithms of
the unsigned fold changes) is a natural operation for which
there is an obvious construction.

Definition. For p transcription profiles measuring the
expression of n genes, let s;; represent the logarithm of the
expression of the ith gene in the jth experiment. The vector
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is defined as a ‘gene vector’. Similarly,

is defined as an ‘experiment vector’. By construction, a gene
vector is p-dimensional and an experiment vector is
n-dimensional. An ‘expression vector’ represents either a
gene vector or an experiment vector. The superscript T desig-
nates transposition.

It can easily be seen that with respect to the data matrix, a
gene vector consists of the elements of a row and an experi-
ment vector consists of the elements of a column (Figure 1a).
By convention, vectors are treated as columns and not as
rows. Experiment vectors are already columns, so gene
vectors are transposed from rows to also become columns.

In the most common scheme of comparing two profiles, a
‘cloud’ of genes is plotted on a scatterplot. This view is simply
the display of n two-dimensional gene vectors (Figure 1b). It is
well suited to detecting particular genes whose expression
varies between experiments. As more experiments are added
to the matrix, the dimension of the space grows but the
number of points remains fixed. Considering a large
number of experiments, genes that have similar biological
regulation remain in nearby regions of high-dimensional
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The two complementary methods of understanding a transcription
profile. (@) Two transcription profiles of three genes are shown. Rows
form gene vectors while columns form experiment vectors. (b) In a
typical profile comparison, gene vectors are plotted in two dimensions,
where the axes represent the experiments and the points are the genes.
Data from (a) are plotted. Additional genes add points to the graph, but it
remains in two dimensions. (c) In the vector-based approach, the axes
are genes and the points are experiments. Data from (a) are also plotted
here. Additional genes would not add any points to the graph (that is,
there would always only be two vectors), but the space that the vectors
reside in would increase in dimension.

spaces. Integrated with promoter-sequence analysis and con-
sideration of chromatin structure, the study of gene vectors is
useful in studies of transcription regulation.
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There is another, complementary, way of thinking about
expression profiles, or more generally, about multivariate
statistical data [17]. Although analysis of gene vectors is a
powerful tool, it is less efficient at demonstrating relation-
ships between profiles. This is because overlaying clouds of
thousands of gene vectors may not offer an insightful
picture because of the many data points in view. In the
alternative method of analysis, an expression profile is
regarded as just one point in a high-dimensional space.
Because this point captures the same information con-
tained in the scatterplot of gene vectors, the point must
reside in a much higher-dimensional space. In this space,
the relationships between profiles become more apparent.
Instead of plotting genes, one now plots experiments
(Figure 1c). As new profiles are added to the data matrix,
the dimension of the space remains fixed but the number
of points increases, the reverse case of gene vectors.
Although the high-dimensional space of experiment
vectors cannot be visualized, the relationships of vectors in
the space can often be understood using intuition from the
two- or three-dimensional case. The power of vector
algebra comes from its ability to scale - the concepts, equa-
tions and theorems move seamlessly (usually identically)
to higher dimensions.

Assuming that there are n genes represented on the microar-
ray, it is theoretically possible that each profile would yield
an n-dimensional experiment vector. However, because of
poor detection of scarce transcripts, flaws on the microarray
or experimental error, an expression profile in practice gives
fewer than n values. This leaves three basic options for how
to carry out the analysis. The first is that a lack of data can be
declared as no change in expression, and a zero inserted
into the position of that gene. This approach is generally too
simplistic for use in further analysis.

The second option is to estimate the missing value on the
basis of other profiles and insert it into the vector. For
example, we can look for the gene most similar to the
missing gene as judged by all other experiments, and then
replace the missing value with the value of the similar gene
for that experiment. For robustness, we can also find the
most similar k genes and use the average of those genes for
that experiment as the replacement. A comparative study
has found that this k-nearest neighbors method performs
better than filling missing values with zeros or the averages
of that gene in other experiments [18]. There are more
complicated imputation methods in the statistics literature,
but their usefulness, given the complex calculations
involved, is not yet clear.

Finally, the vector space can be resized to a smaller dimen-
sion than n, where the expression profiles of interest have
data for all genes in that space. As the missing data are not
estimated, this is the most conservative method of analysis,
although at the price of discarding some data.
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Vector angle is the counterpart to the Pearson
correlation coefficient

One of the most fundamental measures in statistics is the
Pearson correlation coefficient (referred to as r). This repre-
sents a widely used measure of similarity between n-tuples.
With expression vectors, the geometric picture of similarity
is that the vectors are pointing in the same direction of
expression space. This picture is equivalent to two vectors
with a small angle between them. When expression vectors
are uncorrelated, they are orthogonal. This leads to the fol-
lowing remark.

Remark 1. Correlation of expression vectors corresponds to
the angle 6 between those vectors. Low angle (r near 1)
implies correlation, Angle near 9o° (r near zero) implies
uncorrelation, and angle near 180° (r near —1) implies anti-
correlation.

This remark is motivated by consideration of the relation-
ship between the Pearson correlation coefficient () and
vector angle (0). (We use the notation where < , > represents
an inner product, also called a dot product, and where cov(, )
is the covariance between ordered n-tuples.) For two vectors
x and y, the formulas for r and 0 are:

<X,y> \\

V <xx> - <yy> )

e cov(x,y) 02 cos-t (
Veov(x,x) - cov(y,y) \

It is evident that r and the argument of the inverse cosine
function are identical except that covariance and inner
product are interchanged. In practice, the argument to the
inverse cosine and r are nearly identical because the covari-
ance is essentially a mean adjusted inner product and the
means of expression vectors are near zero. (In fact, covari-
ance and inner product are identical for vectors with zero
mean.) Thus, there is no advantage of either measure
because of nearly identical performance on actual expression
data (Figure 2a).

For gene vectors, angles are a measure of how similar two
genes are expressed across experiments. For experiment
vectors, angles are a measure of how similar two experi-
ments are across genes. For experiment vectors, a quantita-
tive sense of the distribution of 6 can be obtained by
examining a collection of diverse transcription profiles. A set
of 300 transcription profiles in S. cerevisiae from a wide
variety of gene deletions and treatments was obtained and
made publicly available [19]. We converted these profiles
into experiment vectors and computed all possible angles
between the vectors (a total of 44,850 angles). (Computer
source written in Matlab™ is publicly available at our
website [20]) These angles gave a distribution with a mean
of 88.4° (close to orthogonal, as expected) and a standard
deviation of 7.4° (Figure 2b). In practice, we have found 60°

and 120° as useful cutoff values for significance of correla-
tion or anticorrelation, respectively.

The vector algebra approach is illustrated using a publicly
available data set. The small molecule rapamycin has been
transcriptionally profiled by three research groups in four
separate studies [4,11,21,22]. It has a very dramatic expres-
sion profile in which hundreds of genes are rapidly (within
minutes) up- or down-regulated. The protein targets of
rapamycin (the Tor proteins) are known to sense nutrients.
When treated as an experiment vector, other experiment
vectors were searched for that had a low angle with the
rapamycin vector. Against the same set of 300 diverse
expression profiles described earlier [19], not a single vector
could be found that had an angle less than 60° with the
rapamycin experiment vector (data not shown). However
another study identified two vectors with smaller angles to
the rapamycin expression vector (angles of 44° and 47°) [11].
These similar vectors were those corresponding to the
removal of high-quality carbon or nitrogen from the media.
Thus, it can be inferred that the Tor proteins regulate the
responses to carbon- and nitrogen-quality of the medium.
This is an example of using angles to identify the functions of
uncharacterized proteins.

It is apparent that angles provide a quantitative measure for
asserting genome-wide similarities. This measure is impor-
tant when making claims about the target of a small mole-
cule, effects of gene deletion or specificity of a drug.
Orthogonal angles (implying uncorrelation) when similarity
is expected or claimed raise questions about the validity of
the hypothesis under examination.

A ratio of magnitudes is a natural second metric for
comparing two expression vectors

An advantage of vector algebra is the extension from angles
into ratios of magnitudes for which other formulations have
awkward or no counterparts. The two four-dimensional
vectors x = [1 02 -1]Tand y = [2 0 4 -2]T have 0 = 0 (imply-
ing r = 1). However, there is an important difference
between the vectors not identified by these measures, as we
can observe that y = 2x. This information is captured by
computing the ratio of vector magnitudes.

Remark 2. Besides angle, the ratio of vector magnitudes (a)
is a second measure of similarity of two expression vectors.
For two vectors x and y, this is calculated as:

<y,y>
o=
<X,X>
With the two four-dimensional vectors listed above, o is
easily seen to be 2. By interchanging < , > and cov( , ) as

was done with r and 6, it is tempting to think that the
quantity 8 = (cov(y,y)/cov(x,x))/2 might behave similarly
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The relationship between the Pearson correlation coefficient and angle, and the statistical distribution of angles. (a) The Pearson correlation coefficients
and the angles between 180 pairs of actual transcription profiles were computed. Plotting one measure against the other reveals their close relationship.
(b) The statistical distribution of angles in a large, diverse data set (300 profiles) [19] was computed by calculating angles between all possible pairs (a

total of 44,850 angles) of expression vectors. Data were taken from the Rosetta Inpharmatics website [34] and the software used to compute the angles

is publicly available for download from our website [20].

to a. With the same vectors as above, f = o« = 2. When
considering the two vectors x =[22 2 2]Tand y = [1 2 1 2]7,
it can be calculated that a = 0.79, the value expected as y is
a ‘smaller’ vector. However 8 = 0.5/0 = . Indeed, the
mean subtraction component of the covariance fundamen-
tally alters the behavior of 8 compared to «, making it an
unsuitable measure of expression vector magnitude. An
elegant feature of regarding microarray data as expression

vectors is that both angles and magnitudes are natural
measurements with important biological meaning, as will
be discussed in later sections.

Searching subspaces is an important step in analyzing
expression vectors

Another advantage to treating expression data as vectors in
a space rather than as n-tuples is the associated notion of
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An illustration of the use of the colorimetric comparison array (CCA) to infer information about a cellular signaling network. (a) Using competitive
hybridization data from a study of the target of rapamycin (Tor) proteins) [I 1], the angles between a reference expression vector of a wild-type strain
treated with rapamycin and four other expression vectors are represented on a CCA. The profile of cells shifted from glutamine to proline shows that at
a whole-genome level, and within the subspaces shown, there is strong similarity (44° at a whole-genome level) to a profile of cells treated with
rapamycin. Cells that have undergone heat shock, however, have an orthogonal (uncorrelated) expression vector. Deleting the gene URE2 (ure2A) does
not generate whole-genome correlation, but does generate correlation within the subspace of nitrogen-discrimination pathway (NDP) genes. Finally, cells
containing the tap42-1 | allele of TAP42 that are treated with rapamycin illustrate that Tap42p is downstream of the Tor proteins in the control of
ribosomal protein gene expression. (b) A similar analysis to that in (a) can be carried out using ratios of vector magnitudes (c). The overall greenness of
the CCA reflects the fact that these four expression vectors have a smaller magnitude than the reference rapamycin-treatment profile. The magnitude of
the whole-genome expression vector of heat shock is considerably smaller. Deleting URE2, however, increases the magnitude of expression of the NDP
subspace of genes to levels comparable to those of cells treated with rapamycin. When TAP42 is mutated to the tap42-1 | allele, NDP gene induction is
severely impaired, implicating Tap42p as an important regulator of NDP gene expression downstream of the Tor proteins. Iterating this analysis over
many effectors and many subspaces of genes reveals a wealth of information about the transcriptional network downstream of the Tor proteins [I1].

subspaces. With experiment vectors, this concept is particu-
larly valuable. Experiment vector space can be divided into
subspaces, most naturally where the subspaces correspond
to co-regulated or functionally related genes. This can most
easily be done using annotated lists where genes are classi-
fied by function. The Munich Information Center for Protein
Sequences (MIPS) provides a commonly used functional
grouping for genes [23].

Considering subspaces is nearly always an essential part of
analysis. From the vantage point of certain subspaces, many
different experiment vectors may ‘collapse’ into identical
vectors. This enables the decomposition of vectors into sums
of common and distinct components. For example, yeast
stress responses (such as DNA damage or heat shock) are
composed of a general response that stresses share and a
specific response for the particular stress faced. Identification
of these subspaces remains a goal in biology. Another example
is that of the Tor proteins, which have many effectors, one of

which is called Ure2p. Comparing the expression vectors of
rapamycin treatment with a URE2 deletion reveals that the
genome-wide angle between these two vectors is 76° and
thus the vectors show only weak correlation. However, cal-
culating the angle of these same vectors within the subspace
of genes controlled by Ure2p gives an angle of 13° [11]. With
respect to this subspace of genes, treatment with rapamycin
and deletion of URE2 are nearly identical. Experiments
reveal that treatment with rapamycin leads to dephosphory-
lation of Ure2p, corroborating this low angle [4,21]. Thus it
is important to consider not only whole-genome angles, but
also those for important subspaces.

The effects of mutations on vector angles and
magnitudes

When studying a particular process by transcription profil-
ing, it is common also to transcriptionally profile the same
process after deleting one or more genes known to be
involved. For example, this has been carried out with MAP



kinase deletion mutants after pheromone treatment [10],
deletions of effectors of the Tor proteins after rapamycin
treatment [11], and lexA deletions after UV irradiation [24].

When an effector of some process is deleted, the resulting
vector is often not uncorrelated in the subspace involving
that effector, but is reduced in magnitude. For example,
when there are two transcription factors with overlapping
specificity for some genes, deletion of one can be compen-
sated by the presence of the second with a similar (though
weaker) induction of the same genes. If an effector truly is an
exclusive controller of some set of genes, when it is deleted,
the resulting experiment vector in that subspace would be
expected to be orthogonal (uncorrelated) with the original
vector. However, biological networks generally exhibit
redundancy in their control of genes - a reduction in the
vector magnitude is to be more commonly expected than
rotation toward perpendicularity (uncorrelation). Thus it is
important to rely on the coordinate use of angles and magni-
tudes in expression-profiling analysis, something that is not
always performed in the literature.

Combined use of angles and ratios of vector
magnitudes is a tool for biological discovery

When one is characterizing a transcription profile of an
uncharacterized gene deletion or treatment with a small
molecule, the first operation that should ordinarily be com-
pleted is a comparison of that profile as an experiment
vector with all other available experiment vectors from the
same organism. By performing such a comparison, the gene
can be partially characterized or the target of a small mole-
cule can be identified [19]. By coloring the results of a com-
parison, mimicking the false-coloring schemes usually found
on microarrays, one can quickly scan a large set of profiles
for those correlated, uncorrelated, or anticorrelated with a
reference profile that is being tested [11]. This color scheme
is red to represent correlation, yellow to represent uncorre-
lation, and green to represent anticorrelation (Figure 3).
This overall depiction is called a colorimetric comparison
array (CCA). It can also be carried out with ratios of vector
magnitudes where red represents greater magnitude, yellow
unchanged magnitude, and green reduced magnitude.

To understand the most general relationships, it is useful in
the first row of a CCA to compare whole-experiment vectors.
This gives an important genome-wide characterization of the
profiles being studied - assertions of global behavior should
be substantiated in these values. As previously discussed, the
angles and magnitudes within subspaces are important to
analyze - in subsequent rows, therefore, the same experiment
vectors are compared in various subspaces of the genome. By
examining a range of subspaces, this analysis can be used to
partition a transcription profile and define which effectors are
responsible for particular patterns of expression. By looking at
whole-genome angles as well as angles within subspaces of
interest, the CCA reveals a wealth of information about the
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expression vectors being studied (Figure 3). A CCA can also be
used to identify the structure of signaling networks.

Singular value decomposition in expression-profile
analysis

We next explore ideas relating to dimensionality reduction
of expression vectors. Dimensionality reduction is a
common problem in many disciplines of science and engi-
neering. Questions include: what are the essential pieces of
information within a transcription profile and what is noise?
If the full set of genes (around 6,000 in S. cerevisiae) carries
redundant information, how small a subset can we choose?
Are most transcription profiles merely combinations of a
smaller number of transcription profiles? The first tool we
discuss is singular value decomposition (SVD).

SVD is a matrix factorization that reveals many important
properties of a matrix. It is a standard tool in many areas of
the physical sciences, and many algorithms in matrix
algebra make use of SVD. Given an n x p rectangular data
matrix A, of expression profiles (again where n is the
number of genes, p is the number of experiments), we can
obtain the following factorization:

ATlXp = Uan Dn)(p Vixp
where U and V are orthonormal and D is diagonal. (Mathe-
matical details of the SVD can be found in Materials and
methods.) The intuition behind the SVD is straightforward.
Let u, be the ith column of U. Note that this column vector is
n-dimensional. The best vector (in a sense that can be made
mathematically precise, see Materials and methods) that
captures (spans) the experiment vectors of A is u,. Similarly,
the best two column vectors that span the experiment
vectors of A are u, and wu,. In the limit, all n vectors wu;
exactly span all the experiment vectors of A. In the same
way, the columns of V, in descending order, are p-dimen-
sional vectors that best span the gene vectors of A. These
ideas are best illustrated with an example.

2 4
1 3
A= 15 0
0 o
0.82 -0.58 0 © 5.47 O
0.58 082 0 o 0O 0.37 0.40 —0.91
U=|o 0 1 op)D=lo o ’V={0.91 0.40J
o} 0 0 1 o o

The first column of U, u,, best spans (that is, when multi-
plied by a constant) the columns of A. Together with the
second column, A is exactly captured by taking linear com-
binations of u, and wu,. In this case, u, and u, are not
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needed to capture A. Similarly, the first column of V, v,
best spans the gene vectors (rows) of A. The first value
along the diagonal of D measures how much contribution
u, and v, make to capturing A, and the next value mea-
sures how much contribution u, and v, make. In this case,
the large size of the first singular value indicates that u,
and v, capture most of the information in A. These values
along the diagonal of D are called the singular values of A.
Matrices that contain mostly redundant columns (low-rank
matrices) have singular values that rapidly decay, because
the matrix is efficiently spanned by a small number of
vectors. However, matrices containing very independent
columns (high-rank matrices) have singular values that
slowly decay. In the limit, the identity matrix, which has
the highest possible rank of n, has singular values that do
not decay at all - they all are one.

For microarray data, SVD can be used to bring out domi-
nant underlying behaviors. For example, examining the
cell-cycle data [25] using SVD revealed that among the first
U vectors (u,, u,, ...), the first corresponds to a steady-
state and the subsequent ones correspond to the oscillatory
behavior that one would expect from such data [15,16].
SVD can also be used to ‘de-noise’ profiles by recomputing
the data matrix using only significant u; vectors (signifi-
cance determined by reading the ith singular value along
the diagonal matrix D.) The SVD can also be used to esti-
mate missing values.

A technique called principal components analysis (PCA) [26]
is closely related to the SVD. In PCA, the factorization is
applied to the covariance matrix of the data rather than the
original data matrix. If the data are mean-adjusted, both
SVD and PCA give the same information. If the data are from
a time series, then the principal components may corre-
spond to derivatives of the data [27].

Towards a basis of expression vectors

One of the most powerful ideas in linear algebra is the notion of
basis vectors. Besides constructing the space, basis vectors can
be chosen to highlight important features of the data or simply
to store the data efficiently. For example, the function sin x can
be expressed either in a polynomial or exponential basis,

X x3 x5 x7
sinx=x—— +
3! 5! 7!

. 1/ . ,
sin x = — (e”f - e—v‘)
2

The first basis is clearly awkward - it is infinite-dimensional
and offers little insight. However, the second basis captures
the sine wave more compactly and provides more insight.
Many of the successes of vector algebra in image compres-
sion, smoothing and signal detection come from the identifi-
cation of appropriate basis functions.

This concept has important implications in the analysis of
transcription-profiling data. Considering the data as expres-
sion vectors, what is the right basis to express the data in?
The data is originally in the basis of genes. But is that the
best basis? We have already examined one change of basis -
the SVD. In this case, the u; and v; vectors are basis vectors
for the spaces of experiment vectors and gene vectors,
respectively. While very efficient basis vectors, the vectors
themselves are completely artificial and do not correspond
to actual profiles.

An important question in biology is how many different fun-
damental cellular states or transitions exist. It may be that
there are a relatively small number, and that cellular states
or transitions are essentially superpositions of a finite
number of basic states or transitions. This question is easily
posed in expression space because, if the hypothesis holds,
the complete set of expression profiles can be examined for
the smallest number of basis vectors that can construct the
nearly identical entire set. If a profile is added to the data
matrix and cannot adequately be constructed by other exist-
ing profiles, then it becomes a basis vector. The collection of
basis vectors formed by this procedure can be thought of as
containing the building blocks of cellular state or transition
space. Thus, it would be interesting to try to find basis
vectors for all experiment vectors, using actual experiment
vectors and not artificial bases that offer little insight.

First, how can one estimate how many basis vectors are
required? This problem corresponds to estimating the rank
of the data matrix. This problem of finding an approximate
rank of a matrix, k, is a common one. SVD, as described
above, is often employed. Using SVD, one typically looks for
a sharp drop in the singular values to estimate the rank. Let
us suppose that the singular values fall below a defined
threshold at some value. This value serves as a logical choice
for k. In fact, the first k vectors u,; of A serve as the best pos-
sible basis to span A. In our case, however, we desire the
basis vectors to be a subset of the original vectors of A. This
is a more difficult problem.

We investigated these concepts using two large data sets of
transcription profiles generated in S. cerevisiae: the set of
300 expression profiles previously analyzed and a second
set of over 170 expression profiles of various yeast environ-
mental responses [19,28]. We converted these sets to data
matrices of experiment vectors and computed the singular
values of each matrix. For each matrix, the singular values
decayed rapidly (Figure 4). This decay shows that the
columns of the matrix are far from orthogonal and a basis
containing a small number of wu; vectors can efficiently
capture the original matrix. Interestingly, the singular
value decay of the environmental responses was much
faster than the more diverse 300 profile set (compare
Figure 4b with a). This is due to the limited number of
responses that yeast cells possess when facing stress. This
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Figure 4

Using the SVD to estimate the number of fundamental expression vectors required to efficiently span a profile set. (a) A set of 300 diverse expression
profiles [19] was converted to a matrix of expression vectors and the singular values were computed, normalizing such that the first singular value was equal
to |. (b) A set of 173 profiles of various yeast environmental responses [28] were converted to a matrix of expression vectors and processed as in (a).

further suggests that there are a small number of building-
block transitions that yeast can undergo and that other
behaviors are, at least partially, superpositions of these
transitions.

But how can one find these building-block, fundamental
expression vectors in the profile set? Instead of using the u;
vectors from SVD (which are linear combinations of the
experiment vectors) it would be useful to identify which
actual experiment vectors are most useful to form a basis
for the matrix. That is, it would be useful to express pro-
files in terms of other profiles (basis vectors), rather than
simply as lists of genes (Figure 5). There are a number of
possible algorithms for identifying these basis experiment
vectors. We tested a variety of algorithms, especially those

Basis 1 Basis 2
YALOO1C | -0.18 Glutamine —proline +0.60
YALOO2W | -0.05 Glucose —ethanol +0.36
YALOO5C | +0.14 |— | Heat shock +0.13
YALO17W| +0.99 ureZA steady state +0.17
YAL029C | -0.33 tap42-11 steady state | +0.06

Figure 5

The transcriptional profile of rapamycin expressed in two alternate bases.
A part of the traditional basis for a transcription profile is shown on the
left (only five genes out of around 6,000 are shown). The experiment
vector of treatment with rapamycin was projected onto the five
experiment vectors shown on the right. The coefficients for the
rapamycin expression vector in this five-dimensional basis are shown on
the extreme right.

utilizing projections of the u; vectors on A, to identify
optimal candidate basis vectors. (The source code for one
such algorithm is publicly available online at [20].) While
small subsets of experiment vectors could span the entire
set of experiment vectors, it was found that there were
many such subsets of experimental vectors that had a com-
parable spanning ability toward A (data not shown). This
suggests that the cell probably does have a small number of
fundamental transitions, although many different groups
of transitions (as represented by experiment vectors)
appear nearly equivalently able to span the transcriptional
range of cellular behavior.

Given this behavior, perhaps the ideal basis vectors for tran-
sition space would be the basis of experiment vectors in
which only one signaling pathway is selectively modulated.
This could be accomplished with small molecules like
rapamycin that selectively modulate one signaling pathway
with complete specificity. If one had a collection of small
molecules that could selectively modulate every signaling
pathway in the cell, then it might be possible to simply
project an experiment vector on these small molecules’
experiment vectors and determine which pathways are acti-
vated and to what degree. This would immediately charac-
terize the expression profile in a very powerful basis that
provides a great deal of biological insight.

Conclusions

We have described various techniques motivated by vector
algebra for analyzing genome-wide expression data. Some of
these techniques have been used previously, but we find that
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by regarding expression profiles as vectors, either in the
sense of genes or experiments, we gain a richer understand-
ing of the existing techniques and can take these insights
into new directions.

The angle between two vectors is essentially equivalent to
the Pearson correlation coefficient and studying the changes
in magnitudes as well as the angles provides important bio-
logical information. In particular, we find that decomposing
the experiment vector space into a set of smaller subspaces,
using functional categories for instance, results in a concise
but useful description of the biological system (Figure 3).
These types of genome-wide descriptions are essential for
understanding large amounts of complex expression data.
Thinking in terms of vector spaces naturally introduced the
idea of optimal basis vectors, but with the constraint that
these basis vectors belong to the original set of expression
vectors. This may be a useful way of characterizing expres-
sion profiles. We have described the usefulness of the singu-
lar value decomposition as a tool for reducing the dimension
of the problem and the insight it brings to the problem of
finding basis vectors.

A complete analysis of genome-wide expression data
involves numerous issues not discussed here. The impor-
tance of preprocessing and normalization to correct for
various artifacts has been noted recently [29,30]. Artifi-
cially large fold changes caused by small values in ratios
(red/green or vice versa) should be numerically bounded in
competitive hybridization experiments. Assigning a level of
significance to observed changes in expression levels is
also an important issue and has been addressed by a
number of different approaches, most often with a deriva-
tion of a statistical model for noise to obtain estimates for
the fold changes [31,32]. For oligonucleotide arrays, there
are similar and sometimes more complicated issues for the
same steps. Finally, there are a variety of clustering and
data-mining techniques for understanding the structure of
the data in other ways. Appropriate methods should be
chosen carefully, depending on the type of data and the
questions to be answered. As the quantity of expression
data increases rapidly, more tools such as the ones devel-
oped here will play an important role in understanding
biological states and transitions.

Materials and methods

Software

Computer software was written in the Matlab™ program-
ming language and is publicly available for download from
our website [20].

Singular value decomposition (SVD)
SVD is the matrix factorization:

_ T
Anxp - Unxn anp Vpxp

where D is diagonal and U and V are orthonormal (UUT =
UU=1,,,and VVT'= VIV =1 ). The diagonal entries of D
are the singular values o, > ¢, > ... 2 0, and the columns {u;};
o, 0f Uand{v};_, ,of Vare called left and right singu-
lar vectors, respectively. For microarray data, we assume
that n > p as we usually think of the data matrix as having n
rows for genes and p rows for experiments, and we assume

that the columns are linearly independent.

The geometric visualization of the SVD is the following.
When A, is applied to a p-dimensional sphere, the result is
an n-dimensional ellipse in which the principal axes have
been stretched by factors o,..., o, in directions ...,
respectively. (The right singular vectors v; are the axes of the
sphere that get mapped to u, through Av; = c;u;.) The useful-
ness of the SVD is often based on the fact that it answers the
following important question: what is the best approxima-
tion to A using a matrix of lower rank? (The term ‘best’ can
be defined mathematically.) This is important because a
comparable matrix with a smaller rank may make the under-
lying structure of the matrix more apparent. Another way of
writing A=UDVT is:

4 T
A= oy
=1

Then, it can be shown mathematically that the best approxi-
mation of dimension k is obtained by the partial sum of the
first k terms [33]. Sometimes the terms o;uv;T are called the
‘characteristic modes’. This representation is similar to that
of a signal by a sum of its Fourier modes. The SVD can be
used to de-noise the data by recomputing the sum with the
small singular values set to zero.

Measuring basis quality

Let A be an n x p matrix where the columns of A represent a
collection of p transcription profiles over n genes. k expres-
sion vectors are chosen from A as a basis for the complete set.
Let B be the matrix whose columns consist of the k expres-
sion vectors (B is therefore n x k). The ability of B to form a
basis for the remaining p - k vectors of A (designated x;) is
tested by application of the projection theorem. Let P be the
projection matrix for B, that is P = B(BTB)B”. A measure of
the spanning ability of the basis B toward the x; is:

pk ‘(I - P)Xi‘
y= o
‘Xi‘

=1

Until y is below a determined threshold for the original
matrix A, a different collection of k expression vectors can be
tested or k can be increased to include more basis vectors.

In the expression for y, the numerator is the ‘residual vector’,
the part of the x; that could not be captured by B. The nor-
malized magnitude of the residual vector measures how well
the x; can be constructed from the k columns of B.
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