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Abstract

Symbioses between unicellular and multicellular organisms have contributed significantly to the
evolution of life on Earth. As exemplified by several studies of bacterium-insect symbioses, modern
genomic techniques are providing exciting new information about the molecular basis and the
biological roles of these complex relationships, revealing for instance that symbionts have lost many
genes for functions that are provided by the host, but that they can provide amino acids that the host

cannot synthesize.

Primary and secondary symbionts of insects
Many insects harbor intracellular bacteria in various tissues
[1-3]. So-called primary symbionts reside in specialized
‘host’ cells called bacteriocytes; examples include the symbio-
sis of Buchnera aphidicola with aphids, of Wigglesworthia
species with tsetse flies, of Carsonella ruddii with psyllids
(small insects of the order Homoptera that suck sap from
plant leaves), and of Blochmannia species with carpenter
ants [4-7]. Bacteriocytes may form organ-like structures and
are frequently associated with the midgut of the host
animals. In general, primary insect-bacterium symbiosis
appears to be obligate and mutually beneficial for the two
partners [2,3]. In fact, it has not so far been possible to culti-
vate bacteriocyte-derived primary symbionts in vitro. Trans-
mission of these symbiotic bacteria occurs vertically: the
eggs or young embryos are infected by microorganisms
derived from the mother.

In general, bacteriocyte symbioses appear to have a nutri-
tional basis, as the host species in many cases feed on very
specialized diets such as plant sap (aphids and psyllids) or
blood (tsetse flies), both of which are poor in certain nutri-
ents, such as amino acids or vitamins, that are essential for
the host animals. In fact, ‘curing’ the insects of their sym-
bionts by treatment with antibiotics may have severe conse-
quences for their longevity, fecundity and/or development

of the animals. An extreme case of intracellular symbiosis
was recently reported in mealybugs. Their bacteriocytes
contain B-proteobacterial endosymbionts that themselves
harbor intracellular bacteria belonging to the y group of
Proteobacteria [8].

In contrast to primary symbionts, the additional association
of animals with so-called secondary symbionts occurs more
sporadically and is not obligatory [2]. Bacteria in these cases
can be found intra- and inter-cellularly not only in the
midgut but also in many other tissues. Moreover, secondary
symbionts can be cultivated in vitro and their transmission
may occur horizontally, from one host to another [9,10].

Insights from phylogenetic analyses

As revealed by sequencing of 16S ribosomal DNA (rDNA),
the primary symbionts of aphids, psyllids, tsetse flies and
ants belong to the y group of the Proteobacteria and appear
to be members of the Enterobacteriaceae, which also
includes many facultative intracellular pathogens of
mammals and humans, such as Salmonella typhimurium
[4,11-13]. Phylogenetic trees of the symbiotic bacteria reveal
a strict co-speciation of the bacteria and their host animals -
in other words each insect species is associated with its own
species of bacterium - suggesting that the bacteriocyte
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symbioses of each group of insects derive from a single
parental infection.

From fossil records, the Buchnera-aphid symbiosis is esti-
mated to have an age of 150 to 250 million years [4].
Although Buchnera isolates contain plasmids, genetic
exchange with other bacteria is extremely limited or even
nonexistent [14]. This long-lasting genetic isolation has led to
intriguing consequences. For example, the 16S rRNA of these
bacteria contains numerous destabilizing substitutions,
which are found particularly in regions of the RNA molecule
that, in free-living microorganisms, form highly conserved
and very stable stem-loop structures [12,15]. In general, the
mutation rate appears to be significantly higher in symbiotic
bacteria than in free-living bacteria, resulting in a higher rate
of non-synonymous substitutions [16,17]. These mutations
affect the amino-acid composition of the respective proteins
and may contribute to the generation of pseudogenes and to
changes in protein function, for example by deletion of
domains from multidomain proteins. The DNA polymerase I
of Escherichia coli (encoded by the polA gene contains 928
amino acids and, in addition to the DNA polymerase activity,
also has 3'-5' and 5'-3' exonuclease activities. In Buchnera,
the polA gene encodes a truncated protein of only 286 amino
acids, retaining only the 5'-3’ exonuclease activity.

Interestingly, the genomes of primary symbionts have sur-
prisingly low GC contents, below 30% [18]. This AT bias is
especially obvious in spacer regions between coding
sequences, but it is also present throughout protein-coding
sequences, where it is noted particularly in third codon posi-
tions. Such unusual genomic features, which are not
observed in closely related free-living bacteria, are likely to
result from the accumulation of slightly deleterious muta-
tions by genetic drift as a consequence of small effective pop-
ulation sizes and lack of recombination. It is not known,
however, whether the effects of such unusually high AT con-
tents and the high substitution rates are indeed detrimental
to the fitness of endosymbiotic bacteria, although this would
be expected for their free-living relatives. An extreme case of
degenerative minimalism was recently reported for the
psyllid endosymbiont Carsonella, which has an exception-
ally low GC content (19.9%) and shows almost complete
absence of intergenic spaces [6].

The secondary symbionts characterized in detail so far also
belong to the Enterobacteriaceae [2,9,10]. In general,
however, they do not show a strict co-speciation with their
host animals, indicating frequent horizontal exchange or
recent independent acquisition of these bacteria. Moreover,
the evolutionary consequences of their association with
insect hosts appear not to be as dramatic as for the primary
symbionts. Also, although secondary symbionts show the
same tendency to accumulate non-synonymous substitu-
tions in protein-coding genes and have genomic DNA with a
strong AT bias, these phenomena are much milder than in

the primary symbionts, indicating that secondary symbionts
have not reached such an advanced stage of accommodation
with their host animals.

Rationalization of symbiotic genomes

Pulsed-field gel electrophoresis of the chromosomal DNA of
primary symbionts reveals surprisingly small genome sizes,
for example between 630 and 650 kilobases (kb) in the case
of Buchnera isolates [19], between 705 and 770 kb in the
genus Wigglesworthia [20] and around 800 kb in the genus
Blochmannia (our unpublished results). These genome sizes
are similar to the smallest genomes known so far, which
were described for obligate parasitic Mycoplasma species
[21]. Recently, genome-size reduction was recognized to be a
general phenomenon observed in many bacteria living in
obligate parasitic interactions with animals (including
humans), and especially in obligate intracellular bacteria
such as Chlamydiae and Rickettsiae [22-24]. The strict adap-
tation to a constant environment, such as is provided by the
cytoplasm of a eukaryotic cell, may allow the bacteria to
abolish many of the adaptive responses that are required by
free-living bacteria, and may also allow them to reduce their
anabolic capacity if they succeed in recruiting metabolic pre-
cursors from the host cell’s metabolism (see below) [25]. A
decrease in selection on the respective loci or, alternatively,
increased levels of genetic drift, as observed for the vertically
transmitted intracellular bacteria, may therefore favor the
inactivation of such genes by accumulation of deleterious
mutations followed by deletion [26,27].

The first results obtained with Buchnera isolates colonizing
aphids from two phylogenetically distant subfamilies indi-
cated relatively constant genome sizes (with a variability of
less than 5%) [19], suggesting that genome-size reduction
(rationalization) in Buchnera occurred very early and quickly
after the stable establishment of its symbiosis with aphids.
Recent results obtained with Buchnera isolates from aphids
of three additional subfamilies have revealed, however, that
the genome size of Buchnera is more variable and can even
be less than that of the minimal genome reported for
Mycoplasma genitalium ([21] and R. Gil, B. Sabater-Munoz,
A. Latorre, F.J.S. and A. Moya, unpublished observations).

Clues from the Buchnera genome sequence

Compared with that of E. coli, the Buchnera genome has
drastically fewer genes. In fact, the genome of Buchnera sp.
strain APS comprises 600 genes on a circular chromosome
and two small plasmids [28]. Virtually all Buchnera genes
have highly related orthologs in E. coli, demonstrating their
close phylogenetic relationship (Table 1). Most interestingly,
Buchnera sp. strain APS has retained most of the biosyn-
thetic machinery for amino acids that are essential for its
host organism but has lost those for amino acids that are not
essential for the host. Moreover, for some amino acids, such
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Gene repertoire of the Buchnera and E. coli genomes and their comparison with the results of the W. pallidipes gene scan based on an

E. coli K12 gene array

Functional annotation (COGs)* Genes in Genes shared by Genes in Buchnera Genes in E. coli
W. pallidipes W. pdllidipes sp. APS (genomic K12 (genomic
(gene array) and Buchnera sequence) sequence)
Information storage and processing
Translation, ribosomal structure and biogenesis 69 62 117 166
Transcription 32 10 16 245
DNA replication, recombination and repair 24 6 40 209
Cellular processes
Cell division and chromosome partitioning 8 6 9 28
Post-translational modification, protein turnover, chaperones 19 13 32 117
Cell envelope biogenesis, outer membrane 28 8 24 200
Cell motility and secretion 21 10 42 136
Inorganic ion transport and metabolism 28 4 16 172
Signal transduction mechanisms 18 | 5 140
Metabolism
Energy production and conversion 54 I 44 266
Carbohydrate transport and metabolism 53 I 31 333
Amino acid transport and metabolism 85 21 55 342
Nucleotide transport and metabolism 20 7 29 88
Coenzyme metabolism 27 13 32 117
Lipid metabolism 14 5 13 84
Secondary metabolite biosynthesis, transport and catabolism 16 2 4 89
Poorly characterized
General function prediction only 42 5 29 302
Function unknown 15 20 255
Not in COGs 72 6 1000

*Functional annotations are from the Clusters of Orthologous Groups (COGs) database [34].

as glutamate and aspartate, which are non-essential for the
host, the bacteria rely on their provision by the host, indicat-
ing that the biosynthetic pathways of both symbiotic part-
ners are not only complementary but also mutually
interdependent (Figure 1).

Buchnera has aerobic metabolism and contains all the genes
encoding glycolytic enzymes, the pentose-phosphate cycle
and aerobic respiration, but it lacks nearly all functions
required for the tricarboxylic acid (TCA) cycle; Buchnera is
apparently able to produce ATP, but it lacks all genes
involved in fermentation and anaerobic respiration. There is
a remarkable reduction in the repertoire of cell-membrane
components and fatty acids and Buchnera is also not able to
synthesize lipopolysaccharides or phospholipids and there-
fore has to import phospholipids or enzymes required for
phospholipid biosynthesis from the host cell. Only very few
transporter functions are present and, in accordance with
the constant environmental conditions experienced within

the host cell, genes for regulatory systems or adaptive mech-
anisms are almost entirely missing [28].

Some of the evolutionary consequences mentioned above,
such as the increased mutation rate, are related to the fact
that Buchnera has very few proteins involved in DNA repair
and recombination. Astonishingly, the recA gene, which is
present in all other sequenced bacteria, is missing, although
the recBCD genes are retained. Important repair and emer-
gency systems, such as the uvr excision repair system and
the SOS system, are incomplete, indicating that Buchnera is
very susceptible to mutation. Eight pseudogenes have been
identified in Buchnera sp. APS [28], but a larger number of
pseudogenes was found in a Buchnera isolate from the aphid
Schizaphis graminum [29].

The genetic make-up of Buchnera demonstrates that this
organism is auxotrophic for several key compounds of the
primary metabolism and is therefore entirely dependent on
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A model for the mutual dependence of amino-acid
biosynthetic pathways between Buchnera and its host cell.
Buchnera is located in a vacuole of the bacteriocyte.
According to its gene repertoire, it is able to synthesize
amino acids that are essential for the host organism (red).
On the other hand, Buchnera appears to require external
supply of several amino acids that are not essential to the
host (blue). Among these amino acids are aspartate and
glutamate (magenta), which, together with other amino-acid
precursors, seem to be imported from the host cytoplasm
by the endosymbionts in order to enable biosynthesis of the
respective host-essential amino acids.

its host. The genomic information on Buchnera also demon-
strates, however, that this relationship is in fact mutually
beneficial to both partners, because the symbiosis enables
the host to occupy an ecological niche that is extremely poor
in certain nutrients that can not be synthesized by the
animal itself. The genetic isolation of these bacteria pre-
cludes any return to an independent lifestyle and may indi-
cate that they face increasing degeneration problems (a
phenomenon known as Muller’s ratchet), which may cause a
progressive loss of their identity as independent organisms
and might finally convert them into new types of cellular
organelles [30].

Parasitic and symbiotic microorganisms

As already pointed out, genome rationalization is observed
in several symbiotic and parasitic microorganisms, espe-
cially in bacteria living in obligate association with a host.

The genome sequences of several pathogenic microorgan-
isms are available, including those of various Mycoplasma,
Rickettsia and Chlamydia species. Comparative analysis of
these genomes has revealed interesting differences particu-
larly with regard to metabolism [31]. For example, whereas
the Buchnera genome has retained a significant number of
biosynthetic functions beneficial for the host, in particular
those for host-essential amino acids and cofactors, the para-
sitic microorganisms have greatly reduced their repertoire of
such genes, largely relying on supply by the host. To com-
pensate for these metabolic insufficiencies, parasite
genomes encode relatively high numbers of transport
systems, such as transporters for specific amino acids. Some
parasites, such as Rickettsia, have even gained access to the
host cell’s ATP pool by using specific transport systems that
are very likely to be derived from the eukaryotic cell; these
organisms may therefore be considered energy parasites,
even though they are able to generate ATP themselves.

These data indicate that a parasitic lifestyle is generally asso-
ciated with not only a significant loss of anabolic genes but
also the retention of catabolic and transport functions. In
contrast, symbiont genomes may have been selected for
keeping specific anabolic functions that are of benefit for the
host [28,29,31]. As exemplified by Mycobacterium leprae,
however, there are exceptions to this ‘rule’. The genome of
the obligate intracellular human parasite M. leprae has a
size of about 3.3 megabases (Mb), and contains an extraordi-
nary number of pseudogenes (over 1,100). In contrast to the
genomes of other obligate parasites, the degenerate
M. leprae genome retains almost complete sets of anabolic
pathways, including those involved in nucleoside and
amino-acid biosynthesis, but it has lost many factors
involved in catabolism and energy metabolism [32].

Pathogenic microorganisms are, in general, well equipped
with a variety of different surface structures, which are fre-
quently involved in the protection of the bacteria against
host-defense mechanisms. In marked contrast, the Buchn-
era genome is astonishingly poor in genes involved in the
biosynthesis of membrane components and surface struc-
tures. This indicates that Buchnera cells are quite fragile,
and suggests that such symbiotic microorganisms may have
reached an intracellular niche devoid of significant host-
defense mechanisms [28].

Gene arrays - an alternative to sequencing?

The genome sequence of Buchnera sp. APS has demon-
strated the enormous power of modern genomics to char-
acterize the symbiotic associations of uncultured bacteria
with their host organisms. The genomic sequences of other
Buchnera isolates, of Wigglesworthia and of Blochmannia
are currently being determined and will provide interesting
insights into the evolution of the respective symbioses and
into the different adaptation strategies of the bacteria to



the various host organisms. Meanwhile, attempts have
been made to obtain information about the gene content of
symbionts in the absence of complete genome sequence
data, using commercially available E. coli K12 gene arrays.
As mentioned above, many primary and secondary sym-
bionts of insects are closely related to E. coli and may be
considered to be variants of a common ancestor with
E. coli, with extensive deletions. It therefore seems feasible
to use such gene arrays for hybridization experiments with
symbiont DNA preparations. So far, data are available for
Wigglesworthia pallidipes and Sodalis glossinidius, the
primary and secondary symbionts of tsetse flies, respec-
tively [18,33]. The use of array data for the interpretation
of the biology of these organisms must be taken with some
caution, however, especially if the base composition of the
tested bacteria is very different from E. coli, as it is in the
case of the AT-rich W. pallidipes genome. Only about 85%
of the gene content of the W. pallidipes genome could be
detected with the E. coli array, and some essential genes
such as several aminoacyl tRNA synthetases and ribosomal
proteins that were expected to be present in the genome
were not found [20]. One additional problem of array tech-
nology is that recently evolved pseudogenes would
hybridize almost as strongly as functional genes, leading to
incorrect interpretations of the capabilities of the organ-
ism. This problem is of particular importance in the case of
microorganisms with genomes on the way towards ratio-
nalization, as these may carry an unusually high number
of pseudogenes.

A rough comparison of the gene content of Buchnera sp.
APS and W. pallidipes using their genomic sequence and the
gene-array data, respectively, reveals a quite striking obser-
vation (Table 1). The number of genes shared by the two
genomes is extremely low (around 200), even considering
that this number may be somewhat underestimated because
of several Wigglesworthia genes that, so far, could not be
detected in the array experiments. This implies that, from
the thousands of genes of the common ancestor, each
endosymbiont has retained a surprisingly small minimum
set of primary essential genes plus an additional set of 300-
400 specific genes. These latter genes are candidates for
genes that are required for the specific adaptation to differ-
ent symbiotic lifestyles.

In conclusion, much can be learnt from genome sequences
about the evolution and lifestyles of symbiotic and parasitic
bacteria, and a surprising amount may be discovered even
without a full genome sequence. What is emerging so far is
that symbiosis is associated with loss of different sets of
genes than in parasitism.
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