
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

REVIEW

Ndiaye et al. Genome Biology (2024) 25:270
https://doi.org/10.1186/s13059-024-03414-4

Genome Biology

When less is more: sketching
with minimizers in genomics
Malick Ndiaye1†, Silvia Prieto‑Baños2,3†, Lucy M. Fitzgerald2† , Ali Yazdizadeh Kharrazi2, Sergey Oreshkov4,
Christophe Dessimoz2,3, Fritz J. Sedlazeck5, Natasha Glover2,3 and Sina Majidian2,3*

Abstract

The exponential increase in sequencing data calls for conceptual and computational
advances to extract useful biological insights. One such advance, minimizers, allows
for reducing the quantity of data handled while maintaining some of its key properties.
We provide a basic introduction to minimizers, cover recent methodological develop‑
ments, and review the diverse applications of minimizers to analyze genomic data,
including de novo genome assembly, metagenomics, read alignment, read correction,
and pangenomes. We also touch on alternative data sketching techniques includ‑
ing universal hitting sets, syncmers, or strobemers. Minimizers and their alternatives
have rapidly become indispensable tools for handling vast amounts of data.

Introduction
Advances in computational and sequencing methods over the last two decades have pro-
pelled us into the genomics era [1], with databases like the European Nucleotide Archive
increasing their assembled sequences and sequencing read collections by 100 and 100
million times, respectively, in that timespan [2]. Data in repositories now spans peta-
bytes [3], decreasing costs and rising sequencing capabilities.

Genetic data is increasing in two dimensions. On one hand, moonshot initiatives with
a “sequence everything” philosophy such as the Earth BioGenome Project [4] and the
Tara Oceans Project [5] are sequencing a diverse range of species and microbial com-
munities in a variety of environments [6]. On the other hand, initiatives such as the
1000 Genomes Project, the UK Biobank, and TOPMed aim to sequence hundreds of
thousands of genomes from the same species [7, 8]. This trend has gained even more
momentum with the advent of personalized medicine, where sequencing patients’
genomes is expected to become routine for diagnostics. For example, the “All of Us”
Research Program aims to gather health and genetic data from one million people in
the US [8, 9]. The abundance of genetic data presents a wide array of applications across
many domains, including drug development or improving crop traits such as yield and

†Malick Ndiaye, Silvia Prieto
Baños and Lucy M. Fitzgerald
contributed equally to this work.

*Correspondence:
sina.majidian@unil.ch

1 Department of Fundamental
Microbiology, UNIL, Lausanne,
Switzerland
2 Department of Computational
Biology, UNIL, Lausanne,
Switzerland
3 SIB Swiss Institute
of Bioinformatics, Lausanne,
Switzerland
4 Department of Endocrinology,
Diabetology, Metabolism, CHUV,
Lausanne, Switzerland
5 Baylor College of Medicine,
Houston, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-024-03414-4&domain=pdf
https://orcid.org/0000-0003-0656-2998
http://orcid.org/0000-0001-5345-6982

Page 2 of 35Ndiaye et al. Genome Biology (2024) 25:270

resistance to climate change [3, 10, 11]. This wealth of sequencing data delivers many
opportunities and challenges for using and storing all this information and developing
scalable methods that can speed up its analysis.

One of the fundamental problems in bioinformatics is sequence comparison, which
entails quantifying the similarity and dissimilarity between the sequences’ bases or
amino acids and their order in sequences. It is key in processes such as identifying
homologous genes or proteins [12, 13], genome assembly [14], and metagenomics spe-
cies classification [15]. As the number of input sequences increases, the computational
burden of pairwise comparisons increases quadratically, making handling the sheer
amount of data more time-consuming and resource-intensive. To address this issue,
various computational approaches have been developed to enable faster processing and
comparison of large collections of sequencing data.

Traditionally, sequence comparison relied on alignment-based methods, which involve
identifying the corresponding bases or amino acids in different sequences by maximiz-
ing a similarity score rewarding matches, and penalizing mismatches, insertions, or dele-
tions [16]. For a wide range of scores, exact solutions can be computed using dynamic
programming [17], but the time complexity is typically quadratic in the length of the
sequences or worse. This is too slow for many contemporary applications, which involve
analyzing sequences of billions of base pairs. Faster approximation algorithms have been
devised, such as the well-known BLAST [18], Diamond [19], or MMseqs [20] tools. They
use various heuristics as shortcuts, including some of the techniques discussed below,
but they are still considered “alignment-based” in that they retain some dynamic pro-
gramming approach at their core.

To avoid computationally costly alignments, many alignment-free methods have been
developed which improve memory requirements and time complexity when handling
large amounts of data [21]. Two important concepts applied in many alignment-free
sequence comparison methods are k-mers (also known as n-grams, the “K-mer defini-
tion and properties” section) and graph-based representations (e.g., de Bruijn graphs,
the “Representing de Bruijn graphs” section). Sketching methods are also a popular
alternative. In the broader sense, sketching is a technique to create a reduced representa-
tion of the data that retains important properties and can be used to replace the original
data in some applications [6, 22]. Some sketching examples are locality-sensitive hash-
ing, minimizers, or bloom indexes [6, 22, 23].

In this review, we focus on the highly efficient sketching approach of minimizers.
In recent years, minimizers have emerged as a powerful approach to handle the ever-
increasing amount of sequencing data efficiently, while maintaining or even surpass-
ing the accuracy of traditional methods. Nevertheless, the function and advantages or
disadvantages of minimizers compared to more traditional approaches is often unclear.
To provide a comprehensive understanding of minimizers, we begin with explain-
ing k-mers, which serve as the foundation for minimizers, and explore the minimizers
scheme definition and properties (the “Background” section). Then, we discuss six of
the most notable applications of minimizers in genomics (Fig. 1): read alignment (the
“Read alignment” section), read correction (the “Read correction” section), represent-
ing de Bruijn graphs (the “Representing de Bruijn graphs” section), genome assembly
(the “De novo genome assembly” section), pangenomes (the “Pangenomes” section),

Page 3 of 35Ndiaye et al. Genome Biology (2024) 25:270

Fi
g.

 1
 T

he
 c

on
ce

pt
 a

nd
 a

pp
lic

at
io

ns
 o

f m
in

im
iz

er
s.

K‑
m

er
s

ar
e

fix
ed

‑le
ng

th
 s

ub
st

rin
gs

 o
f a

 s
eq

ue
nc

e
an

d
ar

e
us

ed
 to

 a
na

ly
ze

 g
en

om
ic

 s
eq

ue
nc

es
. T

he
 m

in
im

iz
er

 a
pp

ro
ac

h
re

du
ce

s
th

e
co

m
pu

ta
tio

na
l r

eq
ui

re
m

en
ts

 b
y

se
le

ct
in

g
on

ly
 a

 re
pr

es
en

ta
tiv

e
k-

m
er

 fr
om

 a
 g

ro
up

 o
f a

dj
ac

en
t k

‑m
er

s.
M

in
im

iz
er

s
ar

e
us

ef
ul

 in
 a

 d
iv

er
se

 ra
ng

e
of

 a
pp

lic
at

io
ns

 in
 b

io
in

fo
rm

at
ic

s
an

d
co

m
pu

ta
tio

na
l

bi
ol

og
y

in
cl

ud
in

g
re

ad
 a

lig
nm

en
t,

re
ad

 c
or

re
ct

io
n,

 d
e

Br
ui

jn
 g

ra
ph

 re
pr

es
en

ta
tio

n,
 g

en
om

e
as

se
m

bl
y,

 p
an

ge
no

m
ic

s,
m

et
ag

en
om

ic
s

cl
as

si
fic

at
io

n
an

d
as

se
m

bl
y,

 a
nd

 b
ey

on
d

Page 4 of 35Ndiaye et al. Genome Biology (2024) 25:270

and metagenomics (the “Metagenomics” section) as well as briefly touch on minimizer
alternatives (the “Minimizer alternatives” section). Finally, we conclude and discuss the
future of minimizers in genomics.

Background
K‑mer definition and properties

K-mers are useful for analyzing large DNA or RNA sequences, as they allow storing
and manipulating these sequences using smaller, more manageable substrings [3, 22].
This reduces the time and memory complexity of analyzing large amounts of sequences
by decreasing the search space, paving the way for more efficient algorithms for tasks
such as genome assembly, mapping gene expression data, and sequence classification.
Based on the assumption that similar subsequences that can be aligned with alignment-
based methods also share k-mers, we can identify similar subsequences by comparing
the k-mers in sequences. Moreover, we can store repeated k-mers only once, possibly
accompanied with their positions or their frequencies, resulting in a more compact stor-
age. Storing sequences using k-mers comes with a loss of information because it only
informs us about each k-mer rather than the whole sequence, but they may retain suf-
ficient information for many purposes as described later in this review [3]. Although
storing many k-mers can be computationally challenging [3, 24], utilizing k-mer-based
methods is generally more efficient than alignment-based methods [16].

Some essential k-mers definitions and notions are needed before we introduce mini-
mizers. A k-mer is a substring or a “word” of length k present in a longer sequence S.
Two contiguous k-mers in a string share k-1 characters. It follows that if |S| represents
the length of the sequence, the maximum number of k-mers in S is |S|− k + 1, which can
be approximated to |S|, assuming that k is much smaller than |S|. Naively, storing all
k-mers of S would require a space of O(|S|*k), which is more than the sequences them-
selves [25].

Nevertheless, storing k-mers can be more space-efficient than storing complete
sequences, because the maximum number of different possible k-mers is |Σ|k, Σ being the
alphabet [26]. For example, if k is 2 and the alphabet is the DNA bases Σ = {A, C, G, T},
there will be at most 42 possible 2-mers: B2 = {AA, AC, AG, AT, CA, CC, CG, CT, GA,
GC, GG, GT, TA, TC, TG, TT}. Storing these 2-mers occupies less space than storing the
complete string if the string S is longer than 16 bases. Note that the number of possible
unique k-mers increases exponentially with k, quickly exceeding |S|. However, in practice,
the number of observed k-mers is bounded by |S|− k + 1 and many k-mers are typically
repeated [3]. As a result, typical k values are kept within the range of 20 to 200 and each
distinct observed k-mer is stored only once, along with their frequencies and/or their posi-
tions, depending on the application.

Exploiting k-mers was a breakthrough in handling sequence data. However, as data
grows, the linear increase in storage demand becomes impractical, necessitating more
efficient ways to handle genomics data [25]. This is especially true as many genomic
comparisons do not require such level of detail as the k-mer approach provides. One
such way that has emerged is minimizers, which is based on k-merization of the data.
Minimizers achieve faster processing and reduced memory usage by working with only a
subsample of the k-mers.

Page 5 of 35Ndiaye et al. Genome Biology (2024) 25:270

Minimizers

The minimizers scheme is a sequence analysis approach to create approximate rep-
resentations of sequences, or sketches, which occupy a reduced space in compari-
son to the sequences themselves. Minimizers were originally introduced by Roberts
et al. [25] to reduce the number of stored k-mers needed to assemble genomes and
to reduce computations for sequence comparison compared to traditional methods
like BLAST [18]. Interestingly, the concept of minimizers referred to as “winnowing”
had already been independently developed for fingerprinting documents and detect-
ing plagiarism [27, 28].

A minimizer is a selected representative k-mer from a group of adjacent k-mers.
However, this approach is useful only if two substrings with an exact match end up
sharing at least one of the representative k-mers. For instance, choosing every k-th
k-mer as a minimizer is inadequate because two strings with a long exact match
would only share a k-mer if it starts at the same position or at a position multiple of
k. Therefore, to ensure functionality, minimizer schemes must be defined by comply-
ing with specific properties to guide the selection of representative k-mers, discussed
below [22, 25].

Parameters and properties of a minimizers scheme

A minimizers scheme is defined by three parameters: the k-mer length (k), the window
size (w), and the ordering. A window with size of w corresponds to w consecutive k-mers
covering a substring of length w + k − 1 from which a k-mer is selected as the represent-
ative called the minimizer. Minimizers are chosen based on an ordering (i.e., sorting) of
the k-mers, such as lexicographic [25, 28]. By choosing the “smallest” k-mer as the mini-
mizer (Fig. 2), the selection is not based on the k-mer’s position but rather based on the
sequence content. Choosing minimizers begins with the first substring starting at posi-
tion S[1], selecting a minimizer among the w consecutive k-mers starting at positions
S[1], S[2], …, S[w] (considering 1-based indexing). Then, it proceeds sequentially, identi-
fying a minimizer for the second window in the range [2, w + 1], then the third window
[3, w + 2], and so on all the way to [|S|− w − k + 2, |S|− k + 1]. The set of all minimizers
obtained in this way are the minimizers of sequence S. Because neighboring substrings
have overlapping windows, their associated minimizers are often identical; as a result,
the set of minimizers of S tends to be much smaller than the set of k-mers of S. Of note,
the choice of k and w varies among applications. For example, k = 15 and w = 10 are used
for long, noisy read alignment in minimap2 discussed in the “Read alignment” section.

A minimizer scheme has two important consequent properties. The first property
is that “two sequences with an exact match of minimum length w + k − 1 will share
a minimizer” [25]. In other words, any matches of length ≥ w + k − 1 will be repre-
sented in the selected minimizer while shorter matches might not be, depending on
their ordering position (Fig. 2). The second property is that “the maximum distance
between two consecutive selected k-mers is w,” as at least one k-mer must be selected
per window. In case of ties—where two k-mers in a window have the same order—
solutions include storing all tied k-mers [22] or selecting based on additional criteria,
such as choosing the k-mer at the leftmost position [25].

Page 6 of 35Ndiaye et al. Genome Biology (2024) 25:270

Fi
g.

 2
 I

m
pl

em
en

ta
tio

n
of

 tw
o

m
in

im
iz

er
 s

ch
em

es
 w

ith
 d

iff
er

in
g

w
 v

al
ue

s
(le

ft
 a

nd
 ri

gh
t)

 fo
r t

w
o

se
qu

en
ce

s
w

ith
 a

n
ex

ac
t m

at
ch

 o
f l

en
gt

h
8

sh
ow

n
in

 b
lu

e
un

de
rli

ne
. T

he
 p

ar
am

et
er

 k
 =

 3
 a

nd

th
e

or
de

rin
g

(le
xi

co
gr

ap
hi

c)
 a

re
 c

on
st

an
t.

Th
e

le
ng

th
 o

f e
ac

h
se

qu
en

ce
 is

 |S
|=

 1
1

ha
vi

ng
 9

 (
=

|S
|−

 k
+

 1
) k

‑m
er

s.
Ea

ch
 b

ox
 re

pr
es

en
ts

 th
e

w
in

do
w

 w
ith

 s
iz

e
w

 (6
 o

r 8
),

co
rr

es
po

nd
in

g
to

 th
e

st
ar

tin
g

po
si

tio
ns

 o
f t

he
 w

in
do

w
’s

k‑
m

er
s

w
hi

ch
 c

ov
er

s
w

 +
 k
−

 1
 b

as
es

 (8
 o

r 1
0,

 re
sp

ec
tiv

el
y)

. F
or

 s
eq

ue
nc

e
1,

 u
si

ng
 w

 =
 6

, t
he

 s
el

ec
te

d
m

in
im

iz
er

 in
 th

e
fir

st
 w

in
do

w
 (p

ar
tly

 c
ov

er
in

g
th

e
un

de
rli

ne
d

ex
ac

t
m

at
ch

) i
s

A
C

T
st

ar
tin

g
at

 p
os

iti
on

 2
. T

he
 s

am
e

m
in

im
iz

er
, A

C
T,

 is
 a

ls
o

se
le

ct
ed

 fo
r s

eq
ue

nc
e

2
us

in
g

w
 =

 6
. S

in
ce

 th
e

ex
ac

t m
at

ch
 le

ng
th

 is
 8

 (≥
 w

 +
 k
−

 1
),

th
e

fir
st

 p
ro

pe
rt

y
of

 m
in

im
iz

er
s

sc
he

m
es

is

 fu
lfi

lle
d,

 a
nd

 th
e

sa
m

e
m

in
im

iz
er

 is
 c

ho
se

n
fo

r b
ot

h
se

qu
en

ce
s,

re
pr

es
en

tin
g

th
e

ex
ac

t m
at

ch
. H

ow
ev

er
, w

he
n

us
in

g
w

 =
 8

 (r
ig

ht
),

th
e

m
at

ch
 le

ng
th

 is
 <

 w
 +

 k
−

 1
. T

hu
s,

th
er

e
is

 n
o

gu
ar

an
te

e
of

sh

ar
in

g
a

m
in

im
iz

er
 a

nd
 a

 d
iff

er
en

t k
-m

er
 is

 c
ho

se
n

fo
r e

ac
h

se
qu

en
ce

 in
 th

is
 e

xa
m

pl
e.

 N
ot

e
th

at
 fo

r t
he

 s
ec

on
d

w
in

do
w

 in
 s

eq
ue

nc
e

2,
 w

e
br

ea
k

th
e

tie
 b

et
w

ee
n

A
C

Ts
 s

ta
rt

in
g

at
 p

os
iti

on
 2

 a
nd

 7

w
ith

 th
e

le
ft

m
os

t p
os

iti
on

; t
hi

s
ha

pp
en

s
fo

r b
ot

h
w

 =
 6

 a
nd

w
 =

 8
. T

he
 d

en
si

ty
 o

f t
he

 m
in

im
iz

er
s

sc
he

m
e

fo
r s

eq
ue

nc
e

1
us

in
g

w
 =

 6
 is

 2
/9

, a
s

tw
o

m
in

im
iz

er
s

ar
e

ch
os

en
 in

 to
ta

l:
A

C
T

(p
os

iti
on

 2
, f

or

th
e

tw
o

fir
st

 w
in

do
w

s)
 a

nd
 A

CC
 (p

os
iti

on
 7

, f
or

 th
e

tw
o

la
st

 w
in

do
w

s)
, a

nd
 th

e
de

ns
ity

 fo
r s

eq
ue

nc
e

2
is

 a
ls

o
2/

9
us

in
g

w
 =

 6
. W

ith
 w

 =
 8

, t
he

 d
en

si
ty

 fo
r b

ot
h

se
qu

en
ce

s
is

 1
/9

Page 7 of 35Ndiaye et al. Genome Biology (2024) 25:270

The importance of ordering

The k-mer ordering parameter is crucial in constructing the minimizers, as it signifi-
cantly influences their performance. Performance can be measured by density, defined
as the ratio of selected k-mers among all k-mers of a given substring, where lower
density indicates higher efficiency [22, 27]. Since different orderings lead to different
selected minimizers and thus varying densities, the k-mer ordering approach has a large
impact on the performance of the minimizer scheme and should be tailored for each
application.

Using the lexicographic order for strings with frequent “A”s can lead to selecting mul-
tiple consecutive k-mer minimizers (consider e.g., AAA TCG T with k = 3, w = 5), thereby
leading to an undesirable increase in density. Roberts et al. [25] recommend an ordering
strategy that favors choosing rare k-mers as minimizers, resulting in lower density. For
DNA sequences, this can be achieved by prioritizing less frequent bases or by selecting
k-mers with a higher count of these bases [25].

An alternative to lexicographic ordering is using functions to assign numerical values
to k-mers [29]. A hash function transforms a given string of arbitrary size (k-mers in
our case) into a fixed-sized value. In doing so, the resulting representation will typically
occupy less space [29] (e.g., hashing into 32-bit values [30] results in space saving for
genomic k-mers for k > 16 assuming a 2-bit encoding per nucleotide). See Fig. 3 as an
example of using a hash function for defining a minimizer scheme.

Several studies have focused on optimizing ordering and devising new data structures
and schemes to achieve minimizers with higher efficiencies and lower densities (fewer
selected k-mers) [22]. Theoretically, density ranges from 1/w (since at least one k-mer is
chosen for every w letters based on the property 2) to 1 (where all k-mers are selected).
The optimal minimum of 1/w is only achieved when k is large [22, 31], and the interest
lies in constructing a minimizer with a density within a constant factor, i.e., O(1/w) for
any k. With lexicographic ordering, minimizers can achieve such density, but with large
k values (≥ log|Σ|(w)-c for a constant c), which might not be desirable [32]. However, ran-
dom ordering can result in a lower density than that of the lexicographic ordering. Thus,

Fig. 3 An example implementation of a minimizers scheme using a hash function for ordering. In this case,
the hash function calculates the remainder of the values assigned to each k-mer divided by 13. The k‑mer
with the lowest hash value in a window is selected as the minimizer. For the last window, we break the tie
between 7ACC and 9CTT with hash value of 5, by selecting the one starting at the leftmost position resulting
in 7ACC

Page 8 of 35Ndiaye et al. Genome Biology (2024) 25:270

random ordering (implemented with pseudo-random hash functions) is usually used in
practice [28, 31–33].

The expected density, defined as the expectation of density over all possible sequences
when bases are chosen independently with equal probability, is used to evaluate mini-
mizer ordering. Using a random ordering and a window size of w ≪|Σ|k, the expected
density is proven to be 2/(w + 1), with some other assumptions which might not hold
in practice [27]. Zheng et al. provided explicit conditions only on k (i.e., k ≥ (3 + ε)
log|Σ|(w + 1)) for the expected density of 2/(w + 1) + o(1/w) [32]. The added term o(1/w)
relates to the probability of having two identical k-mers in a random window of w which
equals to |Σ|−k or equivalently 1/w3+ε = o(1/w3) under the mentioned assumption on k.
See [31, 34, 35] for asymptotic analysis.

Recent investigations indicate that ordering algorithms can achieve a density value of
1.8/(w + 1) [36], well below the originally proposed lower bound of 2/(w + 1) [22, 25]. Of
note, several studies have developed new data structures to improve the density, some of
which are described in the ”Minimizer alternatives” section. In addition to density, other
metrics to analyze sketching schemes including conservation [23], repetitiveness [37]
coverage and sketch score [38] have also been suggested. For a more in-depth review
of the algorithmic aspects of minimizers, see [39]. In short, it is increasingly clear that
minimizers are a powerful tool to improve memory efficiency and runtime in several
applications, and research on their optimal design is still ongoing.

Minimizer applications
Given the promising advances of minimizers compared to k-mer approaches, we next
review their wide-ranging applications. Table 1 summarizes various applications and
programs that utilize minimizers to increase their speed and memory efficiency, high-
lighting the broad applications of minimizers across different research fields. Key appli-
cations include read alignment, read correction, genome assembly, pangenomes, and
metagenomics.

Read alignment

Read alignment involves placing and comparing DNA or RNA sequencing reads to a
reference genome or transcriptome. The goal is to identify the best match between a
given read and the reference, since this is the best hypothesis for where the read origi-
nated. A naive approach to read alignment would be to use brute force by checking all
possible positions, but this is impractical due to the vast number of reads generated by
sequencing technologies. Additionally, read alignment can be computationally demand-
ing because the reference genome may contain repeated sequences where a read can
map to with equal probability. Furthermore, sequencing errors and true genetic variabil-
ity within a sample can introduce differences between the read and its matching location
within the reference.

Read alignment is a crucial step in various genomic pipelines including identifying and
studying genetic variations. A wrongly placed or misaligned read often leads to a falsely-
identified variant with consequences for downstream analyses [69, 70]. To address speed
and accuracy of read alignments, over 100 methods have been developed [69]. The list
includes the Burrows-Wheeler Aligner (BWA) [71] and Bowtie [72] for short DNA

Page 9 of 35Ndiaye et al. Genome Biology (2024) 25:270

Table 1 Bioinformatics tools that use minimizers categorized in seven fields, namely, read
alignment, read correction, de Bruijn graph (dBG) representation, genome assembly, pangenomes,
metagenomics classification, and assembly

Main application Name Description Citation

Read alignment minimap2 Uses a seed‑chain‑align procedure by
collecting minimizers

[40, 41]

GraphAligner Long‑read aligner to genome graphs
using minimizers

[42]

LRA Aligns long reads to a reference
genome

[43]

Chromap Aligns chromatin profiles using
minimizers

[44]

Winnowmap and Winnowmap2 Weighted‑minimizer sampling algo‑
rithm that builds on top of minimap2

[45, 46]

Read correction Miniscrub Convolutional neural network‑based
method for removing low‑quality
nanopore read segments

[47]

VeChat Correcting errors in long reads using
variation graphs

[48]

isONcorrect Long‑read error correction [49]

Minirmd Removing duplicate and near‑
duplicate reads

[50]

de Bruijn graph (dBG) representation BCALM2 Parallel dBG compaction [51]

Bifrost Parallel dBG compaction [52]

GGCAT Parallel k‑mer enumeration and dBG
compaction

[53]

Fulgor ccdBG representation for alignment‑
free sequence matching

[54]

De novo genome assembly rust-mdBG De novo genome assembly from
minimizer‑space dBG

[55]

MBG De novo genome assembly from
minimizer‑based dBG

[55, 56]

LJA Long‑reads de novo genome
assembly

[57]

ntJoin Reference‑based genome assembly [58]

Wengan Hybrid short‑ and long‑reads de novo
genome assembly

[59]

Pangenomes Minigraph Pangenome construction from mul‑
tiple genomes (Eukaryote‑vertebrate
focus) and sequence to graph aligner

[60]

Giraffe Fast mapping of short‑reads to
pangenome (Eukaryote‑vertebrate
focus)

[61]

PGR-TK Pangenome construction and
analysis using sparse hierarchical
minimizers (Human focus)

[62]

Pandora Pangenome construction and analy‑
sis. Capture core and accessory genes
as well as variants (Bacteria focus)

[63]

Metagenomics classification Kraken and Kraken2 Metagenomics classifier by minimizer
with improved memory require‑
ments

[64, 65]

K2Mem Classifier based on kraken2 with
improved memory and classifica‑
tion time

[66]

MetaMaps Analyzer for long‑read metagenom‑
ics data

[67]

Metagenomics assembly MetaProb2 Genome binning method using
minimizers to assemble reads

[68]

Page 10 of 35Ndiaye et al. Genome Biology (2024) 25:270

reads, BLASR [73] and BWA-SW [74] for long DNA reads, and STAR [75] for RNA-
seq reads. For comprehensive reviews of tools for read alignment, see [69, 76]. Here, we
focus only on methods for read alignment that employ minimizers.

Many alignment tools benefit from a seed-and-extend or seed-chain-extend approach
designed for short or long reads: The goal of seeding is to find small exact matches
between the read and the reference which are then chained together using dynamic pro-
gramming [18, 71, 77–79].

To find exact matches, different approaches including Burrows-Wheeler trans-
form (BWT), suffix arrays, or minimizers are used (reviewed in [80]). Minimap [81] is
an alignment tool for nucleotide sequences whose improved version, minimap2, was
released in 2018 [40] and quickly became one of the leading tools for read alignment.
This tool benefits from a seed-chain-align approach, employing minimizers to identify
initial exact matches, seeds. Minimap2 first finds minimizers within the reference, with
computation time being linear in terms of the length of the reference [81]. These are
stored in a hash table where the minimizer’s hash values (obtained with a hash function)
are the keys and the minimizer locations are the values (Fig. 4). For query sequences
(reads), seeds are also formed from their minimizers. Anchors are found by exact match-
ing read seeds to positions in the reference hash table. An anchor in minimap2 denotes
a pair of starting positions, indicating a range on the reference sequence that matches
a range on the query sequence. Then, a chain is formed from a set of collinear anchors
using a dynamic programming approach to maximize matching bases between anchors
considering a customized cost function of gap length [40, 41]. Finally, to create align-
ments, minimap2 applies dynamic programming to extend chains and to fill regions
between neighboring anchors inside the chain. Minimizers here help to avoid an exhaus-
tive per-base search of seed matches.

Furthermore, minimap2 uses various heuristics for optimization. To avoid wrong
anchors in a chain, which could appear due to local homology and sequencing errors,
minimap2 filters out anchors that lead to insertions and deletions (> 10 bp) or a long gap
at the end of the chain. While this alleviates issues with misplaced anchors, it is unable to
fix all such errors. Nonetheless, in comparison with alternative aligners, minimap2 shows
superior accuracy and speed, sometimes at the cost of memory [40]. In 2021, Li improved
minimap2 by using more minimizers (previously it kept only low-occurrence minimiz-
ers) and refining its chaining algorithm by changing the alignment scoring function. This
improvement addressed challenges like un- or mis-aligned reads in highly repetitive
regions and the alignment of sequences with long insertions/deletions (indels) [41].

Building on top of minimap2, Winnowmap introduced a weighted-minimizer sampling
algorithm [45]. Minimap2 ignores frequent minimizers because minimizers from repeti-
tive regions are sampled more often, which artificially increases seed hits. However, this
results in overturning the property 1 of minimizers and in accuracy reduction. To tackle
this challenge, Winnowmap performs minimizer sampling by considering a weight for
each k-mer; the higher the weight of the k-mer, the more likely it is to be selected. Repet-
itive k-mers with frequency above 1024 are given a weight of 1/8, while other k-mers are
given a weight of 1. With this approach, property 1 remains true for this weighted-mini-
mizer scheme while avoiding excessive false matches. This method leverages minimap2’s
techniques for anchor chaining and gapped alignment for read alignment, achieving up

Page 11 of 35Ndiaye et al. Genome Biology (2024) 25:270

to 50% lower memory usage while maintaining a similar runtime to minimap2. Winnow-
map2 (Table 1) uses the same seeding approach of Winnowmap and improves on mini-
map2’s extending using heuristic to address allelic biases. Winnowmap2 can efficiently
map long reads to repetitive reference sequences and has improved accuracy in variant
calling of the Genome in a Bottle samples [82] than other long-read mappers such as
Winnowmap, minimap2 and NGMLR [46].

LRA is a method for aligning long sequencing reads to a reference genome, which
it accomplishes in four main steps: seed sequence matching, clustering, chaining, and
refinement [43]. It tries to find the solution to seed chaining with a concave gap func-
tion to differently penalize opening or extending a gap. After finding anchors using
minimizers, LRA filters out unreliable ones by partitioning them into clusters using a
greedy approach. These represent approximate intervals on the query and target that are
aligned. These clusters form fragments represented as diagonal lines in a 2D cartesian
space correlating the sequences of the read and the reference genome. The chain with
the lowest score is found in a more efficient manner than the traditional O(n2), achieving
O(n log2n) time complexity, where n is the number of fragments. This chaining leads to

Fig. 4 Application of minimizers in read alignment. A typical read aligner that follows the seed‑chain‑align
approach first finds reference minimizers and stores them in a hash table. Seeds are substrings (minimizers)
from the reference or the read. Seeds that match between the read and the reference are called anchors,
which are found by querying the read minimizers in the hash table. Then, anchors are chained together and
finally bases are aligned

Page 12 of 35Ndiaye et al. Genome Biology (2024) 25:270

refined alignments that resulted in higher sensitivity of variant discovery compared to
minimap2 and NGMLR with comparable runtime [43].

MashMap [83] formulates the read mapping problem using the Jaccard similarity coef-
ficient of k-mers between the read and its mapping region on the reference. The Jaccard
is defined as the ratio of the intersection size over the union size of two sets. It is esti-
mated using MinHash with the smallest set of hash values of k-mers of two sequences
[57]. Due to the expensive computational costs for comparing a read and the reference
sequence, MashMap uses MinHash on minimizers rather than all k-mers. Recently,
MashMap2 [84] has also been released for whole-genome alignments using the same
minimizer-centric approach.

To study chromatin organization and accessibility, analyzing ChIP-seq or ATAC-
seq data is now becoming routine. In chromatin profiling, the standard approach is to
start with short-read aligners like BWA-MEM or Bowtie2, followed by sorting reads
and removing duplicates. This is an inefficient process since base-level alignment is not
needed for most chromatin analysis. Moreover, several isolated tools are used involving
high reading and writing operations on files. Chromap is a fast, integrated tool for ana-
lyzing chromatin profiles, adopting minimizer indexing from minimap2 to find seeds,
but with a different approach for seeding and alignment [44]. Chromap follows a similar
approach to minimap2 for chaining anchors and generates alignment candidates. Finally,
a bit-parallel algorithm is used to find the best alignment candidate with the lowest edit
distance. BWA-MEM, minimap2, and Chromap all performed similarly, with 98% accu-
racy for simulated 100 and 150-bp paired-end data. On smaller 50-bp paired-end data,
BWA-MEM and Chromap had a similar accuracy of 96%, while minimap2 lags slightly
with performance ranging between 94 and 96% [44].

Read alignment can also be performed on genome graphs. GraphAligner is a mini-
mizer-based method for long read alignment to graphs [42]. The input to GraphAligner
could be any bidirected graphs (modeling double helix DNA which could be traversed
in two directions) including de Bruijn (see the “Representing de Bruijn graphs” section),
variation, and pangenome graphs (see the “Pangenomes” section). GraphAligner uses a
seed-and-extend method where seeds are identified by exact matching each read to the
sequences of nodes in the graph. Of note, only seed hits that are entirely contained in
a node are considered. To find the matches, a minimizer index is built from the graph
by sliding a window through the node’s sequence and finding the smallest k-mers using
the BBHash function. When aligning reads to a linear reference, seeds are chained by
solving the co-linear chaining problem via computation of the distance between seeds.
However, in a, graph the distance between seeds is ambiguous due to the presence of
branching paths. This is addressed by chaining superbubbles, which are defined as acy-
clic subgraphs having one entrance and exit node and some internal nodes. Superbub-
bles are chained when one end node is the start of another. This can be used to assign
linear position to seed hits which is then treated as linear sequence alignment. Then,
each sequence is extended using a banded dynamic programming approach and Viterbi’s
algorithm to decide the end of a read alignment. When traversing node sequences, over-
lap between nodes (for example for a de Bruijn graph where nodes overlap k-1 bases)
should be considered in the matching process. Performance wise, GraphAligner is more
than ten times faster than the VG tool [42, 85]. For the case of aligning simulated data

Page 13 of 35Ndiaye et al. Genome Biology (2024) 25:270

on linear reference, minimap2 and GraphAligner have similar accuracy (95%); however,
GraphAligner has three times the runtime of minimap2. Despite being slower than mini-
map2, it is still faster than linear mappers such as BWA [42].

Overall, read aligner methodologies have been improved by using minimizers, par-
ticularly the chaining algorithm developed in minimap2 which revolutionized the field.
Minimap2 has been built upon and compared to many tools and methodologies as evi-
dent in this section and the “Pangenome” section.

Read correction

Long reads from sequencing technologies like Pacific Biosciences (PacBio) and Oxford
Nanopore Technologies (ONT) are powerful tools for genome and metagenome assem-
bly as well as transcriptomics. Their length can reach several kilobases, allowing a single
read to span low-complexity regions which would be otherwise difficult to assemble or
to incorporate an entire RNA transcript end-to-end [86–88]. However, long reads have
higher error rates compared to their short counterparts [89–91]. This can hinder the
assembly process, increase computational loads, and introduce biases in downstream
analyses [89, 90, 92]. To tackle this problem, de novo error correction can be performed
using multiple sequence alignment (MSA) among reads to infer the correct sequence
using a consensus approach. However, the quadratic nature of comparing reads all-vs-all
can be computationally prohibitive [93]. Thus, some of the recent tools for de novo error
correction (Table 1) use minimizers to reduce the computational requirements of MSA.

Miniscrub and VeChat are two tools that use minimizers-based minimap2 to find
overlapping reads using shared minimizers and perform de novo error correction of
long error-prone reads [47, 48]. Miniscrub uses minimap2 to efficiently perform all-vs-
all read alignments. Then, it generates a “pileup” image that visualizes the aligned reads,
where each column of pixel denotes a position on the reference, and each row corre-
sponds to an individual read aligned to that position. The pileup image pixels contain
relevant information in Red–Green–Blue format, such as matched minimizers, distance
between minimizers, and base quality scores. This image serves as input for a convolu-
tional neural network pre-trained by the developers on sets of reads from known refer-
ence genomes to learn the correlation between a read’s level of support from other reads,
as represented in the pileup image, and its accuracy. Leveraging this learning, the neu-
ral network predicts high-quality read fragments based on the supporting reads for the
fragment’s minimizers. Finally, a user-defined threshold is used to filter out low-quality
segments, yielding shorter high-quality reads.

VeChat uses minimap2 to perform all-vs-all read alignments in metagenomics sam-
ples. Then, it divides the alignments into 500-bp fragments and uses a variation graph
(VG; see the “Pangenomes” section) approach to correct the reads. This graph is used to
prune low support edges that likely correspond to sequencing error, while maintaining
edges that represent true haplotype variation within the samples.

Minimizers are also useful for error correction in long-read transcriptomics data. The
isONcorrect method uses minimizers to splice ONT reads into non-overlapping frag-
ments that begin and end at different minimizers of the read [49]. Fragments sharing
prefix and suffix minimizers are likely to share homologous sequences. Thus, these frag-
ments are clustered together and aligned independently to perform error correction

Page 14 of 35Ndiaye et al. Genome Biology (2024) 25:270

following a consensus approach. By using minimizers, this approach reduces the compu-
tational load of comparing a large number of reads. The authors show that isONcorrect
reduces the mismatch rate of long reads from the Drosophila genome from a median of
7% to a median of 1.1% [49].

Minimizers can also be used to remove duplicate and near-duplicate reads. In turn,
this can reduce computational resources in downstream applications by decreasing
the amount of redundant information in the dataset. Minirmd is a read deduplication
tool that performs de novo clustering of reads in function of the shared minimizers
[50]. Briefly, reads sharing a minimizer in the same minimizer position are clustered in
the same group. Minirmd performs multiple rounds of clustering using minimizers of
varying k values (k-minimizers) to prevent the clustering of near-duplicates in separate
groups caused by mismatches between specific k-minimizers reads. Then, reads within
the same cluster are compared pairwise to identify duplicates, near-duplicates, and
reverse complements. Finally, the read with the best quality is retained. Minirmd was
able to remove on average 3% more near-duplicates than other deduplication tools like
CD-HIT-DUP, Fulcrum, and MarDRe, while being faster and using less memory [50].

Representing de Bruijn graphs

In this section, we will review the application of minimizers in optimizing the repre-
sentation of de Bruijn graphs (dBGs). A (node-centric) dBG is a directed graph where
the edges are represented by all distinct k-mers extracted from an input sequence (e.g.,
sequencing reads or genomes [94]). Nodes within this graph correspond to the k-1 suf-
fixes and prefixes of the k-mers. Edges connect nodes found in a k-mer [95, 96]. dBGs
are fundamental data structures in computational genomics, used in applications such
as genome and metagenome assembly (the “De novo genome assembly” and “Metagen-
omics” sections) and pangenome representation (the “Pangenomes” section) as well as
sequence identification or matching [54].

The construction of dBGs from a sequence can be summarized into four main steps:
(1) k-mer enumeration, (2) graph construction, (3) graph compaction, and (4) graph
cleaning. Firstly, the set of distinct k-mers is extracted from the input sequence and the
graph is constructed as previously explained. Then, all paths with all but the first and
last nodes having an in- and out-degree of 1 (known as unitigs) are compacted into a
single node to obtain a compacted dBG (cdBG). Finally, all paths with low support (i.e.,
representing rare k-mers in the read dataset) are pruned because they probably origi-
nate from sequencing errors. Moreover, bubbles in the graph, often caused by polymor-
phisms or repeated regions, may be collapsed based on criteria like read coverage and
path length, depending on the specific dBG implementations [96]. Of note, when a dBGs
is constructed starting from a collection of datasets, nodes can be labeled with addi-
tional information, such as the sample of origin for a given k-mer, resulting in what is
known as a “colored” dBG [97, 98].

The primary advantage of dBGs lies in the compact representation of the input
sequences, as repeated substrings are represented only once in the graph, significantly
reducing the space required for storage. However, storing the dBG of large sequences can
have a substantial memory footprint, especially in its initial and uncompacted form [99].
This represents the main bottleneck to the scalability of dBG construction. For instance,

Page 15 of 35Ndiaye et al. Genome Biology (2024) 25:270

the dBG representation of the 20-Gbp white spruce genome required around 4.3 TB of
memory [100]. Complicating matters, dBG construction is not easily parallelizable [101].
Given the exponential increase of sequencing data handled by researchers, there has
been a concerted effort to leverage minimizers to improve the efficiency of dBG con-
struction, with particular emphasis on k-mer enumeration and graph compaction.

One way to optimize dBG construction is to parallelize the process. BCALM2 [51]
executes parallel graph compaction by categorizing k-mers into disk buckets utilizing
s-mer minimizers selected in the k-1 prefixes and suffixes of the k-mers. K-mers with
distinct minimizers at the two ends are assigned to different disk-buckets. Subsequently,
k-mers within the same disk-bucket undergo compaction by grouping minimizers to
identify overlaps. The relatively small size of the buckets allows for parallel compaction
through an in-memory algorithm. The original k-mers are then utilized to merge unitigs
from different disk-buckets, effectively reuniting k-mers that were initially assigned to
two separate disk-buckets. This merging operation is also conducted in parallel, since
the algorithm ensures that strings requiring reunification (i.e., sharing the same k-mer
at one extremity) are grouped into the same partition. This allows each partition to be
processed independently. This final step enables the reconstruction of maximal unitigs,
resulting in a cdBG. Compared to previous endeavors [102, 103], BCALM2 was shown
to reduce the time and the memory required for k-mer counting and graph compaction
of the White Spruce and Loblolly Pine genomes by 1 to 2 orders of magnitude [51].

Bifrost utilizes minimizers for the construction and indexing of colored and com-
pacted dBGs (ccdBGs) in a highly parallelized manner. The algorithm integrates mini-
mizers within the framework of Blocked Bloom Filters (BBFs), a data structure designed
for memory-efficient membership queries of an element in a set [52]. During the inser-
tion of a k-mer into BBFs, Bifrost leverages the hash value of its minimizer to determine
the appropriate BBF block for the k-mer. This ensures that sequences preceding or suc-
ceeding a particular k-mer are included in the same BBF block. Since k-mers in differ-
ent BBF blocks can be handled independently, this optimization significantly contributes
to the parallelization of unitig extraction, dBG compaction and navigation, decreasing
the runtime and memory required. Bifrost was shown to construct a ccdBG of around
110,000 Salmonella strains in 93 h using about 100 GB of memory [52].

GGCAT represents a significant improvement over Bifrost, achieving a 5 × faster con-
struction of a ccdBG from a collection of 100 datasets of human genome sequences and
a 480 × faster query for k = 27 [53]. The key innovation of GGCAT lies in integrating k-
mer enumeration with unitig construction in a highly parallelizable manner. This begins
by partitioning the input sequence into substrings having k-2 characters overlap and
having all (k-1)-mers within each substring share the same minimizer. These substrings
are further extended with one linking base in each direction, to ensure that consecutive
substrings overlap by exactly k bases. Subsequently, the substrings are grouped based
on their minimizers. For each group of substrings, k-mer counting is performed con-
currently. This grouping guarantees that overlapping k-mers are stored and processed
independently, allowing parallelization of the unitig construction process. The algorithm
then initiates unitig construction by starting with each k-mer and extending it both left
and right. This extension process involves identifying potential overlaps and matches
with neighboring k-mers in the same group. Reaching the linking bases during extension

Page 16 of 35Ndiaye et al. Genome Biology (2024) 25:270

signifies the endpoint of the unitig in that direction. The corresponding k-mer and the
unitig will be stored as a tuple. Finally, these tuples are processed based on overlapping
k-mers (found in another group) to generate maximal unitigs by iteratively merging unit-
igs [53].

More recently, SSHash has been developed for constructing dBGs with high scalability
[104, 105], building on ideas introduced by BLight [106]. BLight is an efficient exact data
structure that allows membership queries of a k-mer and its associated information. It
splits unitigs of the cdBG into super-k-mers, which are sequences composed of consecu-
tive k-mers sharing the same minimizer. The set of k-mers of a super-k-mer is indexed
using a minimal perfect hash function associating identifiers to k-mers used during que-
rying. Such a function bijectively maps each of i inputs (keys) into a unique integer in the
range of {0..i-1} without collisions.

SSHash improves storage efficiency by storing absolute offsets that point to the posi-
tions in the genomic sequences where each super-k-mer starts, instead of indexing the
concatenation of super-k-mers. This improves space efficiency since, in practice, several
super-k-mers are small. Additionally, SSHash leverages the fact that minimizers have
a skewed distribution: most minimizers appear only once, while a few appear multiple
times. Frequent minimizers are managed with a minimal-perfect Hash function. This
ensures efficient and constant-time lookups (i.e., reporting the unique identifier of k-
mer in the set) when the number of offsets represented by a minimizer is large. Infre-
quent minimizers are managed by a regular lookup procedure where entries are directly
accessed and iterated through until a match is found. This dual strategy enhances both
storage efficiency, retrieval, and manipulation of genomic data, which is crucial for tasks
like sequence alignment. Of note, SSHash has been extended to represent weights (i.e.,
abundance counts) [105] and attracted interests in the literature for indexing genomes
[31, 107], and k-mer/unitig membership queries [108].

Fulgor integrates GGCAT with the SSHash data structure to optimize the represen-
tation of ccdBGs which could be used for alignment-free matching of metagenomic
sequences against a reference database (aka pseudo-alignment) [54]. Initially, GGCAT
constructs a ccdBG from a given set of reference sequences. Fulgor employs the SSHash
data structure to efficiently store the ccdBG unitigs. By leveraging SSHash, Fulgor effi-
ciently stores ccdBG components in a compact way, optimizing memory usage and ena-
bling fast queries for consecutive k-mers, which often share the same minimizer. To be
more exact, unitigs are sorted by their color IDs and are stored via SSHash. This enables
Fulgor to compute the color of each unitig using a rank query on the bit vector where 1
shows a change in color of consecutive unitigs (rank-one query returns the sum of the
1 s in a vector). Fulgor was shown to build a ccdBG from 150,000 Salmonella strains in
under 5 h, utilizing approximately 137 GB of RAM, resulting in an index with size of only
70 GB, which was further reduced to 7.5GB [98] (much smaller than those of the com-
petitors). This represents a significant improvement over the above-mentioned perfor-
mance reported for Bifrost on a similar dataset.

In summary, the optimization of dBG construction through the use of minimizers has
led to significant advancements in genomic data analysis. Innovations such as BCALM2,
Bifrost, and GGCAT have demonstrated how minimizers can enhance parallelization and
efficiency in k-mer enumeration and graph compaction. Additionally, the development

Page 17 of 35Ndiaye et al. Genome Biology (2024) 25:270

of data structures like SSHash has optimized the storage and query of dBGs. The inte-
gration of these advancements in tools like Fulgor exemplifies the potential for further
improvements in dBG representation, particularly in the efficient handling and querying
of large-scale datasets.

De novo genome assembly

In this section, we review the application of minimizers to the problem of de novo
genome assembly to achieve contiguous, high-quality assemblies of large genomes in
a computationally efficient fashion. De novo genome assembly deals with the problem
of reconstructing a consensus sequence G of length |G| from a randomly sampled set
of reads of length r, where r < <|G| [109, 110]. This problem has also been extended to
assemble all haplotypes of a diploid or polyploid species [111–113].

A straightforward approach to de novo genome assembly entails searching for over-
laps between reads to infer a consensus set of sequences that approximates the original
genome. This approach is known as overlap layout consensus (OLC) [114, 115], which is
particularly good at handling sequencing errors or genomic regions with high heterozy-
gosity by allowing overlaps with mismatches [101]. However, finding overlaps between
reads usually needs all-vs-all comparison resulting in quadratic time in the number of
reads. Thus, the more reads that are present in a dataset, the more computationally pro-
hibitive it becomes to find overlaps and a consensus [116]. This is notably the case when
handling millions of short reads, a scenario which is typical of the output generated by
Illumina sequencing technologies.

OLC remains a popular approach for genome assembly, particularly when dealing
with long-read technologies such as ONT and PacBio with higher error rates. In these
cases, heuristics are often employed to mitigate the all-vs-all alignment bottleneck. For
example, Hifiasm leverages minimizers to find overlaps among reads and perform read
correction, making it capable of generating highly contiguous and haplotype-resolved
assemblies of large eukaryotic genomes using PacBio HiFi reads [117].

On the other hand, dBGs have emerged as a powerful alternative to OLC for the
assembly problem. Indeed, following dBG construction (the “Representing de Bruijn
graphs” section), contigs (i.e., contiguous segments of the genome being assembled) are
extracted from the simplified paths of the compacted and cleaned dBG [96]. The num-
ber of nodes of an error-cleaned dBG saturates at higher sequencing depths but mainly
depends on the size of the sequenced genome [116]. Thus, dBGs lead to a progressive
reduction in computational time and memory required to assemble a genome [96, 100],
bringing the time complexity of genome assembly down to O(|G|) where |G| is the
genome size. This makes dBGs more suitable to assemble deeply sequenced genomes,
especially when working with short-reads technologies.

Since their introduction, dBG-based assemblers performed well with bacterial and
small eukaryotic genomes but needed a substantial amount of time and memory when
handling large eukaryotic genomes [101]. For example, ABySS, one of the pioneering
dBG-based genome assemblers capable of assembling mammalian-sized genomes [118],
needed 87 h on a cluster of 21 eight-core machines, each one equipped with 16 GB of
RAM, to assemble a human genome in > 4 million contigs. Moreover, dBGs rely on
perfect k-1 overlaps between k-mers. This poses a challenge when dealing with long

Page 18 of 35Ndiaye et al. Genome Biology (2024) 25:270

error-prone reads, as it gives rise to branches in the assembly graphs [119]. Thus, while
the construction of dBGs is theoretically dependent on the genome’s size, the inevitable
inclusion of sequencing errors can inflate the graph size.

The challenges in assembling large and complex genomes pushed researchers to find
ways to optimize dBG construction by optimizing k-mer enumeration and reducing
the size of the dBG to be stored in memory [116, 120]. This approach was pioneered
by the developers of the assembly software SparseAssembler [121], which builds sparse
dBGs by storing only a subset of k-mers evenly distributed across the input reads. This
approach (conceptually similar to minimizers) allows to preserve the overall graph struc-
ture while storing only a small fraction of the nucleotides from the input data, thereby
decreasing memory usage and speeding up graph construction. Indeed, SparseAssem-
bler is reported to assemble a 370-Mbp rice plant genome in 5 h, reaching a memory
peak of 5 GB. They showed a notable reduction compared to other popular assemblers at
the time, such as AbySS, which required 13 h and 69 GB of RAM to complete the same
task with comparable assembly quality [121].

Following SparseAssembler, new tools optimized the construction of sparse dBGs by
opting for a minimizer-centric approach. This approach is particularly powerful when
combined with long error-prone sequencing reads of large genomes, where the number
of k-mers to be stored in memory becomes a serious burden on the performance of the
assembler.

The MBG tool identifies minimizers in the input sequences and stores their position
on the reads. A dBG is constructed by using the minimizers as nodes and connecting
them with edges if they are adjacent in a read [55, 56] (Fig. 5). Following graph cleaning
and compaction, the dBG is converted back to the original base pair sequence. Simi-
larly, rust-mdBG identifies minimizers from the original reads and subsequently scans
the reads to pinpoint their positions. Then, it creates a set of tuples, each containing a
specified number (k′) of adjacent minimizers. The order of these minimizers in a tuple
is determined by their relative positions on the reads. These minimizers can appear
multiple times within the same tuple or across different tuples, mirroring their occur-
rences in the original reads. In the resulting dBG, these tuples become the nodes, with
edges established between nodes if there is a k′-1 overlap between the corresponding
tuples [75]. The minimizer-space dBG construction results in a notable reduction in
graph size, given that the graph selectively retains only the bases linked with minimizers.
This focused representation provides an effective strategy for capturing crucial genomic
information while minimizing data storage. Finally, it enables streamlined graph com-
paction and cleaning processes before inferring the final contigs. This is achieved by con-
catenating the read sequences spanned by the minimizers within the minimizer-space
dBG. For example, rust-mdBG assembled the human genome in 10 min using 10 GB of
RAM with 8 threads using high-fidelity (HiFi) long reads.

At the time of its introduction, the La Jolla Assembler (LJA) was shown to achieve the
more contiguous assembly of the human genome using HiFi reads, generating fivefold
fewer misassemblies (i.e., incorrectly assembled sequences) than other software such
as hifiasm and hiCanu [57]. LJA’s approach involves extracting minimizers from input
reads, including the k-mer suffixes and prefixes of each read in the minimizer set to
ensure that overlapping reads share a minimizer. Subsequently, a dBG is constructed in

Page 19 of 35Ndiaye et al. Genome Biology (2024) 25:270

Fi
g.

 5
 I

m
pl

em
en

ta
tio

n
of

 m
in

im
iz

er
s

in
 th

e
co

ns
tr

uc
tio

n
an

d
co

m
pa

ct
io

n
of

 d
e

Br
ui

jn
 g

ra
ph

s
(d

BG
s)

. T
ra

di
tio

na
lly

, a
 d

BG
 is

 a
 d

ire
ct

ed
 g

ra
ph

 w
he

re
 th

e
ed

ge
s

ar
e

re
pr

es
en

te
d

by
 a

ll
di

st
in

ct
 k

‑m
er

s
ex

tr
ac

te
d

fro
m

 th
e

in
pu

t r
ea

ds
. N

od
es

 w
ith

in
 th

is
 g

ra
ph

 c
or

re
sp

on
d

to
 th

e
k-

1
su

ffi
xe

s
an

d
pr

efi
xe

s
of

 th
e

k‑
m

er
s

w
hi

ch
 a

re
 c

on
ne

ct
ed

 b
y

ed
ge

s
if

th
ey

 a
re

 in
 a

 k
‑m

er
. T

o
op

tim
iz

e
dB

G
 c

on
st

ru
ct

io
n,

M

BG
 a

nd
 n

tJ
oi

n
em

pl
oy

 m
in

im
iz

er
s

as
 n

od
es

, c
on

ne
ct

in
g

ad
ja

ce
nt

 m
in

im
iz

er
s

w
ith

 e
dg

es
. S

im
ila

rly
, L

JA
 in

co
rp

or
at

es
 “s

pl
its

” a
s

ed
ge

s
re

pr
es

en
tin

g
su

bs
tr

in
gs

 b
et

w
ee

n
pa

irs
 o

f c
on

se
cu

tiv
e

m
in

im
iz

er
s

in
 th

e
in

pu
t r

ea
ds

. r
us

t-
m

dB
G

 u
til

iz
es

 tu
pl

es
 o

f k
′ m

in
im

iz
er

s
as

 n
od

es
 (k
′ =

 3
 in

 th
is

 e
xa

m
pl

e)
, c

on
ne

ct
in

g
no

de
s

w
ith

 o
ve

rla
ps

 o
f k
′-1

. F
ol

lo
w

in
g

gr
ap

h
co

ns
tr

uc
tio

n,
 c

om
pa

ct
io

n
is

 c
ru

ci
al

fo

r r
ed

uc
in

g
dB

G
 s

iz
e

fo
r e

ffi
ci

en
t m

em
or

y
st

or
ag

e.
 B

CA
LM

2
an

d
Bi

fro
st

 le
ve

ra
ge

 m
in

im
iz

er
s

to
 p

ar
al

le
liz

e
gr

ap
h

co
m

pa
ct

io
n.

 B
CA

LM
2

ca
te

go
riz

es
 k

‑m
er

s
in

to
 d

is
k‑

bu
ck

et
s

ba
se

d
on

 s
uffi

x
an

d
pr

efi
x

m
in

im
iz

er
s,

w
hi

le
 B

ifr
os

t a
dd

s
k‑

m
er

s
to

 a
 b

lo
ck

ed
 b

lo
om

 fi
lte

r a
cc

or
di

ng
 to

 th
e

ha
sh

 v
al

ue
 o

f t
he

ir
m

in
im

iz
er

. T
he

se
 d

at
a

st
ru

ct
ur

es
 e

na
bl

e
th

e
pa

ra
lle

l i
nf

er
en

ce
 o

f m
ax

im
al

 u
ni

tig
s,

en
ha

nc
in

g
th

e
ov

er
al

l e
ffi

ci
en

cy
 o

f t
he

 c
om

pa
ct

io
n

pr
oc

es
s

Page 20 of 35Ndiaye et al. Genome Biology (2024) 25:270

the minimizer space by defining “splits,” which are substrings between pairs of consecu-
tive minimizers in the reads. These splits serve as edges connecting minimizers (nodes).
Following dBG construction, LJA generates sequences known as “disjointing” via a
random walk through the graph. Although disjointing may not directly correspond to
sequences in the original genome, they efficiently preserve all the k-mers from the origi-
nal read set in a reduced number of sequences. This feature allows them to be manipu-
lated to construct a more time- and memory-efficient cdBG from k-mers extracted from
the disjointigs [57].

Finally, minimizers can also be combined with multiple data types to improve genome
assembly efficiency and accuracy [122]. The assembler ntJoin builds an ordered mini-
mizer sketch from both a de novo assembled genome and a reference genome [58]. This
sketch forms the basis of an undirected graph where minimizers serve as nodes, and
edges connect minimizers that are adjacent in at least one of the sketches. The user can
assign weights to the edges, prioritizing either the de novo assembled genome or the ref-
erence genome. Following a pruning process that removes edges with low support, the
sequences of minimizers along linear paths are translated into ordered oriented contigs.
This approach’s strength lies in its ability to address misassembly and facilitate efficient
scaffolding to a reference in an alignment-free manner.

The Wengan assembler employs minimizers to execute hybrid assemblies, combin-
ing short, paired-end Illumina reads with long PacBio and/or ONT reads [59]. Ini-
tially, Wengan constructs a cdBG from short reads, with the option for users to choose
BCALM2 for graph compaction. The presence of repeat sequences introduces branches
in the dBG, potentially leading to chimeric contigs. To mitigate this, an alignment-free
approach, inspired by minimap2 (see the “Read alignment” section) [40], maps short
paired-end reads to the resultant contigs. Junctions between chimeric regions exhibit
lower coverage, enabling the detection and subsequent trimming or splitting of chimeric
contigs into shorter, non-chimeric counterparts. In the next phase, Wengan capitalizes
on long reads to generate synthetic paired reads, tailoring them with varying insert sizes
(e.g., 0.5 kb to 200 kb with ultralong ONT reads) to span repetitive regions. These syn-
thetic reads are then mapped to short-read contigs using the minimizer-based approach.
Given their diverse insert sizes, some reads span multiple contigs, proving especially
beneficial when spanning contigs containing repeats. The mapping information is
instrumental in constructing a synthetic scaffolding graph, illustrating potential orienta-
tion and distances between contigs based on the mapping of synthetic reads. This graph
is streamlined using information from long reads and the mapping locations of their cor-
responding synthetic reads to establish accurate paths, facilitating the construction and
validation of the assembly backbone. Finally, contigs not encompassed in the backbone,
likely associated with repeats or short sequences, are inserted by aligning minimizers in
the backbone with those at the edges of the excluded contigs. This strategic employment
of minimizers enables Wengan to achieve superior contiguity in assembling the human
genome, surpassing the benchmark set by the GRCh38 reference genome.

In conclusion, the challenges of de novo genome assembly, particularly for large and
complex genomes, have driven the introduction of minimizers in several steps of genome
assembly. The minimizer-centric approach, exemplified by tools like MBG, rust-mdBG
and LJA, has proven instrumental in reducing computational burden and enhancing

Page 21 of 35Ndiaye et al. Genome Biology (2024) 25:270

efficiency of graph construction, significantly reducing memory requirements. Addi-
tionally, combining minimizers with diverse data types, as seen in ntJoin and Wengan,
enhances assembly accuracy and efficiency. Overall, the adoption of minimizers repre-
sents a pivotal advancement in de novo genome assembly, addressing challenges associ-
ated with large genomes, computational complexity, and sequencing errors.

Pangenomes

Introduction

Traditional reference genomes, which consist of linear sequences representing a single
copy of each chromosome in an individual, fail to capture the genetic diversity within
populations [60, 85]. This incomplete representation introduces bias in read mapping
and downstream analyses, in particular “reference bias,” which is when read aligners
penalize differences between the reads and the reference (i.e., genetic variations), result-
ing in fewer mapped reads or lower reported mapping quality [123]. Such biases impede
discoveries on genotype–phenotype associations and gene function [124]. Pangenomes,
encompassing the entire genomic diversity within a species or group of related species,
offer a solution. Mapping sequences, particularly short reads, against a pangenome has
been shown to reduce bias compared to more traditional methods (the “Read alignment”
section) that map to the classic reference genome [61].

The concept of pangenomes, initially applied to bacterial genomes, has expanded to
eukaryotic genomes, focusing on structural variants and haplotypes across individu-
als and populations. Pangenome representations range from collections of core genes
and accessory genes in prokaryotes [125–127], to complex graphs of whole genomes
or regions of interest capturing genetic variation in eukaryotes [60]. See review articles
[128] for a history of pangenomes, [129, 130] for pangenome data structures, [131, 132]
for pangenome construction, and [62, 133, 134] for their applications.

Various solutions have been proposed to store, analyze, and represent pangenomes.
Originally, core and dispensable genes were identified through traditional align-
ment approaches like Smith-Waterman [135], which aligned linear representations of
genomes or gene sets (sequence strings) of the genomes of interest. This approach dis-
tinguishes gene sets that align across all genomes (i.e., core genes in bacterial strains)
from those that do not (dispensable genes) [125]. Orthology calling approaches comple-
mented this by analyzing gene homology across genomes using tools like BLAST and
OrthoMCL, categorizing genes based on their presence across gene families [136, 137].
While using genes themselves as the input streamlines this process, they depend heavily
on the accuracy of the initial gene annotations [138]. However, these strategies primar-
ily suit prokaryotic genomes, rather than eukaryotic ones. Moreover, they struggle to
scale with increasing genome numbers and sizes. To address these limitations, another
strategy involves indexing and compressing aligned sequences to optimize memory use
and accelerate gene alignments, exploiting identical regions in sequence collections [139,
140]. This approach, though efficient in memory reduction, generally fails to adequately
represent longer genetic variations, such as translocations, inversions, or duplications,
due to its reliance on classical methods which assume collinearity [60, 141]. Pangenome
reference graphs (PanRG) have emerged as an efficient alternative, leveraging graph
structures to accurately represent genetic variation [132].

Page 22 of 35Ndiaye et al. Genome Biology (2024) 25:270

A basic approach to creating a pangenome graph involves constructing a compacted
de Bruijn graph (cdBG) from a set of genomes. Recall that minimizers can be used to
efficiently provide a more compact representation of such graphs (Fig. 5). However, this
approach does not store information about the origin of sequences that come from dif-
ferent samples [99, 142, 143]. Colored cdBGs (ccdBGs) were introduced to label k-mers
with sample information with a different color in the graph as is done in Bifrost or Fulgor
(the “Representing de Bruijn graphs” section) [52, 97]. However, ccdBGs do not store
the chromosomal coordinates, preventing the mapping of genomic features. VG (vari-
ation graph) is a toolkit for creating and manipulating pangenome graphs where each
node is a sequence and paths represent potential sequences of a population. Such graph
structure has been extensively leveraged by the VG team and others for DNA/RNA read
alignment, variant calling, and genotyping [144]. Scaling up pangenomes to hundreds
of human genomes remains computationally challenging and current efforts focus on
developing methods able to accurately capture genomic variants across more genomes
[131, 145].

Minimizers play a critical role in the construction and indexing of pangenome graphs,
enhancing the efficiency of genome graph algorithms. These algorithms, such as mini-
graph, the PanGenome Research Toolkit, Giraffe, and Pandora, use minimizers, which
finally results in improving their memory and time efficiency, in addition to enhancing
the accuracy of read mappings [60–63].

Eukaryotic pangenome methods that use minimizers

A well-known tool for building pangenome graphs is minigraph, which is also designed
for mapping sequences to the graph [60]. The minigraph software constructs the graph
iteratively by mapping each assembled sequence to an existing graph. Nodes in the
graph are sequences which are stored in the format of the reference graphical fragment
assembly (rGFA) benefiting from a stable coordinate system. Such coordinates allow for
referencing any sequence to the positions of an input classic linear reference genome.

To map sequences to the graph, minigraph adopts a strategy akin to minimap2 (the
“Read alignment” section). First, it identifies seed minimizers from node sequences and
the query sequence, resulting in anchors. Then, linear chains are found without con-
sidering the graph topology. Finally, the second round of chaining takes into account
whether they are connected on the graph or not. Compared to minimap2, minimizers
can be more distant from each other in minigraph’s chaining allowing for mapping chro-
mosome-long query sequences. Besides, minigraph is equipped with new heuristics for
handling large gaps by speeding up the chaining process [60, 146]. In contrast to other
graph aligners, such as GraphAligner and VG toolkit, which are limited to mapping
small variations, minigraph’s approach allows for handling larger genomic variations.
One drawback of minigraph is that it cannot call variations smaller than 50 bases. This
limitation is addressed in minigraph-cactus using a base aligner [145, 147]. Furthermore,
minigraph’s dependency on a linear reference genome for graph construction might
introduce a bias, in contrast to VG. The authors contend that reference pangenomes
should not replace classic linear genomes, but complement them, as reference pange-
nomes excel at identifying longer variants within more “problematic” regions, while lin-
ear genomes remain effective for analyzing smaller variations in more stable regions. Of

Page 23 of 35Ndiaye et al. Genome Biology (2024) 25:270

note, minigraph has been used for constructing the first human reference pangenome
[145, 147].

In contrast, there are methods that focus on smaller regions instead of whole genomes
but are able to model them in different resolutions. The pangenome research toolkit
(PGR-TK) [62] does not have a stable coordinate system but uses an index based on min-
imizers. It uses sparse hierarchical minimizer pairs as nodes of the graph. This frame-
work reduces the time and storage needed to construct the graph using new parameters
like the minimum distance between minimizer pairs to adjust the level of detail or vari-
ation size of interest. This has proven useful to study complex human genome regions of
interest like the MHC class II locus or the ampliconic genes OPN1MW and OPN1MW2
[62].

In mapping applications, the VG-MAP algorithm [85], part of the VG toolkit, faces
challenges with its time and cost efficiency due to the large number of paths it evalu-
ates in the graph, being an order of magnitude slower than typical linear mappers. Con-
versely, Giraffe [61] achieves at least one order of magnitude less time than VG-MAP
and can be even faster than linear mappers such as BWA-MEM (the “Read alignment”
section). Giraffe uses several techniques to optimize the process. First, it leverages previ-
ously observed genomic paths to constrain the alignment search space, rather than com-
binatorially expanding the possible paths in the graph. Second, it uses a BWT to index
haplotypes, split into sequences of nodes in the VG pangenome graph. Crucially, Giraffe
uses minimizers (k = 29 and w = 11) for finding matches between reads and the node
sequences, as the seed of the seed-and-extend approach. A hash table is used for index-
ing the minimizers where keys (k-mers) and values (a pointer to a sorted array of hits
as graph positions) are 64 and 128 bits, respectively. Minimizers in high-scoring clus-
ters of seeds with minimum graph distance are extended, forming gapless alignments for
most low-error short reads. When gapless alignment is not possible, gapped alignment
is performed using dynamic programming [61]. In summary, using minimizers not only
optimizes alignment efficiency but also underscores their role in advancing pangenome
mapping technologies.

Prokaryotic pangenome

While eukaryotic pangenome methods leverage minimizers for enhanced resolution and
efficiency, prokaryotic genomes present particular challenges as well. Bacteria harbor a
vast genetic diversity within a species, much of which is not captured by a single genome.
The underrepresentation of genetic diversity associated with the classic linear genome
references is especially problematic in bacteria. This disparity underscores the necessity
of the PanRG to accurately represent the full spectrum of genetic material, especially
considering that the core genes that are present in the single-reference genome are only
a small percentage of the number of individual’s genes [63].

For variant calling, most graph-based methods, adept for human pangenomes, often
require a linear reference genome and/or generate a genome-wide PanRG. However,
Pandora [63] offers a novel solution capturing the diversity of prokaryotic pangenom-
ics by introducing “local” graphs. A pandora PanRG is an unordered collection of sev-
eral local graphs, which are directed acyclic. Each local graph is created from an MSA
of a genomic region (genic or intergenic) from assemblies of different species or strains

Page 24 of 35Ndiaye et al. Genome Biology (2024) 25:270

using a recursive clustering algorithm on MSA’s rows and columns. The local graphs are
indexed using a minimizer scheme (with parameters of k and w) generalized to sequence
graphs by considering paths of sequences with length w + k − 1 as the minimizer win-
dow. When mapping reads to PanRG, Pandora decides which local graph (i.e., a genomic
region) is present in the sample. To do so, another graph is constructed where each node
is a minimizer and an edge shows adjacent minimizers on the original local graph. Pan-
dora uses a global index to map each minimizer to local graphs, which is used for com-
paring them to reads’ minimizers and finding hits. Finally, genotyped variants are found
using a maximum likelihood approach based on a Poisson model reported in a file with
variant call format where the chromosome field represents the local graph [63].

This advancement in prokaryotic genome analysis complements the progress made in
eukaryotic pangenome methods, where minimizers also play a crucial role. As genome
sequencing becomes increasingly widespread, pangenomes are likely to become the
new standard for reference genomes. Such large amounts of data need efficient stor-
age solutions and search algorithms. The implementation of minimizers has been key to
scaling up the construction of variation graphs, with successes such as assembling the
draft human pangenome [145]. The integration of minimizers across different genomic
studies exemplifies their contribution to modern genomics of less well-studied species,
which may exhibit even more genetic variation than humans.

Metagenomics

Metagenomics is the study of genomic sequences from the natural environment, often in
large quantities. The goal is to identify the microbial taxa that exist in complex biological
and environmental samples [148, 149]. This field encounters various computational chal-
lenges in identifying samples due to the complex definition of species or subspecies of
certain bacteria or viruses. The initial challenge arises from high-throughput sequencing
technologies that generate millions of reads. There are two different analyses to process
these large quantities of data: first, classifying the taxonomy and, second, assembling it
(Table 1).

Metagenomics classifiers

To classify metagenomic data, a reference database is usually needed. The amount of
previously stored sequences and how quickly the classifier can retrieve the data are
important in determining the efficiency of the classifier [148]. Expanding the reference
database can improve classification, but if the taxa are not known, or very different from
the database, it can be difficult for classifiers to identify the origin of each read of the
sequenced sample. Additionally, the larger the database, the longer the run time can take
[148].

There are several read classifiers in the field of metagenomics that use k-mers and
minimizers to maximize efficiency and precision. One of the first classifiers is called
MEGAN, a metagenome analyzer that examines a set of unknown DNA sequences and
compares them against databases of known sequences using BLAST [150]. MEGAN
finds the lowest common ancestor (LCA) of BLAST hits to assign reads to taxa. This tool
pre-dates the use of k-mers and minimizers but is an important milestone in the devel-
opment of more efficient classifiers.

Page 25 of 35Ndiaye et al. Genome Biology (2024) 25:270

Kraken exceeds the speed and accuracy of MEGAN by using exact-match database
queries of k-mers rather than the alignments of sequences [64, 151]. Kraken’s database
contains both k-mers and the LCA of all organisms whose genome contains that k-
mer. Sequences are classified by searching the database for each k-mer and then using
the LCA taxa to determine the appropriate leaf label of a species in a phylogenetic tree
with the default of k = 31. In short, to classify a sequence S, the algorithm collects all
the k-mers within that sequence denoted as K(S) and then maps each k-mer to the LCA
taxon of all the genomes that contain the specific k-mer. Then, the LCA taxa and the
ancestors build a “classification tree” which is used to classify S by assigning a weight
to each node calculated as the number of k-mers associated with it. Finally, the root to
leaf path in the classification tree is scored by the sum of all the node weights within the
path. The maximum score of the root to leaf path is then deemed the “classification path”
and the sequence S is assigned to the label corresponding to its leaf [45]. One of the con-
straints of Kraken is the memory usage. The Kraken database requires 70 GB (based on
the dataset in [65]), which can grow larger with more genomes added by the user.

Kraken2 improved upon Kraken by changing the structure from a sorted pair list of
(k-mer, LCA) indexed by minimizers to a compact hash table which is used to map mini-
mizers to LCAs [65]. Storing only minimizers of length s, (s ≤ k), instead of keeping all
the k-mers, significantly reduced the reference database to 10.6 GB based on the dataset
in [65], which is a sixfold decrease in memory usage. Kraken2 uses the standard linear-
time algorithm for computing minimizers in which s-mers are minimizers. This algo-
rithm uses a double-ended queue in which candidate s-mers are put in the back of the
queue, keeping their original position in the sequence. When a new candidate is found,
the old candidates with greater values in terms of lexicographical ordering are removed
and the new candidate is pushed to the back of the queue [27]. The computational com-
plexity of this approach of calculating new minimizer is O(1) in contrast to Θ(k) for the
first version of Kraken.

K2Mem (Kraken2 with memory) is a classifier based on Kraken2, bolstered with an
enhanced memory requirement. The classifier detects novel minimizers from the input
sequencing data and stores them to improve the classification of reads [66]. The process
has two main steps. First, all reads are processed and the new minimizers are stored in
an additional minimizer map revealing the taxa. Second, the same input reads are clas-
sified using the compact hash table while additional minimizers are found. Compared to
Kraken2, K2Mem has better total time (from start to finish), due to the new minimizer
search phase. Its classification time (time to classify a read) is similar to that of Kraken2,
but it requires slightly more memory due to the additional minimizer map.

Most classifiers work with short reads since that is often what is available with
metagenomic datasets. However, the MetaMaps algorithm was developed to analyze
long-read metagenomic datasets. It works by mapping each long read using a minimizer-
based approximate mapping strategy [67]. Since it is becoming increasingly common to
have long-read datasets due to improved technology and cost efficiency, these long-read
algorithms have vastly improved the field.

Page 26 of 35Ndiaye et al. Genome Biology (2024) 25:270

Metagenomic assemblers

The second type of software tool that we review in the field of metagenomics is metage-
nome assemblers (Table 1). While de novo genome assembly (the “De novo genome
assembly” section) typically deals with a genome of a single species, metagenomic
assemblers face two main challenges: distinguishing between repeats/orthologous
sequences and species as well as coping or accounting for different coverage levels per
species [152]. In this section, we survey MetaProb2, an algorithm that uses minimizers
for assembling the metagenomic data.

MetaProb2 is an unsupervised metagenomics binning method that uses minimizers
to assemble reads into unitigs [68]. First, reads are grouped based on their common
subsequence using minimap2 (assumed to be of the same species) and then assembled
using long-read de novo assembly algorithms, such as miniasm. The use of minimizers
is critical because it stores a fraction of the k-mers to perform all-vs-all comparisons
between sequences, which results in faster computation and lower memory usage. Based
on the information provided by the overlap detection along with the paired-end reads,
the assembler groups unitigs that are likely from the same species. Lastly, the inferred
number of species and their abundance in the sample are kept using sequence signatures
based on k-mer statistics. Overall, MetaProb2 has good performance in terms of preci-
sion and recall when comparing real and simulated datasets. Recently, metaMDBG has
been proposed [153] for metagenomics assembly from HiFi reads which works in the
minimizer space (see the “De novo genome assembly” section). Minimizers are a cru-
cial step forward in the field of metagenomic classification and assembly tools both with
computational speed and memory usage.

Minimizer alternatives
The use of minimizers has become increasingly popular in bioinformatics for efficient
sequence analysis. However, several alternative methods have been proposed to increase
the efficiency and overcome the limitations of minimizers, especially in scenarios with
highly divergent sequences with substitutions and indels where k-mer-based approaches
are prone to fail.

Universal hitting sets (UHS)

Universal hitting sets (UHS) were introduced as an alternative to minimizers with the
hope to decrease the resulting density. A UHS is a set of k-mers that is guaranteed to
have at least one hit in every L long sequence. While a complete set of all possible k-mers
serves as a UHS, the focus lies in finding the optimal UHS, the smallest set satisfying this
criterion [36].

The process of identifying the most compact UHS presents a significant chal-
lenge, classified as nondeterministic polynomial-time (NP) hard. However, certain
heuristic approaches offer partial solutions [36, 154]. The DOCKS algorithm is one
such heuristic, operating in a two-phase manner: initially, it constructs a complete
dBG and determines the minimum number of vertices required to remove to make
the dBG acyclic. Subsequently, DOCKS eliminates the smallest possible vertex set
to ensure that it covers all paths of length (L-k). Although the initial phase is poly-
nomially solvable, the latter phase is NP-hard necessitating heuristic strategies for

Page 27 of 35Ndiaye et al. Genome Biology (2024) 25:270

better resolution [36]. PASHA [154] is a method similar to DOCKS, which is identi-
cal to DOCKS in its first step but uses a randomized parallel algorithm to enhance
speed and efficiency. While UHS provides a smaller and more evenly distributed set
than a minimizer scheme, its computational demand escalates exponentially with an
increase in k, limiting DOCKS and PASHA’s practical application to k < 13 and k < 16,
respectively. Nonetheless, these methods can reduce the density by up to 30% com-
pared to random minimizers [155].

Most of the algorithms designed for constructing a UHS offer the flexibility to take
a target sequence as input. This enables the algorithms to incorporate k-mers from
this target sequence into the final UHS with a higher probability than k-mers that
are not in the target sequence. This feature is particularly beneficial for tailoring
the UHS to be more effective for sequences of interest, such as the human genome.
In the subsequent section, we will explore polar sets, a closely related concept that
addresses the challenge of creating sequence-specific sketches.

Sequence‑specific minimizers via polar sets

Unlike UHS, which ensure coverage by guaranteeing at least one hit in every L-long
sequence, polar sets are designed to guarantee dispersion. This means that each pair of
selected k-mers in a polar set is spaced at least L nucleotides apart, ensuring that each
L-long window is hit at most once [156]. Polar sets achieve a low-density sketch, approx-
imating the theoretical lower bound (1/w), and are effective even with large k values.
Finding polar sets is shown to be NP-hard, but a heuristic algorithm is proposed to iden-
tify their approximations in linear time. Similar to UHS, polar sets require a lookup table
for each k-mer in the query sequence. This is a drawback for non-random minimizers
that do not use a hash function [156].

Asymptotically optimal minimizers

Miniception introduces an innovative approach by utilizing a secondary smaller mini-
mizer to improve the efficiency of the primary, larger minimizer [32]. Specifically, the
“smaller” refers to a minimizer with a smaller window size (w0) and k-mer length (k0),
whereas the “larger” minimizer operates with a larger window size (w) and k-mer length
(k), where k = k0 + w0 and w > w0. This dual-minimizer setup has been shown to achieve
an upper bound expected density of 1.67/(w + 1), which is lower than the 2/(w + 1)
density of traditional random minimizers. Moreover, similar to the random minimizer,
Miniception operates with linear time complexity, making it more efficient than UHS or
polar sets, which are slowed down by their need for table lookups. Such k-mer precom-
putation of a lookup table during sketching is not a requirement for Miniception, allow-
ing high scalability to large values of k without the overhead of managing precomputed
k-mer sets. While having these advantages in time and memory performance, the lower
bound of the resulting sketch (1.67/(w + 1)) is higher than the theoretical lower bound
(1/w), which can be achieved using UHS or Polar Sets.

Syncmers

Minimizers are a context-dependent method, meaning that the selection of a k-mer can
be influenced by mutations in positions outside of the k-mer within the same window.

Page 28 of 35Ndiaye et al. Genome Biology (2024) 25:270

Syncmers are designed with the principle that resistance to mutation (i.e., degree of con-
servation) is more important than achieving a sketch with low density. Syncmers work
by selecting k-mers by inspecting the position of the smallest-valued substring of length
s (s-mer where s < k) within the k-mer [23]. Variations of syncmers have been proposed,
one of which is closed-syncmer; a k-mer is selected if the smallest s-mer is located at
either its first or last position, making syncmers a context-free method. Selection of a
k-mer solely depends on its own sequence, not on its flanking sequence. The authors
also present evidence that syncmers can attain higher conservation and lower density
compared to minimizers, as utilized by the minimap2 read mapper and the Kraken tax-
onomy classification algorithm [23]. It is shown theoretically that syncmers can decrease
the chaining time without significantly increasing extension time in a seed-chain-extend
heuristic of read alignment [157].

Strobemers

The syncmer scheme represents an advancement of k-mer-based methods by minimiz-
ing the impact of mutations through a context-free selection process. However, they
are, at their core, still susceptible to the intrinsic limitations of k-mer-based approaches,
where even minor mutations can alter the selection and representation of k-mers, poten-
tially affecting alignment accuracy and efficiency. In contrast, strobemers aim to address
and mitigate these limitations more effectively by employing a novel strategy that links
two or more spaced k-mers (strobes). These strobes are extracted from non-contiguous
sequences (variable intervals within the sequence), resulting in a higher level of flexibility
and robustness achieved by strobemers [158]. This approach allows for the accommoda-
tion of indels and more complex mutations without losing the ability to accurately iden-
tify and align sequences [158]. Despite the advantages of strobemers, they do require
more parameters to optimize than other techniques like minimizers.

Building on the concepts of strobemers and syncmers, Strobealign is designed as a
faster and more accurate alternative to traditional aligners (e.g., bowtie2, minimap2) for
aligning read sequences. Strobealign works by first using syncmers to create a sketch of
the sequence. These sketches are then linked to form strobemers, employing variable
size and fuzzy seeds for alignment. This innovative process reduces the number of seed
candidates, resulting in enhanced speed maintaining high accuracy [159].

In summary, alternative methods to minimizer enhance sequence sketching by lower-
ing the density and improving the resilience to mutations. Each of these methods offers a
unique approach yet, retaining similarities to minimizers. These methods present varied
trade-offs between density, speed, scalability, and complexity of parameters to choose,
making the choice of the most suitable approach dependent on the specific needs and
requirements of the analysis.

Discussion and conclusion
Minimizers are an effective approach to reduce the data complexity and volume that
needs to be dealt with by genomics methods to efficiently utilize or simply query infor-
mation. This is achieved by creating “sketches” of sequences that occupy less space
compared to the sequences themselves. We presented examples of extensions of the

Page 29 of 35Ndiaye et al. Genome Biology (2024) 25:270

minimizer scheme and applications in different data processing techniques. The versatil-
ity and effectiveness of minimizers make them a valuable tool for solving a wide range
of problems, particularly in genomics. Here, we reviewed five important applications of
minimizers including read alignment, read correction, genome assembly, pangenomics,
and metagenomics. Specifically, when it comes to de novo genome assembly, the combi-
nation of de Bruijn graphs and minimizers is a powerful approach, achieving contiguous,
high-quality assemblies of large genomes. In metagenomics, minimizers significantly
improved classification and assembly methods tackling many challenges of complex-
ity that arise with millions of short-reads and the memory space used by genomic
sequences. Nevertheless, minimizers have several other uses such as k-mer counting
[160], sequence compression [161], contamination detection and sequence classification
[162, 163], querying databases [164, 165], synteny detection [166] in addition to variant
calling, and multiple sequence alignments [167].

Limitations of minimizers, especially in reducing density to the theoretical minimum,
inspired researchers to devise alternative algorithms such as universal hitting sets (UHS),
syncmers, and strobemers. Another limitation of minimizers became evident in estimat-
ing sequence similarity which is shown to be a biased estimator [168] which is addressed
by developing “minmer,” a new scheme where several k-mers are selected per window
[169]. While these new algorithms have their own constraints, they attempt to enhance
the efficiency of minimizers in specific scenarios and to a certain extent. Another chal-
lenge is the choice of parameters including the k value and the window size, which is not
the case for full-text indexing approaches like FM-index [140] or MOVI [170]. Notably,
a variable-length minimizer scheme (called finimizers) has recently been proposed guar-
anteeing maximum minimizer frequencies [171]. Overall, minimizer-based approaches
will continue to evolve and improve as technology advances and the cost of sequencing
and memory usage decreases. Specifically, lines of research are concerned with theo-
retical error analysis and investigating how to choose the efficient minimizer ordering to
best approach the theoretical minimum density.

The minimizer and alternative approaches can be used in several new applications,
specifically for methods that are based on k-mer counting (metagenomics abundance
estimation), sequence comparison (gene clustering), and feature selection (convolutional
neural networks [172, 173] and gene regulatory network [174, 175]), in addition to pre-
processing techniques, such as partitioning sequence data for efficient parallel process-
ing and storage.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 024‑ 03414‑4.

 Additional file 1. Review history.

Acknowledgements
S.M. would like to thank the Comparative Genomics lab for helpful discussion. We also thank Omar Ahmed for his feed‑
back on the manuscript.

Peer review information
Andrew Cosgrove was the primary editor of this article at Genome Biology and managed its editorial process and peer
review in collaboration with the rest of the editorial team.

Review history
The review history is available as Additional file 1.

https://doi.org/10.1186/s13059-024-03414-4

Page 30 of 35Ndiaye et al. Genome Biology (2024) 25:270

Authors’ contributions
SM conceived and supervised the project. MN, SP, LF, and AY drafted the manuscript. All authors contributed to the
review. All authors read and approved the final manuscript.

Funding
Open access funding provided by University of Lausanne This work was partly supported by the Swiss National Science
Foundation [205085].

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
FJS received support from PacBio, ONT, and Illumina. CD has been providing consulting services for Pacific Biosciences,
Inc. All other authors declare that they have no competing interests.

Received: 15 September 2023 Accepted: 1 October 2024

References
 1. Monaco A, Pantaleo E, Amoroso N, Lacalamita A, Lo Giudice C, Fonzino A, et al. A primer on machine learning

techniques for genomic applications. Comput Struct Biotechnol J. 2021;19:4345–59.
 2. Harrison PW, Ahamed A, Aslam R, Alako BTF, Burgin J, Buso N, et al. The european nucleotide archive in 2020.

Nucleic Acids Res. 2021;49:D82–5.
 3. Marchet C, Boucher C, Puglisi SJ, Medvedev P, Salson M, Chikhi R. Data structures based on k‑mers for querying

large collections of sequencing data sets. Genome Research. 2021;31:1–12. https:// doi. org/ 10. 1101/ gr. 260604. 119.
 4. Lewin HA, Richards S, Lieberman Aiden E, Allende ML, Archibald JM, Bálint M, et al. The Earth BioGenome Project

2020: starting the clock. Proc Natl Acad Sci U S A. 2022;119. https:// doi. org/ 10. 1073/ pnas. 21156 35118.
 5. Sunagawa S, Acinas SG, Bork P, Bowler C, Tara Oceans Coordinators, Eveillard D, et al. Tara Oceans: towards global

ocean ecosystems biology. Nat Rev Microbiol. 2020;18:428–45.
 6. Das A, Schatz MC. Sketching and sampling approaches for fast and accurate long read classification. BMC Bioinfor‑

matics. 2022;23:452.
 7. Halldorsson BV, Eggertsson HP, Moore KHS, Hauswedell H, Eiriksson O, Ulfarsson MO, et al. The sequences of

150,119 genomes in the UK Biobank. Nature. 2022;607:732–40.
 8. All of Us Research Program Investigators, Denny JC, Rutter JL, Goldstein DB, Philippakis A, Smoller JW, et al. The “All

of Us” research program. N Engl J Med. 2019;381:668–76.
 9. Mahmoud M, Huang Y, Garimella K, Audano PA, Wan W, Prasad N, et al. Utility of long‑read sequencing for All of Us.

Nat Commun. 2024. https:// doi. org/ 10. 1038/ s41467‑ 024‑ 44804‑3.
 10. Hameed A, Poznanski P, Nadolska‑Orczyk A, Orczyk W. Graph pangenomes track genetic variants for crop

improvement. Int J Mol Sci. 2022;23. https:// doi. org/ 10. 3390/ ijms2 32113 420.
 11. Hübner S, Günther T, Flavell A, Fridman E, Graner A, Korol A, et al. Islands and streams: clusters and gene flow in

wild barley populations from the Levant. Mol Ecol. 2012;21:1115–29.
 12. Kolodny R, Petrey D, Honig B. Protein structure comparison: implications for the nature of “fold space”, and struc‑

ture and function prediction. Curr Opin Struct Biol. 2006: 393–398. https:// doi. org/ 10. 1016/j. sbi. 2006. 04. 007.
 13. Majidian S, Nevers Y, Kharrazi AY, Vesztrocy AW, Pascarelli S, Moi D, et al. Orthology inference at scale with FastOMA.

bioRxiv. 2024. p. 2024.01.29.577392. https:// doi. org/ 10. 1101/ 2024. 01. 29. 577392.
 14. Miller JR, Koren S, Sutton G. Assembly algorithms for next‑generation sequencing data. Genomics. 2010;95:315–

27. https:// doi. org/ 10. 1016/j. ygeno. 2010. 03. 001.
 15. Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. A bioinformatician’s guide to metagenomics. Micro‑

biol Mol Biol Rev. 2008;72:557–78 Table of Contents.
 16. Zielezinski A, Vinga S, Almeida J, Karlowski WM. Alignment‑free sequence comparison: benefits, applications, and

tools. Genome Biol. 2017;18:186.
 17. Gusfield D. Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge

University Press; 1997.
 18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
 19. Buchfink B, Reuter K, Drost H‑G. Sensitive protein alignments at tree‑of‑life scale using DIAMOND. Nat Methods.

2021;18:366–8.
 20. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data

sets. Nat Biotechnol. 2017;35:1026–8.
 21. Zielezinski A, Girgis HZ, Bernard G, Leimeister C‑A, Tang K, Dencker T, et al. Benchmarking of alignment‑free

sequence comparison methods. Genome Biol. 2019;20:144.

https://doi.org/10.1101/gr.260604.119
https://doi.org/10.1073/pnas.2115635118
https://doi.org/10.1038/s41467-024-44804-3
https://doi.org/10.3390/ijms232113420
https://doi.org/10.1016/j.sbi.2006.04.007
https://doi.org/10.1101/2024.01.29.577392
https://doi.org/10.1016/j.ygeno.2010.03.001

Page 31 of 35Ndiaye et al. Genome Biology (2024) 25:270

 22. Marçais G, Solomon B, Patro R, Kingsford C. Sketching and sublinear data structures in genomics. Ann Rev Biomed
Data Sci. 2019. https:// doi. org/ 10. 1146/ annur ev‑ bioda tasci‑ 072018‑ 021156. Cited 2 Feb 2023.

 23. Edgar R. Syncmers are more sensitive than minimizers for selecting conserved k‑mers in biological sequences.
PeerJ. 2021;9: e10805.

 24. Chikhi R, Holub J, Medvedev P. Data structures to represent a set of k‑long DNA sequences. ACM Comput Surv.
2021;54:1–22.

 25. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage requirements for biological sequence com‑
parison. Bioinformatics. 2004;20:3363–9.

 26. Sarkar BK, Sharma AR, Bhattacharya M, Sharma G, Lee S‑S, Chakraborty C. Determination of k‑mer density in a
DNA sequence and subsequent cluster formation algorithm based on the application of electronic filter. Sci Rep.
2021;11:13701.

 27. Schleimer S, Wilkerson DS, Aiken A. Winnowing: local algorithms for document fingerprinting. In: Proceedings of
the 2003 ACM SIGMOD international conference on management of data. New York: Association for Computing
Machinery; 2003. p. 76–85.

 28. Marçais G, Pellow D, Bork D, Orenstein Y, Shamir R, Kingsford C. Improving the performance of minimizers and win‑
nowing schemes. Bioinformatics. 2017;33:i110–7.

 29. Rowe WPM. When the levee breaks: a practical guide to sketching algorithms for processing the flood of genomic
data. Genome Biol. 2019;20:199.

 30. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome
distance estimation using MinHash. Genome Biol. 2016;17:132.

 31. Koerkamp RG, Pibiri GE. The mod‑minimizer: A Simple and Efficient Sampling Algorithm for Long k‑mers. In 24th Interna‑
tional Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs),
Volume 312, pp. 11:1‑11:23, Schloss Dagstuhl – Leibniz‑Zentrum für Informatik (2024) https:// doi. org/ 10. 4230/ LIPIcs.
WABI. 2024. 11.

 32. Zheng H, Kingsford C, Marçais G. Improved design and analysis of practical minimizers. Bioinformatics.
2020;36:i119–27.

 33. Karami M, Soltani Mohammadi A, Martin M, Ekim B, Shen W, Guo L, et al. Designing efficient randstrobes for
sequence similarity analyses. Bioinformatics. 2024;40:40. https:// doi. org/ 10. 1093/ bioin forma tics/ btae1 87.

 34. Marçais G, DeBlasio D, Kingsford C. Asymptotically optimal minimizers schemes. Bioinformatics. 2018;34:i13–22.
 35. Pellow D, Pu L, Ekim B, Kotlar L, Berger B, Shamir R, et al. Efficient minimizer orders for large values of k using mini‑

mum decycling sets. Genome Res. 2023;33:1154–61.
 36. Orenstein Y, Pellow D, Marçais G, Shamir R, Kingsford C. Compact universal k‑mer hitting sets. Algorithms in Bioin‑

formatics. Switzerland: Springer International Publishing; 2016. pp. 257–68.
 37. Pan C, Reinert K. A simple refined DNA minimizer operator enables twofold faster computation. Bioinformatics.

2024. https:// doi. org/ 10. 1093/ bioin forma tics/ btae0 45.
 38. Hoang M, Marçais G, Kingsford C. Density and conservation optimization of the generalized masked‑minimizer

sketching scheme. J Comput Biol. 2023. https:// doi. org/ 10. 1089/ cmb. 2023. 0212.
 39. Zheng H, Marçais G, Kingsford C. Creating and using minimizer sketches in computational genomics. J Comput

Biol. 2023;30:1251–76.
 40. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
 41. Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics. 2021;37:4572–4.
 42. Rautiainen M, Marschall T. GraphAligner: rapid and versatile sequence‑to‑graph alignment. Genome Biol.

2020;21:253.
 43. Ren J, Chaisson MJP. lra: A long read aligner for sequences and contigs. PLoS Comput Biol. 2021;17: e1009078.
 44. Zhang H, Song L, Wang X, Cheng H, Wang C, Meyer CA, et al. Fast alignment and preprocessing of chromatin

profiles with Chromap. Nat Commun. 2021;12:6566.
 45. Jain C, Rhie A, Zhang H, Chu C, Walenz BP, Koren S, et al. Weighted minimizer sampling improves long read map‑

ping. Bioinformatics. 2020;36:i111–8.
 46. Jain C, Rhie A, Hansen NF, Koren S, Phillippy AM. Long‑read mapping to repetitive reference sequences using Win‑

nowmap2. Nat Methods. 2022;19:705–10.
 47. LaPierre N, Egan R, Wang W, Wang Z. De novo nanopore read quality improvement using deep learning. BMC

Bioinformatics. 2019;20:552.
 48. Luo X, Kang X, Schönhuth A. VeChat: correcting errors in long reads using variation graphs. Nat Commun.

2022;13:6657.
 49. Sahlin K, Medvedev P. Error correction enables use of Oxford Nanopore technology for reference‑free transcrip‑

tome analysis. Nat Commun. 2021;12(2):2021.
 50. Liu Y, Zhang X, Zou Q, Zeng X. Minirmd: accurate and fast duplicate removal tool for short reads via multiple

minimizers. Bioinformatics. 2021:37(11):1604–6. https:// doi. org/ 10. 1093/ bioin forma tics/ btaa9 15.
 51. Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs from sequencing data quickly and in low

memory. Bioinformatics. 2016;32:i201–8.
 52. Holley G, Melsted P. Bifrost: highly parallel construction and indexing of colored and compacted de Bruijn graphs.

Genome Biol. 2020. https:// doi. org/ 10. 1186/ s13059‑ 020‑ 02135‑8.
 53. Cracco A, Tomescu AI. Extremely fast construction and querying of compacted and colored de Bruijn graphs with

GGCAT. Genome Res. 2023;33:1198–207.
 54. Fan J, Khan J, Singh NP, Pibiri GE, Patro R. Fulgor: a fast and compact k‑mer index for large‑scale matching and

color queries. Algorithms Mol Biol. 2024;19:3.
 55. Ekim B, Berger B, Chikhi R. Minimizer‑space de Bruijn graphs: whole‑genome assembly of long reads in minutes

on a personal computer. Cell Syst. 2021;12:958‑968.e6.
 56. Rautiainen M, Marschall T. MBG: minimizer‑based Sparse de Bruijn graph construction. Bioinformatics.

2021;37:2476–8.

https://doi.org/10.1146/annurev-biodatasci-072018-021156
https://doi.org/10.4230/LIPIcs.WABI.2024.11
https://doi.org/10.4230/LIPIcs.WABI.2024.11
https://doi.org/10.1093/bioinformatics/btae187
https://doi.org/10.1093/bioinformatics/btae045
https://doi.org/10.1089/cmb.2023.0212
https://doi.org/10.1093/bioinformatics/btaa915
https://doi.org/10.1186/s13059-020-02135-8

Page 32 of 35Ndiaye et al. Genome Biology (2024) 25:270

 57. Bankevich A, Bzikadze AV, Kolmogorov M, Antipov D, Pevzner PA. Multiplex de Bruijn graphs enable genome
assembly from long, high‑fidelity reads. Nat Biotechnol. 2022;40:1075–81.

 58. Coombe L, Nikolić V, Chu J, Birol I, Warren RL. ntJoin: FAST and lightweight assembly‑guided scaffolding using
minimizer graphs. Bioinformatics. 2020;36:3885–7.

 59. Di Genova A, Buena‑Atienza E, Ossowski S, Sagot M‑F. Efficient hybrid de novo assembly of human genomes with
WENGAN. Nat Biotechnol. 2021;39:422–30.

 60. Li H, Feng X, Chu C. The design and construction of reference pangenome graphs with minigraph. Genome Biol.
2020;21:265.

 61. Sirén J, Monlong J, Chang X, Novak AM, Eizenga JM, Markello C, et al. Pangenomics enables genotyping of known
structural variants in 5202 diverse genomes. Science. 2021;374: abg8871.

 62. Chin C‑S, Behera S, Khalak A, Sedlazeck FJ, Sudmant PH, Wagner J, et al. Multiscale analysis of pangenomes
enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods.
2023;20:1213–21.

 63. Colquhoun RM, Hall MB, Lima L, Roberts LW, Malone KM, Hunt M, et al. Pandora: nucleotide‑resolution bacterial
pan‑genomics with reference graphs. Genome Biol. 2021;22:267.

 64. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome
Biol. 2014;15: R46.

 65. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.
 66. Storato D, Comin M. K2Mem: discovering discriminative K‑mers from sequencing data for metagenomic reads

classification. IEEE/ACM Trans Comput Biol Bioinform. 2022;19:220–9.
 67. Dilthey AT, Jain C, Koren S, Phillippy AM. Strain‑level metagenomic assignment and compositional estimation for

long reads with MetaMaps. Nat Commun. 2019;10:3066.
 68. Andreace F, Pizzi C, Comin M. MetaProb 2: metagenomic reads binning based on assembly using minimizers and

k‑mers statistics. J Comput Biol. 2021;28:1052–62.
 69. Alser M, Rotman J, Deshpande D, Taraszka K, Shi H, Baykal PI, et al. Technology dictates algorithms: recent develop‑

ments in read alignment. Genome Biol. 2021;22:249.
 70. Olson ND, Wagner J, Dwarshuis N, Miga KH, Sedlazeck FJ, Salit M, et al. Variant calling and benchmarking in an era

of complete human genome sequences. Nat Rev Genet. 2023;24:464–83.
 71. Li H, Durbin R. Fast and accurate short read alignment with Burrows‑Wheeler transform. Bioinformatics.

2009;25:1754–60.
 72. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory‑efficient alignment of short DNA sequences to

the human genome. Genome Biol. 2009;10: R25.
 73. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive

refinement (BLASR): application and theory. BMC Bioinformatics. 2012;13: 238.
 74. Li H, Durbin R. Fast and accurate long‑read alignment with Burrows‑Wheeler transform. Bioinformatics.

2010;26:589–95.
 75. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA‑seq aligner. Bioin‑

formatics. 2013;29:15–21.
 76. Sahlin K, Baudeau T, Cazaux B, Marchet C. A survey of mapping algorithms in the long‑reads era. Genome Biol.

2023;24:133.
 77. Langmead B, Salzberg SL. Fast gapped‑read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
 78. Ekim B, Sahlin K, Medvedev P, Berger B, Chikhi R. Efficient mapping of accurate long reads in minimizer space with

mapquik. Genome Res. 2023;33(7):1188–97. https:// doi. org/ 10. 1101/ gr. 277679. 123.
 79. Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985;227:1435–41.
 80. Li H, Homer N. A survey of sequence alignment algorithms for next‑generation sequencing. Brief Bioinform.

2010;11:473–83.
 81. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics.

2016;32:2103–10.
 82. Majidian S, Agustinho DP, Chin C‑S, Sedlazeck FJ, Mahmoud M. Genomic variant benchmark: if you cannot meas‑

ure it, you cannot improve it. Genome Biol. 2023;24:221.
 83. Jain C, Dilthey A, Koren S, Aluru S, Phillippy AM. A fast approximate algorithm for mapping long reads to large

reference databases. Journal of Computational Biology. 2018;25:766–79. https:// doi. org/ 10. 1089/ cmb. 2018. 0036.
 84. Jain C, Koren S, Dilthey A, Phillippy AM, Aluru S. A fast adaptive algorithm for computing whole‑genome homol‑

ogy maps. Bioinformatics. 2018;34:i748–56.
 85. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, et al. Variation graph toolkit improves read map‑

ping by representing genetic variation in the reference. Nat Biotechnol. 2018;36:875–9.
 86. Liu X, Mei W, Soltis PS, Soltis DE, Barbazuk WB. Detecting alternatively spliced transcript isoforms from single‑

molecule long‑read sequences without a reference genome. Mol Ecol Resour. 2017;17:1243–56.
 87. Kingsford C, Schatz MC, Pop M. Assembly complexity of prokaryotic genomes using short reads. BMC Bioinformat‑

ics. 2010;11: 21.
 88. Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, et al. Widespread polycistronic transcripts in fungi

revealed by single‑molecule mRNA sequencing. PLoS One. 2015;10: e0132628.
 89. Goodwin S, Gurtowski J, Ethe‑Sayers S, Deshpande P, Schatz MC, McCombie WR. Oxford Nanopore sequencing,

hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res. 2015;25:1750–6.
 90. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, et al. Hybrid error correction and de novo

assembly of single‑molecule sequencing reads. Nat Biotechnol. 2012;30:693–700.
 91. Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics. 2015;13:278–89.
 92. Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K, et al. Assessing the performance of the Oxford

Nanopore Technologies MinION. Biomol Detect Quantif. 2015;3:1–8.
 93. Myers G. Efficient local alignment discovery amongst noisy long reads. In: Algorithms in bioinformatics. Germany:

Springer Berlin Heidelberg; 2014. p. 52–67.

https://doi.org/10.1101/gr.277679.123
https://doi.org/10.1089/cmb.2018.0036

Page 33 of 35Ndiaye et al. Genome Biology (2024) 25:270

 94. Khan J, Kokot M, Deorowicz S, Patro R. Scalable, ultra‑fast, and low‑memory construction of compacted de Bruijn
graphs with Cuttlefish 2. Genome Biol. 2022;23:190.

 95. Idury RM, Waterman MS. A New Algorithm for DNA sequence assembly. Journal of Computational Biology.
1995;2:291–306. https:// doi. org/ 10. 1089/ cmb. 1995.2. 291.

 96. Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome assembly. Nat Biotechnol.
2011;29:987–91.

 97. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using colored de
Bruijn graphs. Nat Genet. 2012;44:226–32.

 98. Pibiri GE, Fan J, Patro R. Meta‑colored compacted de Bruijn graphs. Research in Computational Molecular Biology.
Switzerland: Springer Nature; 2024. p. 131–46.

 99. Minkin I, Pham S, Medvedev P. TwoPaCo: an efficient algorithm to build the compacted de Bruijn graph from
many complete genomes. Bioinformatics. 2017;33:4024–32.

 100. Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. On the representation of de Bruijn graphs. In Research in
Computational Molecular Biology: 18th Annual International Conference, RECOMB 2014, Pittsburgh, PA, USA, April 2-5,
2014, Proceedings 18 (pp. 35‑55). Springer International Publishing.

 101. Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second‑generation sequencing. Genome
Res. 2010;20:1165–73.

 102. Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, et al. Assembling the 20 Gb white spruce (Picea
glauca) genome from whole‑genome shotgun sequencing data. Bioinformatics. 2013;29:1492–7.

 103. Zimin AV, Stevens KA, Crepeau MW, Puiu D, Wegrzyn JL, Yorke JA, et al. An improved assembly of the loblolly pine
mega‑genome using long‑read single‑molecule sequencing. Gigascience. 2017;6:1–4.

 104. Pibiri GE. Sparse and skew hashing of K‑mers. Bioinformatics. 2022;38:i185–94.
 105. Pibiri GE. On weighted k‑mer dictionaries. Algorithms Mol Biol. 2023;18:3.
 106. Marchet C, Kerbiriou M, Limasset A. BLight: efficient exact associative structure for k‑mers. Bioinformatics.

2021;37:2858–65.
 107. Fan J, Khan J, Pibiri GE, Patro R. Spectrum preserving tilings enable sparse and modular reference indexing. In:

Research in computational molecular biology. Springer Nature Switzerland; 2023. p. 21–40.
 108. Martayan I, Cazaux B, Limasset A, Marchet C. Conway–Bromage–Lyndon (CBL): an exact, dynamic representation

of k‑mer sets. Bioinformatics. 2024;40(Supplement_1):i48–57.
 109. Sohn J‑I, Nam J‑W. The present and future of de novo whole‑genome assembly. Brief Bioinform. 2018;19:23–40.
 110. Logsdon GA, Vollger MR, Eichler EE. Long‑read human genome sequencing and its applications. Nat Rev Genet.

2020;21:597–614.
 111. Cheng H, Jarvis ED, Fedrigo O, Koepfli K‑P, Urban L, Gemmell NJ, et al. Haplotype‑resolved assembly of diploid

genomes without parental data. Nat Biotechnol. 2022;40:1332–5.
 112. Majidian S, Kahaei MH, de Ridder D. Hap10: reconstructing accurate and long polyploid haplotypes using linked

reads. BMC Bioinformatics. 2020;21:253.
 113. Cheng H, Asri M, Lucas J, Koren S, Li H. Scalable telomere‑to‑telomere assembly for diploid and polyploid

genomes with double graph. Nat Methods. 2024;21:967–70.
 114. Staden R. A mew computer method for the storage and manipulation of DNA gel reading data. Nucleic Acids Res.

1980;8:3673–94.
 115. Kececioglu JD, Myers EW. Combinatorial algorithms for DNA sequence assembly. Algorithmica. 1995;13:7–51.
 116. Li Z, Chen Y, Mu D, Yuan J, Shi Y, Zhang H, et al. Comparison of the two major classes of assembly algorithms:

overlap–layout–consensus and de‑bruijn‑graph. Brief Funct Genomics. 2011;11:25–37.
 117. Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype‑resolved de novo assembly using phased assembly

graphs with hifiasm. Nat Methods. 2021;18:170–5.
 118. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: a parallel assembler for short read sequence

data. Genome Res. 2009;19:1117–23.
 119. Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, Pevzner PA. Assembly of long error‑prone reads using de Bruijn

graphs. Proc Natl Acad Sci U S A. 2016;113:E8396–405.
 120. Alkan C, Sajjadian S, Eichler EE. Limitations of next‑generation genome sequence assembly. Nat Methods.

2010;8:61–5.
 121. Ye C, Ma ZS, Cannon CH, Pop M, Yu DW. Exploiting sparseness in de novo genome assembly. BMC Bioinformatics.

2012;13(Suppl 6):S1.
 122. Chin CS, Khalak A. Human genome assembly in 100 minutes. bioRxiv. 2019. p. 705616. https:// doi. org/ 10. 1101/

705616.
 123. Pritt J, Chen N‑C, Langmead B. FORGe: prioritizing variants for graph genomes. Genome Biol. 2018;19:220.
 124. Wulfridge P, Langmead B, Feinberg AP, Hansen KD. Analyzing whole genome bisulfite sequencing data from

highly divergent genotypes. Nucleic Acids Res. 2019;47: e117.
 125. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple patho‑

genic isolates of Streptococcus agalactiae: implications for the microbial “pan‑genome.” Proc Natl Acad Sci U S A.
2005;102:13950–5.

 126. Collins RE, Higgs PG. Testing the infinitely many genes model for the evolution of the bacterial core genome and
pangenome. Mol Biol Evol. 2012;29:3413–25.

 127. Shapiro BJ. The population genetics of pangenomes. Nat Microbiol. 2017;2:1574.
 128. Computational Pan‑Genomics Consortium. Computational pan‑genomics: status, promises and challenges. Brief

Bioinform. 2018;19:118–35.
 129. Paten B, Novak AM, Eizenga JM, Garrison E. Genome graphs and the evolution of genome inference. Genome Res.

2017;27:665–76.
 130. Baaijens JA, Bonizzoni P, Boucher C, Della Vedova G, Pirola Y, Rizzi R, et al. Computational graph pangenomics: a

tutorial on data structures and their applications. Nat Comput. 2022;21:81–108.

https://doi.org/10.1089/cmb.1995.2.291
https://doi.org/10.1101/705616
https://doi.org/10.1101/705616

Page 34 of 35Ndiaye et al. Genome Biology (2024) 25:270

 131. Andreace F, Lechat P, Dufresne Y, Chikhi R. Comparing methods for constructing and representing human pange‑
nome graphs. Genome Biol. 2023;24:274.

 132. Eizenga JM, Novak AM, Sibbesen JA, Heumos S, Ghaffaari A, Hickey G, et al. Pangenome graphs. Annu Rev Genom‑
ics Hum Genet. 2020;21:139–62.

 133. Sherman RM, Salzberg SL. Pan‑genomics in the human genome era. Nat Rev Genet. 2020;21:243–54.
 134. Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. Plant pan‑genomes are the new reference. Nat Plants.

2020;6:914–20.
 135. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147:195–7.
 136. Contreras‑Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial

pangenome analysis. Appl Environ Microbiol. 2013;79:7696–701.
 137. Vernikos G, Medini D, Riley DR, Tettelin H. Ten years of pan‑genome analyses. Curr Opin Microbiol. 2015;23:148–54.
 138. Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, et al. Structure and dynamics of the pan‑genome

of Streptococcus pneumoniae and closely related species. Genome Biol. 2010;11: R107.
 139. Mäkinen V, Navarro G, Sirén J, Välimäki N. Storage and retrieval of highly repetitive sequence collections. J Comput

Biol. 2010;17:281–308.
 140. Na JC, Kim H, Park H, Lecroq T, Léonard M, Mouchard L, et al. FM‑index of alignment: a compressed index for

similar strings. Theor Comput Sci. 2016;638:159–70.
 141. Liu B, Guo H, Brudno M, Wang Y. deBGA: read alignment with de Bruijn graph‑based seed and extension. Bioinfor‑

matics. 2016;32:3224–32.
 142. Beller T, Ohlebusch E. Erratum to: A representation of a compressed de Bruijn graph for pan‑genome analysis that

enables search. Algorithms Mol Biol. 2016;11:28.
 143. Marcus S, Lee H, Schatz MC. SplitMEM: a graphical algorithm for pan‑genome analysis with suffix skips. Bioinfor‑

matics. 2014;30:3476–83.
 144. Hickey G, Heller D, Monlong J, Sibbesen JA, Sirén J, Eizenga J, et al. Genotyping structural variants in pangenome

graphs using the vg toolkit. Genome Biol. 2020;21:35.
 145. Liao W‑W, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, et al. A draft human pangenome reference. Nature.

2023;617:312–24.
 146. Rajput J, Chandra G, Jain C. Co‑linear chaining on pangenome graphs. Algorithms Mol Biol. 2024;19:4.
 147. Hickey G, Monlong J, Ebler J, Novak AM, Eizenga JM, Gao Y, et al. Pangenome graph construction from genome

alignments with Minigraph‑Cactus. Nat Biotechnol. 2023. https:// doi. org/ 10. 1038/ s41587‑ 023‑ 01793‑w.
 148. Ye SH, Siddle KJ, Park DJ, Sabeti PC. Benchmarking metagenomics tools for taxonomic classification. Cell.

2019;178:779–94.
 149. Elworth RAL, Wang Q, Kota PK, Barberan CJ, Coleman B, Balaji A, et al. To petabytes and beyond: recent advances

in probabilistic and signal processing algorithms and their application to metagenomics. Nucleic Acids Res.
2020;48:5217–34.

 150. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377–86.
 151. Lu J, Rincon N, Wood DE, Breitwieser FP, Pockrandt C, Langmead B, et al. Metagenome analysis using the Kraken

software suite. Nat Protoc. 2022;17:2815–39.
 152. Li K, Lu Y, Deng L, Wang L, Shi L, Wang Z. Deconvolute individual genomes from metagenome sequences through

short read clustering. PeerJ. 2020;8: e8966. https:// doi. org/ 10. 7717/ peerj. 8966.
 153. Benoit G, Raguideau S, James R, Phillippy AM, Chikhi R, Quince C. High‑quality metagenome assembly from long

accurate reads with metaMDBG. Nat Biotechnol. 2024. https:// doi. org/ 10. 1038/ s41587‑ 023‑ 01983‑6.
 154. Ekim B, Berger B, Orenstein Y. A randomized parallel algorithm for efficiently finding near‑optimal universal hit‑

ting sets. Research in Computational Molecular Biology. Switzerland: Springer International Publishing; 2020. pp.
37–53.

 155. Hoang M, Zheng H, Kingsford C. Differentiable learning of sequence‑specific minimizer schemes with DeepMini‑
mizer. J Comput Biol. 2022;29:1288–304.

 156. Zheng H, Kingsford C, Marçais G. Sequence‑specific minimizers via polar sets. Bioinformatics. 2021;37:i187–95.
 157. Shaw J, Yu YW. Proving sequence aligners can guarantee accuracy in almost O(m log n) time through an average‑

case analysis of the seed‑chain‑extend heuristic. Genome Res. 2023;33:1175–87.
 158. Sahlin K. Effective sequence similarity detection with strobemers. Genome Res. 2021;31:2080–94.
 159. Sahlin K. Strobealign: flexible seed size enables ultra‑fast and accurate read alignment. Genome Biol. 2022;23:260.
 160. Erbert M, Rechner S, Müller‑Hannemann M. Gerbil: a fast and memory‑efficient k‑mer counter with GPU‑support.

Algorithms Mol Biol. 2017;12:9.
 161. Deorowicz S. FQSqueezer: k‑mer‑based compression of sequencing data. Sci Rep. 2020;10:578.
 162. Ahmed OY, Rossi M, Gagie T, Boucher C, Langmead B. SPUMONI 2: improved classification using a pangenome

index of minimizer digests. Genome Biol. 2023;24:122.
 163. Şapcı AOB, Mirarab S. Memory‑bound k‑mer selection for large evolutionary diverse reference libraries. bioRxiv.

2024. p. 2024.02.12.580015. https:// doi. org/ 10. 1101/ 2024. 02. 12. 580015.
 164. Lemane T, Lezzoche N, Lecubin J, Pelletier E, Lescot M, Chikhi R, et al. Indexing and real‑time user‑friendly queries

in terabyte‑sized complex genomic datasets with kmindex and ORA. Nat Comput Sci. 2024;4:104–9.
 165. Vandamme L, Cazaux B, Limasset A. Tinted de Bruijn graphs for efficient read extraction from sequencing datasets.

bioRxiv. 2024. p. 2024.02.15.580442. https:// doi. org/ 10. 1101/ 2024. 02. 15. 580442.
 166. Coombe L, Kazemi P, Wong J, Birol I, Warren RL. Multi‑genome synteny detection using minimizer graph map‑

pings. bioRxiv. 2024. p. 2024.02.07.579356. https:// doi. org/ 10. 1101/ 2024. 02. 07. 579356.
 167. Cleal K, Baird DM. Dysgu: efficient structural variant calling using short or long reads. Nucleic Acids Res. 2022;50:

e53.
 168. Belbasi M, Blanca A, Harris RS, Koslicki D, Medvedev P. The minimizer Jaccard estimator is biased and inconsistent.

Bioinformatics. 2022;38:i169–76.
 169. Kille B, Garrison E, Treangen TJ, Phillippy AM. Minmers are a generalization of minimizers that enable unbiased

local Jaccard estimation. Bioinformatics. 2023;39(9):btad512.

https://doi.org/10.1038/s41587-023-01793-w
https://doi.org/10.7717/peerj.8966
https://doi.org/10.1038/s41587-023-01983-6
https://doi.org/10.1101/2024.02.12.580015
https://doi.org/10.1101/2024.02.15.580442
https://doi.org/10.1101/2024.02.07.579356

Page 35 of 35Ndiaye et al. Genome Biology (2024) 25:270

 170. Zakeri M, Brown NK, Ahmed OY, Gagie T, Langmead B. Movi: a fast and cache‑efficient full‑text pangenome index.
bioRxiv. 2024. https:// doi. org/ 10. 1101/ 2023. 11. 04. 565615.

 171. Alanko JN, Biagi E, Puglisi SJ. Finimizers: variable‑length bounded‑frequency minimizers for k‑mer sets. bioRxiv.
2024. p. 2024.02.19.580943. https:// doi. org/ 10. 1101/ 2024. 02. 19. 580943.

 172. Yu YW. On minimizers and convolutional filters: theoretical connections and applications to genome analysis. J
Comput Biol. 2024;31(5):381–95.

 173. Florensa AF, Armenteros JJA, Nielsen H, Aarestrup FM, Clausen PTL. SpanSeq: similarity‑based sequence data
splitting method for improved development and assessment of deep learning projects. NAR Genomics and
Bioinformatics. 2024:6(3):lqae106.

 174. Mejía‑Guerra MK, Buckler ES. A k‑mer grammar analysis to uncover maize regulatory architecture. BMC Plant Biol.
2019;19:103.

 175. Bonidia RP, Domingues DS, Sanches DS, de Carvalho ACPLF. MathFeature: feature extraction package for DNA,
RNA and protein sequences based on mathematical descriptors. Brief Bioinform. 2022;23. https:// doi. org/ 10. 1093/
bib/ bbab4 34.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1101/2023.11.04.565615
https://doi.org/10.1101/2024.02.19.580943
https://doi.org/10.1093/bib/bbab434
https://doi.org/10.1093/bib/bbab434

	When less is more: sketching with minimizers in genomics
	Abstract
	Introduction
	Background
	K-mer definition and properties
	Minimizers
	Parameters and properties of a minimizers scheme
	The importance of ordering

	Minimizer applications
	Read alignment
	Read correction
	Representing de Bruijn graphs
	De novo genome assembly
	Pangenomes
	Introduction
	Eukaryotic pangenome methods that use minimizers
	Prokaryotic pangenome

	Metagenomics
	Metagenomics classifiers
	Metagenomic assemblers

	Minimizer alternatives
	Universal hitting sets (UHS)
	Sequence-specific minimizers via polar sets
	Asymptotically optimal minimizers
	Syncmers
	Strobemers

	Discussion and conclusion
	Acknowledgements
	References

