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Summary

The presenilins are evolutionarily conserved transmembrane proteins that regulate cleavage of
certain other proteins in their transmembrane domains. The clinical significance of this regulation
is shown by the contribution of presenilin mutations to 20-50% of early-onset cases of inherited
Alzheimer’s disease. Although the precise molecular mechanism underlying presenilin function or
dysfunction remains elusive, presenilins are thought to be part of a complex of proteins that has
“y-secretase cleavage’ activity, which is clearly central in the pathogenesis of Alzheimer’s disease.
Mutations in presenilins increase the production of the longer isoforms of amyloid B peptide,
which are neurotoxic and prone to self-aggregation. Biochemical studies indicate that the
presenilins do not act alone but operate within large heteromeric protein complexes, whose
components and enzymatic core are the subject of much study and controversy; one essential
component is nicastrin. The presenilin primary sequence is remarkably well conserved in
eukaryotes, suggesting some functional conservation; indeed, defects caused by mutations in the

nemotode presenilin homolog can be rescued by human presenilin.

Gene organization and evolution history

The presenilin 1 (PS1) gene on human chromosome 14
(14924.3) was initially discovered by genetic analysis of a
subset of pedigrees in which the Alzheimer’s disease is trans-
mitted as a pure autosomal dominant trait [1]. The closely
related PS2 gene on chromosome 1 (1q42.2) was identified
subsequently by sequence homology [2,3]. Both PS1 and PS2
genes are organized into ten translated exons that display
tissue-specific alternative splicing [2,4-7]. The functions and
biological importance of differentially spliced presenilin vari-
ants are poorly understood; differential expression of iso-
forms may lead to differential regulation of the proteolytic
processing of the B-amyloid precursor protein (BAPP; see
later). For example, aberrant PS2 transcripts lacking exon 5
increase the rate of production of amyloid B peptide (AB, the
neurotoxic peptide implicated in Alzheimer’s disease) [8],
whereas naturally occurring isoforms without exons 3 and 4
and/or without exon 8 do not affect production of AB [6,9].

GenBank database searches using the full length PS1 sequence
suggest that presenilin-like proteins are phylogenetically
ancient and well-conserved across diverse eukaryote species,
including plants, molluscs, insects, fish, birds, and mammals
[10-16]. Functional conservation of presenilins in most non-
human species is undetermined, except in the nematode
Caenorhabditis elegans, in which a deficiency in Sel-12, the
PS1 homolog, induces an egg-laying defect that can be rescued
by expression of human PS1 [17,18]. Additional presenilin
homologs were recently identified in disparate eukaryotes by
their homology to the PS1 transmembrane domains, suggest-
ing that the presenilin family may be more common than pre-
viously contemplated [19,20].

Characteristic structural features
Mammalian PS1 and PS2 are synthesized as 50 kDa polypep-
tides, each predicted to traverse the membrane 6-10 times;
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the amino and carboxyl termini are both oriented towards
the cytoplasm [21]. The current model, with eight trans-
membrane domains, is shown in Figure 1. More than 100
different missense mutations and two splicing-defect muta-
tions in the PS1 gene have been reported (Table 1) [22,23].
These are dispersed throughout the PS1 sequence, with the
majority of mutations clustered near membrane interfaces in
the highly conserved transmembrane domains or in
hydrophobic residues in either the amino-terminal domain
or the putative loop domain between transmembrane
domains 6 and 7.

Following synthesis, the PS1 and PS2 holoproteins undergo
tightly regulated, but imprecise, endoproteolysis in their
third cytoplasmic loop domain to generate an approxi-
mately 35 kDa amino-terminal fragment and an 18-20 kDa
carboxy-terminal fragment, which remain associated with
each other [24]. It is clear that cleavage of presenilins fol-
lowing export from the endoplasmic reticulum is governed
by additional rate-limiting factors, such as nicastrin (see
below), because overexpressed presenilins readily saturate
the processing machinery and accumulate as holoproteins

[25]. An additional proteolytic pathway is known to involve
members of the caspase 3 family of proteases and may be
involved in apoptosis [26].

Localization and function

Human PS1 and PS2 have distinct patterns of expression in
human tissues. Whereas PSi is transcribed uniformly
throughout the brain and in peripheral tissues, the PS2 tran-
script is expressed at relatively low levels in the brain, except
in the corpus collosum, where it is high; it is highly
expressed in some peripheral tissues, such as pancreas,
heart, and skeletal muscle [27]. The low PS2 levels in brain
and the compensatory activity provided by PS1 may explain
why PS2 mutations are infrequent and incompletely pene-
trant compared with PS1 mutations, which are fully pene-
trant [28,29].

The BAPP protein is cleaved by three different activities,
called a-, B- and y-secretases, to generate A and other frag-
ments. Members of the Notch family, which are involved in
developmental signaling in many animals, undergo cleavage

Amino terminus
e ceaceciollloton @@®©©@®©@ 06
® P & %
® ® ® o
© 8
PPOOOEOOPEOOY o O @
R 3 g
8
@®©® ®®®® & CaS))oxyl
g ®®®® % terminus
@ : 0
DEEEROEIRERET®
Cytoplasm 9009
§
&
Bo0
Plasma Xo
membrane
TM
O Intramembrane residue
Lumen O Mutation
© Deletion
@ Critical aspartate
P> Insert
CB.c

Figure |

A molecular model of Presenilin-1. The protein is thought to have eight transmembrane domains. Residues associated with mutations found in familial
Alzheimer’s disease are colored as indicated in the key. ‘Endoproteolysis’ indicates the approximate site of the imprecise cleavage of the molecule.
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Table | Table | (continued)

Mutations in the presenilin genes PSI

PSI Codon Location Mutation Phenotype

Codon  Location Mutation Phenotype 263 TM6/TM7 loop Cys—Arg FAD, onset 47 years

264 TM6/TM7 loop Pro—lLeu FAD, onset 45 years

35 Amino-terminal  Arg->GIn FAD 267 TM6/TM7 loop Pro—Ser FAD, onset 35 years
domain 269 TM6/TM7 loop  Arg—Gly FAD, onset 47 years

79 Amin9-terminal Ala->Val FAD, onset 64 years 269 TM6/TM7 loop Arg—His FAD, onset 47 years
domain 273 TM6/TM7 loop Glu—Ala FAD, onset 63 years

82 ™I Val—Leu FAD, onset 55 years 274 TM6/TM7 loop Thr—Arg EAD

94 ™I Val->Met See [71] 278 TM6/TM7 loop  Arg—Thr FAD, onset 37 years

96 ™ Val—Phe FAD, onset 53 years 280 TM6/TM7 loop ~ Glu—Ala FAD, onset 47 years

105 TMI/TM2 loop Phe—Leu FAD, onset 52 years 280 TM6/TM7 loop Glu—Gly FAD, onset 42 years

113-114 TMI/TM2 loop Insert Thr FAD, onset 35 years ’

(insert) 282 TM6/TM7 loop Leu—Arg FAD, onset 43 years

s TMITM2 loop  Tyr—His FAD, onset 37 years 285 TM6/TM7 loop Ala—Val FAD, onset 50 years

15 TMI/TM2 loop  Tyr—Cys FAD, onset 42 years 286 TM6/TM7 loop Leu—Val FAD, onset 50 years

16 TMI/TM2 loop  Thr—>Asn FAD, onset 37 years 290 TM6/TM7 loop Ser>Cys FAD, onset 39-50 years

17 TMI/TM2 loop  Pro—sLeu AD, onset 28 years 291-319  TM6/TM7loop  Shortened FAD

120 TMI/TM2 loop  Glu—Asp FAD, onset 48 years deletion loop

120 TMI/TM2 loop  Glu—Lys FAD, onset 37 years 352 TM6/TM7 loop  Insert Arg FAD

123 TMI/TM2 loop  Glu—Lys FAD, onset 56-62 years (insert)

135 ™2 Asn—Asp FAD, onset 36 years 354 TM6/TM7 loop Thr—lle FAD

139 ™2 Met—Thr FAD, onset 49 years 358 TMé/TM7 loop  Arg—>Gln FAD

139 T™2 Met—Val FAD, onset 40 years 365 TM6/TM7 loop Ser—Tyr FAD

139 ™2 Met—lle AD 378 ™7 Gly—Glu FAD, onset 35 years

139 ™2 Met—Lys FAD, onset 37 years 384 ™7 Gly—Ala FAD, onset 35 years

143 ™2 lle—Thr FAD, onset 35 years 390 ™7 Ser—lle FAD, onset 39 years

143 ™2 lle—Phe FAD, onset 55 years 392 ™7 Leu—Val FAD, onset 25-40 years

146 ™2 Met—Leu FAD, onset 45 years 394 T™7 Gly—Val FAD

146 ™2 Met—Val FAD, onset 38 years 405 TM7/TM8 loop Asn—Ser FAD, onset 48 years

146 ™2 Met—lle FAD, onset 40 years 409 T™8 Ala—Thr FAD, onset 58 years

147 ™2 Thr—lle FAD, onset 42 years 410 T™M8 Cys—Tyr FAD, onset 48 years

156 + TM3 interface  Tyr— (Phe,lle,Tyr) FAD 418 T™M8 Leu—sPhe FAD

insert 424 T™M8 Leu—Arg FAD, onset 33 years

163 ™3 inter‘face His—)Arg FAD, onset 50 years 426 ™S Ala—Pro FAD, onset 48-60 years

163 TM3 interface  His—>Tyr FAD, onset 47 years 431 Carboxy-terminal  Ala—Glu FAD

165 ™3 Trp—Cys FAD, onset 42 years domain

169 ™3 Ser—lLeu FAD, onset 31 years )

169 ™3 Ser—Pro FAD, onset 35 years 434 de:aci):y-termmal Ala—Cys FAD

171 ™3 Leu—Pro FAD, onset 40 years .

173 ™3 LeuTrp FAD, onset 27 years 435 Carbc?xy-termlnal Leu—Phe FAD

177 T™3 Phe—Ser FAD domain

178 ™3 Ser—sPro FAD 436 Carboxy-terminal  Pro—Ser FAD,

184 ™3 Glu—Asp FAD domain onset 48-60 years

206 ™4 Gly—Ser FAD 436 Carboxy-terminal  Pro—Glin FAD, onset

209 TM4 Gly—Val FAD, onset 30-48 years domain 48-60 years

209 T™M4 Gly—Arg FAD, onset 49 years 439 Carboxy-terminal  lle—Val FAD

213 TM4 interface  lle—Thr FAD, onset 42-48 years domain

213 TM4 interface  lle—Leu FAD

219 TM4 interface  Leu—Pro FAD PS2

219 TM4 interface  Leu—Phe See [71]

222 TM5 GIn—Arg FAD Codon Location Mutation Phenotype

231 TM5 Ala—Thr FAD, onset 52 years

231 T™M5 Ala—Val FAD 62 N-term Arg—His AD, onset 62 years

233 TM5 Met—Thr FAD, onset 35 years 122 TMI/TM2 loop Thr—Pro FAD, onset 46 years

233 T™5 Met—Leu FAD, onset 46 years 141 ™2 Asn—lle FAD, onset 50-65 years

235 TM5 Leu—Pro FAD, onset 32 years 148 ™2 Val—lle AD, Onset 71 years

237 T™M5 Phe—lle AD with spastic 239 TM5 Met—Val FAD, onset variable 45-

paraparesis, 3| years 84 yrs

246 ™6 Ala—Glu FAD, onset 55 years 239 TM5 Met—lle FAD, onset 58 years

250 T™é Leu—Ser FAD, onset 53 years

260 TMé Ala—Val FAD, onset 40 years Compiled from [2,70,71]. Abbreviations: AD, Alzheimer’s disease;

261 T™Mé Val—Phe FAD FAD, familial Alzheimer’s disease; TM, transmembrane segment;

262 TMé Leu—Phe FAD, onset 50 years

TMI/TM2 loop, the loop between transmembrane segments | and 2. The

age of onset of disease is given if it is known.
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at a site (S3) within the transmembrane domain to release
an intracellular domain (NICD). It is well established that
presenilins are required for the y-secretase cleavage of BAPP
and for the S3 cleavage of Notch-family receptors [30]. For
BAPP processing, y-secretase cleavage is the final step of two
distinct proteolytic pathways involving either an a-secretase
- which precludes AB peptide formation - or a B-secretase,
which releases the AR peptide, comprising the 40 or 42
carboxy-terminal residues of BAPP. It is uncertain whether
the y-secretase cleavage event occurs at the plasma mem-
brane or during trafficking of BAPP. The usual downstream
effect of presenilin mutations in individuals with presenilin-
linked familial Alzheimer’s disease is the accumulation of AR
in the brain [31,32] and a shift in the site of the y-secretase
cleavage of BAPP to produce the longer AB peptide, span-
ning residues 1-42 (AB42). These main features can be reca-
pitulated in cell culture or in animal models expressing
mutant forms of PS1 [33-35]. Conversely, PS1-deficient mice
are impaired in y-secretase activity, have reduced AB secre-
tion, and accumulate +y-secretase substrates (the carboxy-
terminal BAPP fragments derived from a- and B-secretase
processing; see Figure 2) [36].

Mutation of two highly conserved aspartate residues in the
transmembrane domains of PS1 (Asp257 and Asp385, shown
in blue in Figure 1) inactivates vy-secretase activity and
reduces AR secretion [37]. The sequence motif around
Asp385 is somewhat similar to a sequence within prepilins, a
family of bacterial peptidases [38]; this has promoted specu-
lation that presenilins are themselves aspartyl proteases
responsible for vy-secretase activity and that the critical
Asp257 and Asp385 residues form that catalytic center of the
v-secretase. Additional support for the idea that presenilins
are the proteases that have y-secretase activity comes from
studies in which photoactivated inhibitors of vy-secretase
activity were found to bind to PS1 and PS2 [39,40].

It should be noted that forms of PS1 with the D257A or
D385A mutations integrate poorly into the heteromeric
complexes that are considered necessary for y-secretase
function, raising the possibility that these transmem-
brane-domain mutations disable PS1 structurally [41].
Moreover, several lines of evidence show that the regula-
tion of BAPP and Notch cleavage differs, however, and
such evidence is difficult to reconcile with a direct enzy-
matic role for PS1 in y-secretase cleavage. First, a natu-
rally occurring splice variant of PS1 lacking the region
(encoded by exon 8) that contains the critical Asp257
allows AB production but not cleavage of Notch [42].
Second, different presenilin mutations differentially affect
AB production and Notch cleavage [43-45]. Third, some
recently discovered +y-secretase inhibitors preferentially
affect processing BAPP over that of Notch [46]. Together,
these findings suggest the presenilins regulate proteolysis
indirectly, perhaps by an effect on trafficking of BAPP or
Notch or by activation of the y-secretase.

The biological purpose of presenilin-dependent vy-secretase
cleavage of BAPP is still unknown. By analogy with the sig-
naling pathway downstream of cleaved Notch and NICD,
recent studies have raised the intriguing possibility that the
short-lived carboxyl-terminal stub of BAPP, called BAPP
intracellular domain (AICD), is released into the cytoplasm
following vy-secretase cleavage and translocates to the
nucleus (Figure 2), where it may regulate expression of com-
ponents involved in mobilizing intracellular calcium stores
[47-49]. Another proposal implicates BAPP as a regulator of
the axonal transport of a subset of vesicles ferrying cargo to
nerve terminals. This view is derived from the observations
that BAPP interacts directly with the light chain of the trans-
port protein kinesin [50], that the transport of a vesicular
compartment containing PS1 and B-secretase depends on
BAPP [51], and that deletion of the Drosophila BAPP-like
gene (dAPPL) or overexpression of either dAPPL or human
BAPP in Drosophila disrupts axonal transport [52,53]. In
this scheme, y-secretase cleavage of the BAPP by presenilin-
containing complexes releases the carboxy-terminal portion
of BAPP that connects the transport vesicle to the transport
machinery through interaction with kinesin, thereby disen-
gaging the vesicle from microtubules upon arrival at its des-
tination. Thus, presenilins may influence diverse cellular
processes, such as intracellular signaling and axonal traffic.

In vitro studies of detergent-solubilized membranes show
that y-secretase activity resides within large multisubunit
complexes that also contain presenilins. If presenilin mole-
cules are excluded from these complexes, they are rapidly
targeted for proteosome-mediated degradation [54]. On
density gradients, presenilin holoproteins and the amino-
and carboxy-terminal fragments of presenilins co-elute
with high-molecular-weight markers (180 kDa for the
holoproteins and 250-1000 kDa for the fragments [25,55]),
presumably because they are part of larger complexes, and
antibodies to PS1 coimmunoprecipitate heteromeric protein
complexes that contain y-secretase activity [56]. Conversely,
affinity isolation with +vy-secretase inhibitors co-purifies
protein complexes containing PS1 [39,40]. Members of the
Armadillo protein family (B- and &-catenin, neural
plakophilin-related armadillo protein (NPRAP), and poo71)
[55,57,58] interact with presenilins but are not required for
y-secretase activity in vitro [40]. Other interactions whose
role in +y-secretase activity is unknown have been reviewed
previously [22].

More recently, PS1 and PS2 were found to interact with
nicastrin, a novel single-pass transmembrane protein that is
essential for processing of BAPP and Notch [59-61]. Nicas-
trin is clearly an important regulator of y-secretase activity:
nicastrin antibodies immunoprecipitate both presenilin and
the active y-secretase complex [40], and missense or dele-
tion mutations within a conserved lumenal domain of nicas-
trin up- or down-regulate AR production in a manner that
corresponds with PS1 binding, suggesting that y-secretase
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The role of presenilins in the y-secretase cleavage of Notch and BAPP. Notch is cleaved by tumor necrosis factor o converting enzyme (TACE), and its
ligand binds to the part of Notch that remains attached to the membrane. BAPP is cleaved by either the a-secretase pathway or the 3-secretase pathway
to give a membrane-bound carboxy-terminal fragment (APP-CTF). Subsequent -y-secretase cleavage (in the transmembrane domain) of Notch or APP-
CTF produces carboxy-terminal intracellular domains, NICD and AICD, respectively, which enter the nucleus and are thought to regulate gene
expression. The y-secretase cleavage of BAPP also produces the neurotoxic AR peptide, but only if BAPP has been first cleaved by B-secretase (not
a-secretase). The y-secretase complex includes, in addition to PSI, the presenilin-binding protein nicastrin; members of the Armadillo protein family,
such as 3-catenin, have also been detected in presenilin complexes, although their role is not understood. Aph-1 and Pen-2 may also participate in the

y-secretase complex.

activity is generated only after an obligatory interaction
between nicastrin and PS1 [59]. Notch cleavage is affected
similarly by nicastrin mutations, albeit to a lesser extent
[60]. Moreover, nicastrin is essential for the normal process-
ing of both BAPP and Notch homologs in Drosophila and
C. elegans, and human nicastrin can partially rescue
mutants of the C. elegans nicastrin homolog Aph-2 [59,61-
64], suggesting that nicastrin function and its interactions
with presenilins are conserved widely in non-mammalian
species. Only mature glycosylated nicastrin that has passed

through the Golgi compartment interacts with PS1 and is
included in vy-secretase complexes [65]; overexpressed
nicastrin fails to mature normally and accumulates within
the endoplasmic reticulum. Moreover, entry of each of nicas-
trin and PS1 into y-secretase complexes appears to be regu-
lated by the other protein: the loss of one partner
destabilizes the other [61,63,66,67] .

Two potential new members of the PS-nicastrin complexes
are homologs of Aph-1 and Pen-2, components of the
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C. elegans Glp-1/Notch signaling cascade that interact
genetically with Sel-12/presenilin and Aph-2/nicastrin
[68,69]. Primary sequence analysis suggests that Aph-1 and
Pen-2 have seven and two membrane spanning domains,
respectively, that are conserved in their respective
Drosophila and human homologs. Human Aph-1 and Pen-2
can rescue C. elegans mutants lacking their homologs only
when both transgenes are present together, implying that
they act in concert. Moreover, reduction of Aph-1 and Pen-2
expression in Drosophila cells by RNA inhibition reduces
vy-secretase activity [69]. Reduced expression of nematode
Aph-1 causes mislocalization of Aph-2/nicastrin [68], and
both Aph-1 and Pen-2 are required to maintain presenilin
levels [69], suggesting that they regulate, or are components
of, the presenilin-nicastrin y-secretase complexes.

Frontiers

The identification of the additional y-secretase components
within the presenilin complexes is clearly an important task
that lies ahead. The complexes purified to date are quite
large, partly because of membrane impurities that remain
associated following treatment with gentle detergents and
partly because of interacting proteins that are not related to
y-secretase activity but are necessary for trafficking and
maturation of the complex. The genetic cause of at least half
of all of cases early onset familial Alzheimer’s disease remain
unexplained, and some of the unknown genes may have
products that may modulate presenilin activity within y-sec-
retase complexes.
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