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Abstract

Background: The arginine repressor ArgR/AhrC is a transcription factor universally conserved in
bacterial genomes. Its recognition signal (the ARG box), a weak palindrome, is also conserved
between genomes, despite a very low degree of similarity between individual sites within a
genome. Thus, the arginine repressor is different from two other universal transcription factors -
HrcA, whose recognition signal is very strongly conserved both within and between genomes, and
LexA/DinR, whose signal is strongly conserved within, but not between, genomes. The arginine
regulon is well studied in Escherichia coli and to some extent in Bacillus subtilis and some other
genomes. Here, we apply the comparative genomic approach to the prediction of the ArgR-binding
sites in all completely sequenced bacterial genomes.

Results: Orthologs of ArgR/AhrC were identified in the complete genomes of E. coli, Haemophilus
influenzae, Vibrio cholerae, B. subtilis, Mycobacterium tuberculosis, Thermotoga maritima, Chlamydia
pneumoniae and Deinococcus radiodurans. Candidate arginine repressor binding sites were identified
upstream of arginine transport and metabolism genes.
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Conclusions: We found that the ArgR/AhrC recognition signal is conserved in all genomes that
contain genes encoding orthologous transcription factors of this family. All genomes studied except M.
tuberculosis contain ABC transport cassettes (related to the Art system of E. coli) belonging to the
candidate arginine regulons.

Background from a broad range of diverse branches of bacteria, namely
Bacterial and archaeal transcriptional regulators typically = the SOS repressors LexA/DinR, the heat-shock repressor
form large protein families consisting of numerous paralogs HrcA, and the arginine repressor ArgR/AhrC [2] (Table 1). A
(for example the Lacl/GntR, AraC and DeoR families [1]). comparison of the coevolution of these conserved regulators
Only three readily detectable clusters of orthologous tran-  and their binding sites in DNA could reveal general trends in
scription factors include just one or two representatives  the evolution of regulons.
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Table |

Comparison of three transcriptional regulator families with predominantly single representatives from each bacterial genome

Definition Regulated Pattern of Type of DNA-binding DNA-binding Recognition sitet Sites  Reference$
pathway species™ domain and fused domain domain per
conservationt genome
LexA SOS repair  ADC-VEBMH---- ‘Winged helix’T HTH and 2.20 £ 0.28 SOS box (Gram-negative): 8-20 [3,4]
(Gram-negative) serine protease (524 family) CTGTatatatatMCAG
DinR Cheo box (Gram-positive):
(Gram-positive) cGAACrryGTTYg
HrcA Heat shock A-CS-EBM-XYTP  Predicted ‘winged helix’ HTH 1.72 £0.22 CIRCE box: 1-2 [5,6]
and uncharacterized domain TTAGCACTCn,GAGTGCTAA
possibly responsible for
activation by chaperonin GroE
ArgR Arginine  ADC-VEBMH---P ‘Winged helix’ HTH and 1.81 £0.22 ARG box: 1-20 [8-11]
(Gram-negative) metabolism arginine-binding domain TGMATwWwwwATKCA
AhrC

(Gram-positive)

*Abbreviations for species: B, Bacillus subtilis; C, Clostridium acetobutylicum; M, Mycobacterium tuberculosis; D, Deinococcus radiodurans; A, Thermotoga
maritima; S, Synechocystis sp; H, Haemophilus influenzae; E, Escherichia coli; P, Chlamydia pneumoniae; T, Chlamydia trachomatis; Z, Mycoplasma genitalium;

Y, Mycoplasma pneumoniae; V, Vibrio cholerae. TThe estimate was obtained as the average maximum likelihood distance between the last-step UPGMA
clusters (of the corresponding tree reconstructed by the PHYLIP package program NEIGHBOR) counted using distance matrix (calculated by PHYLIP
package program PROTDIST) only for DNA-binding domains [39]. ¥ Letter codes used in consensus sequences are the followingg M = A or C;Y =T or
C; R/r =A or G; W/w =A or T; K = G or T; N/n = any nucleotide, where upper-case letters denote strongly conserved nucleotides and lower-case
letters denote less conserved nucleotides. § References correspond to the two last columns. TThe ‘winged helix’ superfamily is defined in the SCOP
database [40]; LexA [41] and ArgR [42-44] DNA-binding domains have been resolved by X-ray crystallography. The same type of domain was predicted

for HrsA using PSIBLAST program.

The signals recognized by LexA in Gram-negative bacteria
and by its ortholog DinR in Gram-positive bacteria (the SOS
box [3] and the Cheo box [4], respectively) are completely
different. Accordingly, the DNA-binding domains of these
proteins are divergent (Table 1). The heat-shock regulator
HrcA binds CIRCE elements that are located upstream of
genes encoding heat-shock proteins (molecular chaperones)
in many different genomes [5,6]; in the mycoplasmas, HrcA
also regulates heat-shock protease genes [7]. The CIRCE
signal is very specific (two complementary nonamers with a
9 base pair (bp) spacer) and is extremely highly conserved in
all genomes that encode HrcA (not more than five, and
usually less than three, mismatches to the consensus in all
known and predicted sites [7]). The amino acid sequence of
HrcA is conserved as well (Table 1).

The arginine regulon, which is regulated by the arginine
repressor ArgR/AhrC, represents an evolutionary strategy
distinct from that of either the SOS or the heat-shock regu-
lons. The DNA-binding domains of the ArgR/AhrC family
are less conserved than those of the HrcA family, but more
conserved than those of the LexA/DinR family (Table 1,
column 5). DNA signals recognized by ArgR/AhrC are also
similar in several bacterial lineages at least [8-11]. These
sites often occur in pairs [12-15], although single-box sites
have also been shown to bind ArgR/AhrC, for example the
sites in the catabolic operons of B. subtilis [9], the adenine
deaminase pathway operon in Bacillus licheniformis [14],
and the cer recombination region of the E. coli plasmid

ColE1 ([16,17]; see also the study of mutated ArgR [18]).
Unlike the CIRCE element, the ARG box seems to be weakly
conserved, even within a genome, and the specificity of
recognition is often achieved by cooperative interactions
between tandem sites, as shown in both experimental
[9,12,13] and statistical [19] studies. The set of ARG boxes
from different genomes, however, is fairly homogeneous,
and indeed, arginine repressors from different bacteria
appear to be at least partially interchangeable within major
taxonomic groups: there is some cross-binding between
ArgR and AhrC [20]; ArgR but not AhrC binds to the
Thermus thermophilus sites [21] and AhrC binds to the
Streptomyces coelicolor sites [22]. The ARG box consensus
was described as TNTGAATWWWWATTCANW in E. coli
[8,12], CATGAATAAAAATKCAAK in B. subtilis [9,10] and
AWTGCATRWWYATGCAWT in Streptomycetes [11] (where
W=AorT,K=GorT,R=AorG,Y=TorC, N = any base;
Table 1). In addition, binding of ArgR homologs to the sites
similar to ARG boxes was reported for other Bacillus species
(B. licheniformis [14] and B. stearothermophilus [23,24]),
and for Salmonella typhimurium [25]. Several ArgR-
binding sites were predicted on the basis of similarity with
the E. coli consensus in the upstream regions of various
genes involved in arginine metabolism in Moritella [26].

In a previous study [27], we used comparative genomic
analysis of regulatory signals to predict the gene composi-
tion of the arginine regulon of Haemophilus influenzae
using the well characterized E. coli regulon as the starting



Table 2

Candidate ARG boxes upstream of arginine metabolism related

genes and operons

Genome Operon Position Score  Site
E. coli argR -64 4.24 ttTGCcATAAAAATTCATc
-43 334 tATGCACAAtAATgttgT
argA -50 398 AcaGAATAAAAATaCAcT
-39 398 ttcGAATAAtcATgCAaa
argCBH -128 4.6l tATcAATAttcATgCAgT
-109 4.61 tATGAATAAAAATaCAcCT
argD -68 401 AgTGAtTttttATgCATa
-47 350 tgTGgtTAtAAtTTCAca
argE -64 3.80 AgTGtATttttATTCATa
-43 339 ACTGcATgAAtATTgATa
argf -65 4.16 AATGAATAAttAcaCATa
-44 4.41 AgTGAATtttAATTCAAT
argG -210 431 tgTGAATgAAtATcCAgt
91 3.90 AtTaAATgAAAACTCATT
-70 4.51 ttTGcATAAAAATTCAQT
argl -63 433 AATGAATAAtcATcCATa
-42 4.49 AtTGAATtttAATTCATT
carAB -50 436 tgTGAATtAAtATgCAaa
-39 3.79 AgTGAgTgAAtaTTCtcT
artPlQM -72 4.08 AtTGaATAAttATTCtgT
art/ -86 4.36 AtTGcATAtAAATTCACT
H. influenzae HI1209 -50 427 AgTGAATttttATgCAaT
HIo81'1 -54 4.52 tATGAATAAAtATgCAca
HI1727 -64 3.87 AtaGAATttttATTCAca
-43 3.75 AtcGAtTAtttATTCAaAT
HII'180-77  -50 401 tATGCATAAAAATgtAaT
V. cholerae VC2316 -15 3.82 AaaGAATAAAAAgTCATT
VC2390-89  -52 3.57 ttTGcAaAAtAATTtATT
VC2508 -72 3.72 ttaaAATAtttATTCACT
-51 3.35 AtaGcATtttcATgCtTT
VC2618 -120 3.83 AaTaAATgtAAATaCAaT
VC2644-42 -76 3.00 AacacATAttAAaTCAcT
-55 4.00 AGTGAATAAAAAaaCAaT
VC2645 -79 3.50 AtTGttTttttATTCAcCT
-58 327 AGTGAtTtAAtATgtgTT
VCA0757-60 -74 3.00 ttTtggTttttATaCATT
-53 3.85 AtTGcATAAAAATaCgTT
B. subtilis argCJBD -64 522 ATtAATTTtTATTCAT
carABargF -55 4.54 AgGCATAaAAATTCAT
-35 4.02 AtaAtTAatTATTCAT
argGH -67 5.04 ATGtATTTtTATTaAa
ygiN -31 4.54 AaGCcATTTtTATTCAT
-47 491 ATttATTTtTATaCAa
rocABC -53 5.14 tTGCATTTtTATTCAT
rocDEF -63 4.76 tTGCATTTATATaaAg
rocR -193 4.76 cTttATATAAATgCAa
yqixXYZ -88 421 tTGcATAaAAATgaga
-51 4.62 AcGAATAaATATTCAa
C. acetobutylicum 414 -191 5.27 ATGAATAaATATTCAa
491 -132 4.62 tTGAATAaATATTCgT
-32 5.27 ATGAATAaAAATTCAa
1203-4 -124 5.04 ATGAATATtTATaaAa
2787-8 -63 4.79 tTGAATATtTATaaAg
-43 4.59 gTGtATAatTATTCAT
2786-2785 -118 4.59 ATGAATAatTATaCAc
-98 4.79 cTttATAaATATTCAa
3090-89  -18I 4.96 ATGCATAaATATaaAT
-80 491 ATGtATAaATATaaAa
3533 -87 4.96 ATGcATAaATATaaAT
-67 4.89 tTGAATAatTATaaRa
4268-65  -194 5.09 ATGCATAaATATTaAT
-69 4.62 gTtAATAatTATTCAT

http://genomebiology.com/2001/2/4/research/0013.3

Table 2 (continued)

Genome Operon Position Score  Site
T. maritima TMO0371 -59 421 tTtcATATtTATgCta
TM0558-57 -8l 3.92 tTtAATTcAAAgTaAa
TM0593-91  -34 4.16 tTGtgTTatAATaaAT
TM1780-85 -138 3.87 cgtAATTgATATTCAT
T™MI873 91 4.44 ATttATTTAACTTaAT
D. radiodurans  DR0080 -57 4.11 cTGtATTTcTATaCAg
DR0674-78 -131 4.09 tTGCcATAgtcATTCAT
DR2610 -85 3.62 ATGgATTgAAATCcCAg
-62 3.69 cTGgATTTtAAggaAT
C. pneumoniae  gIinPQ -53 4.26 tTGCcATAaATATgatT
-32 4.64 ATaAATAaATATgCAT
artf -2 3.92 tTtAATcaAAATTatT
27 3.96 ATttATTTtTATaatg
M. tuberculosis Rvl652-59  -I1 3.91 tTGcATAacgATgCAa

Position is indicated relative to the start of translation. The score for

E. coli and H. influenzae genes was computed using the profile from [27];
other scores were computed using the profile trained on B. subtilis
candidate ARG boxes using the procedure from [28]. The sites used to
construct the profile are shown in bold.

point. Here we extend this analysis to explore the conserva-
tion of the ARG box in all bacteria that encode an ortholog of
the ArgR repressor.

Results and discussion

The comparative approach to the analysis of regulation is
based on the assumption that regulons (sets of co-regulated
genes) are conserved in genomes containing orthologs of the
relevant regulatory proteins. Thus true candidate binding
sites for the regulator occur upstream of orthologous genes,
whereas false positives are scattered at random in the
genome. This provides a consistency check that sharply
increases the accuracy of prediction.

The ARG box profile constructed as described in the Metraisl
and methods section was used to scan the complete genomes
of other bacteria (excluding the gamma-proteobacteria). The
profile is not very selective: at threshold z-score = 3.75 [27]
about 1% of the B. subtilis and M. tuberculosis genes are
selected, compared with 7% for T. maritima. Nevertheless,
there is a sharp distinction between the arginine-related
genes without ARG boxes (for example, argT of E. coli, argF
of H. influenzae, carAB of M. tuberculosis, argF of T. mar-
itima and several Deinococcus genes, see Figure 1) and those
with relatively strong and probably functional ARG boxes.
Only the genes involved in arginine metabolism and trans-
port (see below) have upstream ARG boxes in more than five
out of eight of the genomes considered. Thus despite the
seeming weakness of individual predictions, the basic
assumption of the regulon conservation yields validity of the
candidate sites [27,28]. Many weaker sites are second sites
in cooperative cassettes. The candidate ArgR-binding sites
are listed in Table 2 and shown in Figure 1. Validity of the
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Figure |

Schematic representation of the operon organization and regulation of the arginine metabolism and transport genes. Genes
are represented by boxes. ARG boxes in the upstream region are shown by black arrows. The direction of the arrow
indicates the direction of transcription. The linear pathway (in E. coli and V. cholerae) involves N-acetylglutamate synthase
(argA) and N2-acetylornithine deacetylase (argE). The circular pathway (in other bacteria) involves N2-acetyl-L-ornithine:
L-glutamate acetyltransferase (argf). The common genes are acetylglutamate kinase (argB); acetylglutamate semialdehyde
dehydrogenase (argC); acetylornitine delta-aminotransferase (argD); ornithine carbamoyltransferase (argF, argl);
argininosuccinate synthase (argG); argininosuccinate lyase (argH); carbamoyl-phosphate synthase (carAB). The H. influenzae
genome contains only argH, argG, argF and possibly argD orthologs. There are difficulties in identifying orthologs for argC, argf
and argB in D. radiodurans because there are several paralogous genes encoding proteins that can possibly perform these
functions. The B. subtilis roc operons involved in arginine degradation are also regulated by AhrC, as well as anaerobic arginine
catabolism genes arcABCD in B. licheniformis [14] (data not shown). The transporter genes are: periplasmic binding protein
(white), permease transmembrane protein (light gray), ATPase component (dark gray).

B. subtilis profile for analysis of other genomes is confirmed
by a candidate ARG box with z-score = 3.96 within the
region protected when ArgR binds upstream of the argR
gene of Thermotoga neapolitana [29] (data not shown).

In addition to previously characterized ARG boxes in B. sub-
tilis we identified a candidate ARG box upstream of the ygjiN
gene (Figure 1, Table 2), a probable product of recent dupli-
cation of the rocB gene encoding an arginine utilization
protein with unknown biochemical function. Thus is it likely
that YqjN has the same function as RocB and is also involved
in arginine degradation.

An important outcome of the analysis is that in addition to
the genes encoding the arginine metabolism enzymes, ArgR
probably regulates ABC-cassette operons or scattered genes
responsible for arginine transport in all bacteria except
M. tuberculosis and maybe C. pneumoniae (Figure 1).
Straightforward resolution of the orthology relationships
between genes involved in transport of polar amino acids on
the basis of their sequence similarity is impossible (Figure 2,
and see COG0834, COGo795, COG1126 in [1]). Therefore the
presence of candidate ARG boxes upstream of these genes
could be the only indication of their involvement in arginine
transport before experimental verification. Nevertheless, the
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protein tree presented in Figure 2 demonstrates clustering of
closely related paralogs within one organism (E. coli,
Clostridium acetobutylicum) or orthologs in closely related
organisms (E. coli and H. influenzae) that have upstream
candidate ARG boxes (Figure 1, Table 2). In the E. coli
genome, this family includes two loci, artPIQM-artJ and
argT-hisJQMP. In each case the four-gene operon encodes a
complete ABC cassette with two transmembrane compo-
nents, whereas the single-gene operon encodes an additional

periplasmic protein. The art genes encode an arginine trans-
port system. The hisJQMP operon encodes a histidine-
specific ABC cassette, whereas the product of the upstream
gene argT, lysine-arginine-ornithine-binding periplasmic
protein ArgT, can substitute the periplasmic protein HisJ in
binding to the membrane component HisP, thus changing
the initial histidine transporter specificity [30]. The operons
hisJQMP and argT have no candidate ARG boxes and do not
seem to belong to the arginine regulon.

-
o
[}
2
[}
]
Q.
-
o
14
[}
)
g
a
>




6 Genome Biology Vol 2 No4 Makarova et al.

In the Pseudomonas aeruginosa genome there are three
systems closely related to the above transporters. One is
orthologous to hisJQMP and the other to artPIQM. These
two systems have not been characterized experimentally.
The third system, aotQJMP, is closer to hisJQMP than to
artPIQM. It encodes transporters of arginine and ornithine,
but not lysine [31], and is located within the arginine and
ornithine catabolism locus aot-aru. The aot system is posi-
tively regulated by an activator, ArgR, which is encoded by
the distal gene of the aotJQMOPargR operon [31]. This acti-
vator belongs to the AraC family and is not related to the
ArgR repressor of E. coli [32].

The situation with the C. pneumoniae genome is not clear. It
contains the argR gene but no genes for the arginine metab-
olism. There is a stand-alone artJ gene (encoding an ABC-
cassette periplasmic protein) and two genes annotated as
glnPQ immediately downstream of argR (encoding the
transmembrane and ATPase components respectively). In
fact, gInP of C. pneumoniae is the bidirectional best hit of
the E. coli gene yecC situated in the flagellar locus. The ABC
transporters are not easily amenable to orthology analysis,
as their specificity may change at a fast rate. As mentioned
above, positional and regulatory analysis is often the only
computational technique for determining the cellular role of
ABC cassettes before experimental verification. We note a
pair of ARG boxes upstream of ginPQ and two ARG boxes
with lower z-scores upstream of the artJ operon of C. pneu-
moniae. Thus it is very tempting to predict that these genes
in fact encode an arginine transport system regulated by
ArgR. We feel, however, that this prediction cannot be
accepted without experimental verification, especially in
view of two complicating observations. First, both artJ and
gInPQ operons are conserved in the genome of C. trachoma-
tis, despite the fact that the latter has no gene for ArgR.
Second, ArgR of C. pneumoniae is closer to the ArgR
of gamma-proteobacteria than to the AhrC/ArgR of Gram-
positive bacteria, but nevertheless the ARG boxes of C. pneu-
moniae are visible with the Bacillus profile, but not with the
gamma-proteobacteria profile.

Taken together these data suggest that ARG regulons repre-
sent an interesting (and possibly unique) case which could
be considered as an intermediate evolutionary state com-
pared to the HrcA and LexA/DinR regulons. ArgR orthologs
retain high similarity on the amino acid level within the
major taxonomic groups, and are identifiable between these
groups, whereas ARG box conservation is low, although suf-
ficient to be detected in diverged bacterial lineages. Never-
theless, this state seems to be stable and it is not clear what
evolutionary forces are responsible for its stability. In this
respect it is noteworthy that the structural type of the DNA-
binding domain in the protein apparently does not deter-
mine the evolutionary relationships with its recognition site.
All three aforementioned regulator families, as well as many
others, contain the so-called ‘winged helix’ DNA-binding

domain and its conservation is not correlated with conserva-
tion of its binding site (Table 1).

Conclusions

The composition of the ARG regulons in different bacteria is
known to vary mainly because of diversity in the arginine
degradation pathways and species-specific paralogs. The ques-
tion of the origin of ‘additional’ ARG boxes thus arises.
Because of the low conservation of the ArgR-binding signal, it
is possible that some of the sites could be convergent in origin.
Moreover, each genome contains a large number of potential
ARG box-like sequences that could become actual sites when
they become located upstream of an arginine metabolism gene
following chromosomal rearrangements [33].

In contrast, CIRCE elements appear to be direct descendants
of the ancient regulon present in the common ancestor of the
Bacteria, because the variation in the composition of the
CIRCE regulon is minimal and the few additional sites found
in some genomes are apparently products of duplication.
Most other DNA-binding domains of transcriptional regula-
tors (including LexA) seem to undergo considerable changes
together with their DNA signals and regulons. Thus, the evo-
lution of the arginine regulon and ARG boxes seems to
reflect a tradeoff between maintaining regulon flexibility on
one hand and retaining the universal regulatory mechanism
on the other.

Another interesting aspect of the arginine regulon strategy is
the use of single and cooperative sites. In E. coli, the use of
cooperative binding sites by ArgR seems to be a consequence
of a requirement for a sharper response to a stimulus (argi-
nine starvation) compared to the SOS response (single sites
are usually used by LexA) [19]. Unfortunately, the available
data seems to be insufficient to draw any systematic conclu-
sions. In particular, as second sites in the cooperative cas-
settes are often weak (have low scores), some of them could
be missed by the recognition rule. Direct experimental
studies are needed to clarify this issue. Another problem that
was not directly addressed in this study is the role of the
E. coli arginine repressor in recombination and its binding
to the cer site, which contains a single ARG box [16,17]. We
have noted, however, conservation of this box in the
monomerization site ckr of the plasmid ColK [34].

There are a few more transcription factor families (biotin
operon repressor, COG1654; putative stress-responsive tran-
scriptional regulator PcpC, COG1983; Bvg accessory factor
homologs, COG1521 [1]) with a single representative per
genome, and it would be interesting to compare them as
well. They do not, however, contain a sufficient number of
experimentally determined binding sites and are not so
ubiquitous in the bacterial genomes as the three regulators
discussed previously. With more available genomes, we hope
that our approach, combined with positional analysis aimed



at finding co-localized, and thus possibly functionally related
enzymes and regulator genes [35,36], will enable us to make
this comparison. On the other hand, we feel that the predic-
tions made in this study, especially identification of the Art
family ABC transporters in several diverse genomes, are suf-
ficiently interesting to warrant experimental verification.

Materials and methods

The profile for ARG box identification was constructed as
follows. Upstream regions of B. subtilis operons involved in
arginine metabolism were selected. An iterative signal
search procedure was applied as described previously [28].
The resulting ARG box profile was constructed using the
four sites upstream of argC, argG, rocA and rocD. These
formally identified sites are a subset of the experimentally
known sites [9]. Gamma-proteobacteria were analyzed using
the longer E. coli ARG box profile taken from [18]. Only
genes having candidate sites in five or more out of the eight
genomes analyzed were considered as candidate regulon
members and were retained for further analysis. This proce-
dure could lead to the loss of some true sites, but ensured
that false sites were not accepted.

The complete genomes of E. coli, H. influenzae, Vibrio cholerae,
B. subtilis, Mycobacterium tuberculosis, Thermotoga mar-
itima, Chlamydia pneumoniae and Deinococcus radiodurans
were downloaded from GenBank [37]. The complete genome of
Clostridium acetobutylicum was obtained at [38].
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