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Abstract 

The exponential increase in sequencing data calls for conceptual and computational 
advances to extract useful biological insights. One such advance, minimizers, allows 
for reducing the quantity of data handled while maintaining some of its key properties. 
We provide a basic introduction to minimizers, cover recent methodological develop‑
ments, and review the diverse applications of minimizers to analyze genomic data, 
including de novo genome assembly, metagenomics, read alignment, read correction, 
and pangenomes. We also touch on alternative data sketching techniques includ‑
ing universal hitting sets, syncmers, or strobemers. Minimizers and their alternatives 
have rapidly become indispensable tools for handling vast amounts of data.

Introduction
Advances in computational and sequencing methods over the last two decades have pro-
pelled us into the genomics era [1], with databases like the European Nucleotide Archive 
increasing their assembled sequences and sequencing read collections by 100 and 100 
million times, respectively, in that timespan [2]. Data in repositories now spans peta-
bytes [3], decreasing costs and rising sequencing capabilities.

Genetic data is increasing in two dimensions. On one hand, moonshot initiatives with 
a “sequence everything” philosophy such as the Earth BioGenome Project [4] and the 
Tara Oceans Project [5] are sequencing a diverse range of species and microbial com-
munities in a variety of environments [6]. On the other hand, initiatives such as the 
1000 Genomes Project, the UK Biobank, and TOPMed aim to sequence hundreds of 
thousands of genomes from the same species [7, 8]. This trend has gained even more 
momentum with the advent of personalized medicine, where sequencing patients’ 
genomes is expected to become routine for diagnostics. For example, the “All of Us” 
Research Program aims to gather health and genetic data from one million people in 
the US [8, 9]. The abundance of genetic data presents a wide array of applications across 
many domains, including drug development or improving crop traits such as yield and 
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resistance to climate change [3, 10, 11]. This wealth of sequencing data delivers many 
opportunities and challenges for using and storing all this information and developing 
scalable methods that can speed up its analysis.

One of the fundamental problems in bioinformatics is sequence comparison, which 
entails quantifying the similarity and dissimilarity between the sequences’ bases or 
amino acids and their order in sequences. It is key in processes such as identifying 
homologous genes or proteins [12, 13], genome assembly [14], and metagenomics spe-
cies classification [15]. As the number of input sequences increases, the computational 
burden of pairwise comparisons increases quadratically, making handling the sheer 
amount of data more time-consuming and resource-intensive. To address this issue, 
various computational approaches have been developed to enable faster processing and 
comparison of large collections of sequencing data.

Traditionally, sequence comparison relied on alignment-based methods, which involve 
identifying the corresponding bases or amino acids in different sequences by maximiz-
ing a similarity score rewarding matches, and penalizing mismatches, insertions, or dele-
tions [16]. For a wide range of scores, exact solutions can be computed using dynamic 
programming [17], but the time complexity is typically quadratic in the length of the 
sequences or worse. This is too slow for many contemporary applications, which involve 
analyzing sequences of billions of base pairs. Faster approximation algorithms have been 
devised, such as the well-known BLAST [18], Diamond [19], or MMseqs [20] tools. They 
use various heuristics as shortcuts, including some of the techniques discussed below, 
but they are still considered “alignment-based” in that they retain some dynamic pro-
gramming approach at their core.

To avoid computationally costly alignments, many alignment-free methods have been 
developed which improve memory requirements and time complexity when handling 
large amounts of data [21]. Two important concepts applied in many alignment-free 
sequence comparison methods are k-mers (also known as n-grams, the “K-mer defini-
tion and properties” section) and graph-based representations (e.g., de Bruijn graphs, 
the “Representing de Bruijn graphs” section). Sketching methods are also a popular 
alternative. In the broader sense, sketching is a technique to create a reduced representa-
tion of the data that retains important properties and can be used to replace the original 
data in some applications [6, 22]. Some sketching examples are locality-sensitive hash-
ing, minimizers, or bloom indexes [6, 22, 23].

In this review, we focus on the highly efficient sketching approach of minimizers. 
In recent years, minimizers have emerged as a powerful approach to handle the ever-
increasing amount of sequencing data efficiently, while maintaining or even surpass-
ing the accuracy of traditional methods. Nevertheless, the function and advantages or 
disadvantages of minimizers compared to more traditional approaches is often unclear. 
To provide a comprehensive understanding of minimizers, we begin with explain-
ing k-mers, which serve as the foundation for minimizers, and explore the minimizers 
scheme definition and properties (the “Background” section). Then, we discuss six of 
the most notable applications of minimizers in genomics (Fig.  1): read alignment (the 
“Read alignment” section), read correction (the “Read correction” section), represent-
ing de Bruijn graphs (the “Representing de Bruijn graphs” section), genome assembly 
(the “De novo genome assembly” section), pangenomes (the “Pangenomes” section), 
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and metagenomics (the “Metagenomics” section) as well as briefly touch on minimizer 
alternatives (the “Minimizer alternatives” section). Finally, we conclude and discuss the 
future of minimizers in genomics.

Background
K‑mer definition and properties

K-mers are useful for analyzing large DNA or RNA sequences, as they allow storing 
and manipulating these sequences using smaller, more manageable substrings [3, 22]. 
This reduces the time and memory complexity of analyzing large amounts of sequences 
by decreasing the search space, paving the way for more efficient algorithms for tasks 
such as genome assembly, mapping gene expression data, and sequence classification. 
Based on the assumption that similar subsequences that can be aligned with alignment-
based methods also share k-mers, we can identify similar subsequences by comparing 
the k-mers in sequences. Moreover, we can store repeated k-mers only once, possibly 
accompanied with their positions or their frequencies, resulting in a more compact stor-
age. Storing sequences using k-mers comes with a loss of information because it only 
informs us about each k-mer rather than the whole sequence, but they may retain suf-
ficient information for many purposes as described later in this review [3]. Although 
storing many k-mers can be computationally challenging [3, 24], utilizing k-mer-based 
methods is generally more efficient than alignment-based methods [16].

Some essential k-mers definitions and notions are needed before we introduce mini-
mizers. A k-mer is a substring or a “word” of length k present in a longer sequence S. 
Two contiguous k-mers in a string share k-1 characters. It follows that if |S| represents 
the length of the sequence, the maximum number of k-mers in S is |S|− k + 1, which can 
be approximated to |S|, assuming that k is much smaller than |S|. Naively, storing all 
k-mers of S would require a space of O(|S|*k), which is more than the sequences them-
selves [25].

Nevertheless, storing k-mers can be more space-efficient than storing complete 
sequences, because the maximum number of different possible k-mers is |Σ|k, Σ being the 
alphabet [26]. For example, if k is 2 and the alphabet is the DNA bases Σ = {A, C, G, T}, 
there will be at most  42 possible 2-mers:  B2 = {AA, AC, AG, AT, CA, CC, CG, CT, GA, 
GC, GG, GT, TA, TC, TG, TT}. Storing these 2-mers occupies less space than storing the 
complete string if the string S is longer than 16 bases. Note that the number of possible 
unique k-mers increases exponentially with k, quickly exceeding |S|. However, in practice, 
the number of observed k-mers is bounded by |S|− k + 1 and many k-mers are typically 
repeated [3]. As a result, typical k values are kept within the range of 20 to 200 and each 
distinct observed k-mer is stored only once, along with their frequencies and/or their posi-
tions, depending on the application.

Exploiting k-mers was a breakthrough in handling sequence data. However, as data 
grows, the linear increase in storage demand becomes impractical, necessitating more 
efficient ways to handle genomics data [25]. This is especially true as many genomic 
comparisons do not require such level of detail as the k-mer approach provides. One 
such way that has emerged is minimizers, which is based on k-merization of the data. 
Minimizers achieve faster processing and reduced memory usage by working with only a 
subsample of the k-mers.
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Minimizers

The minimizers scheme is a sequence analysis approach to create approximate rep-
resentations of sequences, or sketches, which occupy a reduced space in compari-
son to the sequences themselves. Minimizers were originally introduced by Roberts 
et al. [25] to reduce the number of stored k-mers needed to assemble genomes and 
to reduce computations for sequence comparison compared to traditional methods 
like BLAST [18]. Interestingly, the concept of minimizers referred to as “winnowing” 
had already been independently developed for fingerprinting documents and detect-
ing plagiarism [27, 28].

A minimizer is a selected representative k-mer from a group of adjacent k-mers. 
However, this approach is useful only if two substrings with an exact match end up 
sharing at least one of the representative k-mers. For instance, choosing every k-th 
k-mer as a minimizer is inadequate because two strings with a long exact match 
would only share a k-mer if it starts at the same position or at a position multiple of 
k. Therefore, to ensure functionality, minimizer schemes must be defined by comply-
ing with specific properties to guide the selection of representative k-mers, discussed 
below [22, 25].

Parameters and properties of a minimizers scheme

A minimizers scheme is defined by three parameters: the k-mer length (k), the window 
size (w), and the ordering. A window with size of w corresponds to w consecutive k-mers 
covering a substring of length w + k − 1 from which a k-mer is selected as the represent-
ative called the minimizer. Minimizers are chosen based on an ordering (i.e., sorting) of 
the k-mers, such as lexicographic [25, 28]. By choosing the “smallest” k-mer as the mini-
mizer (Fig. 2), the selection is not based on the k-mer’s position but rather based on the 
sequence content. Choosing minimizers begins with the first substring starting at posi-
tion S[1], selecting a minimizer among the w consecutive k-mers starting at positions 
S[1], S[2], …, S[w] (considering 1-based indexing). Then, it proceeds sequentially, identi-
fying a minimizer for the second window in the range [2, w + 1], then the third window 
[3, w + 2], and so on all the way to [|S|− w − k + 2, |S|− k + 1]. The set of all minimizers 
obtained in this way are the minimizers of sequence S. Because neighboring substrings 
have overlapping windows, their associated minimizers are often identical; as a result, 
the set of minimizers of S tends to be much smaller than the set of k-mers of S. Of note, 
the choice of k and w varies among applications. For example, k = 15 and w = 10 are used 
for long, noisy read alignment in minimap2 discussed in the “Read alignment” section.

A minimizer scheme has two important consequent properties. The first property 
is that “two sequences with an exact match of minimum length w + k − 1 will share 
a minimizer” [25]. In other words, any matches of length ≥ w + k − 1 will be repre-
sented in the selected minimizer while shorter matches might not be, depending on 
their ordering position (Fig. 2). The second property is that “the maximum distance 
between two consecutive selected k-mers is w,” as at least one k-mer must be selected 
per window. In case of ties—where two k-mers in a window have the same order—
solutions include storing all tied k-mers [22] or selecting based on additional criteria, 
such as choosing the k-mer at the leftmost position [25].
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The importance of ordering

The k-mer ordering parameter is crucial in constructing the minimizers, as it signifi-
cantly influences their performance. Performance can be measured by density, defined 
as the ratio of selected k-mers among all k-mers of a given substring, where lower 
density indicates higher efficiency [22, 27]. Since different orderings lead to different 
selected minimizers and thus varying densities, the k-mer ordering approach has a large 
impact on the performance of the minimizer scheme and should be tailored for each 
application.

Using the lexicographic order for strings with frequent “A”s can lead to selecting mul-
tiple consecutive k-mer minimizers (consider e.g., AAA TCG T with k = 3, w = 5), thereby 
leading to an undesirable increase in density. Roberts et al. [25] recommend an ordering 
strategy that favors choosing rare k-mers as minimizers, resulting in lower density. For 
DNA sequences, this can be achieved by prioritizing less frequent bases or by selecting 
k-mers with a higher count of these bases [25].

An alternative to lexicographic ordering is using functions to assign numerical values 
to k-mers [29]. A hash function transforms a given string of arbitrary size (k-mers in 
our case) into a fixed-sized value. In doing so, the resulting representation will typically 
occupy less space [29] (e.g., hashing into 32-bit values [30] results in space saving for 
genomic k-mers for k > 16 assuming a 2-bit encoding per nucleotide). See Fig. 3 as an 
example of using a hash function for defining a minimizer scheme.

Several studies have focused on optimizing ordering and devising new data structures 
and schemes to achieve minimizers with higher efficiencies and lower densities (fewer 
selected k-mers) [22]. Theoretically, density ranges from 1/w (since at least one k-mer is 
chosen for every w letters based on the property 2) to 1 (where all k-mers are selected). 
The optimal minimum of 1/w is only achieved when k is large  [22, 31], and the interest 
lies in constructing a minimizer with a density within a constant factor, i.e., O(1/w) for 
any k. With lexicographic ordering, minimizers can achieve such density, but with large 
k values (≥  log|Σ|(w)-c for a constant c), which might not be desirable [32]. However, ran-
dom ordering can result in a lower density than that of the lexicographic ordering. Thus, 

Fig. 3 An example implementation of a minimizers scheme using a hash function for ordering. In this case, 
the hash function calculates the remainder of the values assigned to each k-mer divided by 13. The k‑mer 
with the lowest hash value in a window is selected as the minimizer. For the last window, we break the tie 
between 7ACC and 9CTT with hash value of 5, by selecting the one starting at the leftmost position resulting 
in 7ACC 
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random ordering (implemented with pseudo-random hash functions) is usually used in 
practice [28, 31–33].

The expected density, defined as the expectation of density over all possible sequences 
when bases are chosen independently with equal probability, is used to evaluate mini-
mizer ordering. Using a random ordering and a window size of w ≪|Σ|k, the expected 
density is proven to be 2/(w + 1), with some other assumptions which might not hold 
in practice [27]. Zheng et  al. provided explicit conditions only on k (i.e., k ≥ (3 + ε)
log|Σ|(w + 1)) for the expected density of 2/(w + 1) + o(1/w) [32]. The added term o(1/w) 
relates to the probability of having two identical k-mers in a random window of w which 
equals to |Σ|−k or equivalently 1/w3+ε = o(1/w3) under the mentioned assumption on k. 
See [31, 34, 35] for asymptotic analysis.

Recent investigations indicate that ordering algorithms can achieve a density value of 
1.8/(w + 1) [36], well below the originally proposed lower bound of 2/(w + 1) [22, 25]. Of 
note, several studies have developed new data structures to improve the density, some of 
which are described in the ”Minimizer alternatives” section. In addition to density, other 
metrics to analyze sketching schemes including conservation [23], repetitiveness [37] 
coverage and sketch score [38] have also been suggested. For a more in-depth review 
of the algorithmic aspects of minimizers, see [39]. In short, it is increasingly clear that 
minimizers are a powerful tool to improve memory efficiency and runtime in several 
applications, and research on their optimal design is still ongoing.

Minimizer applications
Given the promising advances of minimizers compared to k-mer approaches, we next 
review their wide-ranging applications. Table  1 summarizes various applications and 
programs that utilize minimizers to increase their speed and memory efficiency, high-
lighting the broad applications of minimizers across different research fields. Key appli-
cations include read alignment, read correction, genome assembly, pangenomes, and 
metagenomics.

Read alignment

Read alignment involves placing and comparing DNA or RNA sequencing reads to a 
reference genome or transcriptome. The goal is to identify the best match between a 
given read and the reference, since this is the best hypothesis for where the read origi-
nated. A naive approach to read alignment would be to use brute force by checking all 
possible positions, but this is impractical due to the vast number of reads generated by 
sequencing technologies. Additionally, read alignment can be computationally demand-
ing because the reference genome may contain repeated sequences where a read can 
map to with equal probability. Furthermore, sequencing errors and true genetic variabil-
ity within a sample can introduce differences between the read and its matching location 
within the reference.

Read alignment is a crucial step in various genomic pipelines including identifying and 
studying genetic variations. A wrongly placed or misaligned read often leads to a falsely-
identified variant with consequences for downstream analyses [69, 70]. To address speed 
and accuracy of read alignments, over 100 methods have been developed [69]. The list 
includes the Burrows-Wheeler Aligner (BWA) [71] and Bowtie [72] for short DNA 
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Table 1 Bioinformatics tools that use minimizers categorized in seven fields, namely, read 
alignment, read correction, de Bruijn graph (dBG) representation, genome assembly, pangenomes, 
metagenomics classification, and assembly

Main application Name Description Citation

Read alignment minimap2 Uses a seed‑chain‑align procedure by 
collecting minimizers

[40, 41]

GraphAligner Long‑read aligner to genome graphs 
using minimizers

[42]

LRA Aligns long reads to a reference 
genome

[43]

Chromap Aligns chromatin profiles using 
minimizers

[44]

Winnowmap and Winnowmap2 Weighted‑minimizer sampling algo‑
rithm that builds on top of minimap2

[45, 46]

Read correction Miniscrub Convolutional neural network‑based 
method for removing low‑quality 
nanopore read segments

[47]

VeChat Correcting errors in long reads using 
variation graphs

[48]

isONcorrect Long‑read error correction [49]

Minirmd Removing duplicate and near‑
duplicate reads

[50]

de Bruijn graph (dBG) representation BCALM2 Parallel dBG compaction [51]

Bifrost Parallel dBG compaction [52]

GGCAT Parallel k‑mer enumeration and dBG 
compaction

[53]

Fulgor ccdBG representation for alignment‑
free sequence matching

[54]

De novo genome assembly rust-mdBG De novo genome assembly from 
minimizer‑space dBG

[55]

MBG De novo genome assembly from 
minimizer‑based dBG

[55, 56]

LJA Long‑reads de novo genome 
assembly

[57]

ntJoin Reference‑based genome assembly [58]

Wengan Hybrid short‑ and long‑reads de novo 
genome assembly

[59]

Pangenomes Minigraph Pangenome construction from mul‑
tiple genomes (Eukaryote‑vertebrate 
focus) and sequence to graph aligner

[60]

Giraffe Fast mapping of short‑reads to 
pangenome (Eukaryote‑vertebrate 
focus)

[61]

PGR-TK Pangenome construction and 
analysis using sparse hierarchical 
minimizers (Human focus)

[62]

Pandora Pangenome construction and analy‑
sis. Capture core and accessory genes 
as well as variants (Bacteria focus)

[63]

Metagenomics classification Kraken and Kraken2 Metagenomics classifier by minimizer 
with improved memory require‑
ments

[64, 65]

K2Mem Classifier based on kraken2 with 
improved memory and classifica‑
tion time

[66]

MetaMaps Analyzer for long‑read metagenom‑
ics data

[67]

Metagenomics assembly MetaProb2 Genome binning method using 
minimizers to assemble reads

[68]
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reads, BLASR [73] and BWA-SW [74] for long DNA reads, and STAR [75] for RNA-
seq reads. For comprehensive reviews of tools for read alignment, see [69, 76]. Here, we 
focus only on methods for read alignment that employ minimizers.

Many alignment tools benefit from a seed-and-extend or seed-chain-extend approach 
designed for short or long reads: The goal of seeding is to find small exact matches 
between the read and the reference which are then chained together using dynamic pro-
gramming [18, 71, 77–79].

To find exact matches, different approaches including Burrows-Wheeler trans-
form (BWT), suffix arrays, or minimizers are used (reviewed in [80]). Minimap [81] is 
an alignment tool for nucleotide sequences whose improved version, minimap2, was 
released in 2018 [40] and quickly became one of the leading tools for read alignment. 
This tool benefits from a seed-chain-align approach, employing minimizers to identify 
initial exact matches, seeds. Minimap2 first finds minimizers within the reference, with 
computation time being linear in terms of the length of the reference [81]. These are 
stored in a hash table where the minimizer’s hash values (obtained with a hash function) 
are the keys and the minimizer locations are the values (Fig.  4). For query sequences 
(reads), seeds are also formed from their minimizers. Anchors are found by exact match-
ing read seeds to positions in the reference hash table. An anchor in minimap2 denotes 
a pair of starting positions, indicating a range on the reference sequence that matches 
a range on the query sequence. Then, a chain is formed from a set of collinear anchors 
using a dynamic programming approach to maximize matching bases between anchors 
considering a customized cost function of gap length [40, 41]. Finally, to create align-
ments, minimap2 applies dynamic programming to extend chains and to fill regions 
between neighboring anchors inside the chain. Minimizers here help to avoid an exhaus-
tive per-base search of seed matches.

Furthermore, minimap2 uses various heuristics for optimization. To avoid wrong 
anchors in a chain, which could appear due to local homology and sequencing errors, 
minimap2 filters out anchors that lead to insertions and deletions (> 10 bp) or a long gap 
at the end of the chain. While this alleviates issues with misplaced anchors, it is unable to 
fix all such errors. Nonetheless, in comparison with alternative aligners, minimap2 shows 
superior accuracy and speed, sometimes at the cost of memory [40]. In 2021, Li improved 
minimap2 by using more minimizers (previously it kept only low-occurrence minimiz-
ers) and refining its chaining algorithm by changing the alignment scoring function. This 
improvement addressed challenges like un- or mis-aligned reads in highly repetitive 
regions and the alignment of sequences with long insertions/deletions (indels) [41].

Building on top of minimap2, Winnowmap introduced a weighted-minimizer sampling 
algorithm [45]. Minimap2 ignores frequent minimizers because minimizers from repeti-
tive regions are sampled more often, which artificially increases seed hits. However, this 
results in overturning the property 1 of minimizers and in accuracy reduction. To tackle 
this challenge, Winnowmap performs minimizer sampling by considering a weight for 
each k-mer; the higher the weight of the k-mer, the more likely it is to be selected. Repet-
itive k-mers with frequency above 1024 are given a weight of 1/8, while other k-mers are 
given a weight of 1. With this approach, property 1 remains true for this weighted-mini-
mizer scheme while avoiding excessive false matches. This method leverages minimap2’s 
techniques for anchor chaining and gapped alignment for read alignment, achieving up 



Page 11 of 35Ndiaye et al. Genome Biology          (2024) 25:270  

to 50% lower memory usage while maintaining a similar runtime to minimap2. Winnow-
map2 (Table 1) uses the same seeding approach of Winnowmap and improves on mini-
map2’s extending using heuristic to address allelic biases. Winnowmap2 can efficiently 
map long reads to repetitive reference sequences and has improved accuracy in variant 
calling of the Genome in a Bottle samples [82] than other long-read mappers such as 
Winnowmap, minimap2 and NGMLR [46].

LRA is a method for aligning long sequencing reads to a reference genome, which 
it accomplishes in four main steps: seed sequence matching, clustering, chaining, and 
refinement [43]. It tries to find the solution to seed chaining with a concave gap func-
tion to differently penalize opening or extending a gap. After finding anchors using 
minimizers, LRA filters out unreliable ones by partitioning them into clusters using a 
greedy approach. These represent approximate intervals on the query and target that are 
aligned. These clusters form fragments represented as diagonal lines in a 2D cartesian 
space correlating the sequences of the read and the reference genome. The chain with 
the lowest score is found in a more efficient manner than the traditional O(n2), achieving 
O(n  log2n) time complexity, where n is the number of fragments. This chaining leads to 

Fig. 4 Application of minimizers in read alignment. A typical read aligner that follows the seed‑chain‑align 
approach first finds reference minimizers and stores them in a hash table. Seeds are substrings (minimizers) 
from the reference or the read. Seeds that match between the read and the reference are called anchors, 
which are found by querying the read minimizers in the hash table. Then, anchors are chained together and 
finally bases are aligned
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refined alignments that resulted in higher sensitivity of variant discovery compared to 
minimap2 and NGMLR with comparable runtime [43].

MashMap [83] formulates the read mapping problem using the Jaccard similarity coef-
ficient of k-mers between the read and its mapping region on the reference. The Jaccard 
is defined as the ratio of the intersection size over the union size of two sets. It is esti-
mated using MinHash with the smallest set of hash values of k-mers of two sequences 
[57]. Due to the expensive computational costs for comparing a read and the reference 
sequence, MashMap uses MinHash on minimizers rather than all k-mers. Recently, 
MashMap2 [84] has also been released for whole-genome alignments using the same 
minimizer-centric approach.

To study chromatin organization and accessibility, analyzing ChIP-seq or ATAC-
seq data is now becoming routine. In chromatin profiling, the standard approach is to 
start with short-read aligners like BWA-MEM or Bowtie2, followed by sorting reads 
and removing duplicates. This is an inefficient process since base-level alignment is not 
needed for most chromatin analysis. Moreover, several isolated tools are used involving 
high reading and writing operations on files. Chromap is a fast, integrated tool for ana-
lyzing chromatin profiles, adopting minimizer indexing from minimap2 to find seeds, 
but with a different approach for seeding and alignment [44]. Chromap follows a similar 
approach to minimap2 for chaining anchors and generates alignment candidates. Finally, 
a bit-parallel algorithm is used to find the best alignment candidate with the lowest edit 
distance. BWA-MEM, minimap2, and Chromap all performed similarly, with 98% accu-
racy for simulated 100 and 150-bp paired-end data. On smaller 50-bp paired-end data, 
BWA-MEM and Chromap had a similar accuracy of 96%, while minimap2 lags slightly 
with performance ranging between 94 and 96% [44].

Read alignment can also be performed on genome graphs. GraphAligner is a mini-
mizer-based method for long read alignment to graphs [42]. The input to GraphAligner 
could be any bidirected graphs (modeling double helix DNA which could be traversed 
in two directions) including de Bruijn (see the “Representing de Bruijn graphs” section), 
variation, and pangenome graphs (see the “Pangenomes” section). GraphAligner uses a 
seed-and-extend method where seeds are identified by exact matching each read to the 
sequences of nodes in the graph. Of note, only seed hits that are entirely contained in 
a node are considered. To find the matches, a minimizer index is built from the graph 
by sliding a window through the node’s sequence and finding the smallest k-mers using 
the BBHash function. When aligning reads to a linear reference, seeds are chained by 
solving the co-linear chaining problem via computation of the distance between seeds. 
However, in a, graph the distance between seeds is ambiguous due to the presence of 
branching paths. This is addressed by chaining superbubbles, which are defined as acy-
clic subgraphs having one entrance and exit node and some internal nodes. Superbub-
bles are chained when one end node is the start of another. This can be used to assign 
linear position to seed hits which is then treated as linear sequence alignment. Then, 
each sequence is extended using a banded dynamic programming approach and Viterbi’s 
algorithm to decide the end of a read alignment. When traversing node sequences, over-
lap between nodes (for example for a de Bruijn graph where nodes overlap k-1 bases) 
should be considered in the matching process. Performance wise, GraphAligner is more 
than ten times faster than the VG tool [42, 85]. For the case of aligning simulated data 
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on linear reference, minimap2 and GraphAligner have similar accuracy (95%); however, 
GraphAligner has three times the runtime of minimap2. Despite being slower than mini-
map2, it is still faster than linear mappers such as BWA [42].

Overall, read aligner methodologies have been improved by using minimizers, par-
ticularly the chaining algorithm developed in minimap2 which revolutionized the field. 
Minimap2 has been built upon and compared to many tools and methodologies as evi-
dent in this section and the “Pangenome” section.

Read correction

Long reads from sequencing technologies like Pacific Biosciences (PacBio) and Oxford 
Nanopore Technologies (ONT) are powerful tools for genome and metagenome assem-
bly as well as transcriptomics. Their length can reach several kilobases, allowing a single 
read to span low-complexity regions which would be otherwise difficult to assemble or 
to incorporate an entire RNA transcript end-to-end [86–88]. However, long reads have 
higher error rates compared to their short counterparts [89–91]. This can hinder the 
assembly process, increase computational loads, and introduce biases in downstream 
analyses [89, 90, 92]. To tackle this problem, de novo error correction can be performed 
using multiple sequence alignment (MSA) among reads to infer the correct sequence 
using a consensus approach. However, the quadratic nature of comparing reads all-vs-all 
can be computationally prohibitive [93]. Thus, some of the recent tools for de novo error 
correction (Table 1) use minimizers to reduce the computational requirements of MSA.

Miniscrub and VeChat are two tools that use minimizers-based minimap2 to find 
overlapping reads using shared minimizers and perform de novo error correction of 
long error-prone reads [47, 48]. Miniscrub uses minimap2 to efficiently perform all-vs-
all read alignments. Then, it generates a “pileup” image that visualizes the aligned reads, 
where each column of pixel denotes a position on the reference, and each row corre-
sponds to an individual read aligned to that position. The pileup image pixels contain 
relevant information in Red–Green–Blue format, such as matched minimizers, distance 
between minimizers, and base quality scores. This image serves as input for a convolu-
tional neural network pre-trained by the developers on sets of reads from known refer-
ence genomes to learn the correlation between a read’s level of support from other reads, 
as represented in the pileup image, and its accuracy. Leveraging this learning, the neu-
ral network predicts high-quality read fragments based on the supporting reads for the 
fragment’s minimizers. Finally, a user-defined threshold is used to filter out low-quality 
segments, yielding shorter high-quality reads.

VeChat uses minimap2 to perform all-vs-all read alignments in metagenomics sam-
ples. Then, it divides the alignments into 500-bp fragments and uses a variation graph 
(VG; see the “Pangenomes” section) approach to correct the reads. This graph is used to 
prune low support edges that likely correspond to sequencing error, while maintaining 
edges that represent true haplotype variation within the samples.

Minimizers are also useful for error correction in long-read transcriptomics data. The 
isONcorrect method uses minimizers to splice ONT reads into non-overlapping frag-
ments that begin and end at different minimizers of the read [49]. Fragments sharing 
prefix and suffix minimizers are likely to share homologous sequences. Thus, these frag-
ments are clustered together and aligned independently to perform error correction 
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following a consensus approach. By using minimizers, this approach reduces the compu-
tational load of comparing a large number of reads. The authors show that isONcorrect 
reduces the mismatch rate of long reads from the Drosophila genome from a median of 
7% to a median of 1.1% [49].

Minimizers can also be used to remove duplicate and near-duplicate reads. In turn, 
this can reduce computational resources in downstream applications by decreasing 
the amount of redundant information in the dataset. Minirmd is a read deduplication 
tool that performs de novo clustering of reads in function of the shared minimizers 
[50]. Briefly, reads sharing a minimizer in the same minimizer position are clustered in 
the same group. Minirmd performs multiple rounds of clustering using minimizers of 
varying k values (k-minimizers) to prevent the clustering of near-duplicates in separate 
groups caused by mismatches between specific k-minimizers reads. Then, reads within 
the same cluster are compared pairwise to identify duplicates, near-duplicates, and 
reverse complements. Finally, the read with the best quality is retained. Minirmd was 
able to remove on average 3% more near-duplicates than other deduplication tools like 
CD-HIT-DUP, Fulcrum, and MarDRe, while being faster and using less memory [50].

Representing de Bruijn graphs

In this section, we will review the application of minimizers in optimizing the repre-
sentation of de Bruijn graphs (dBGs). A (node-centric) dBG is a directed graph where 
the edges are represented by all distinct k-mers extracted from an input sequence (e.g., 
sequencing reads or genomes [94]). Nodes within this graph correspond to the k-1 suf-
fixes and prefixes of the k-mers. Edges connect nodes found in a k-mer [95, 96]. dBGs 
are fundamental data structures in computational genomics, used in applications such 
as genome and metagenome assembly (the “De novo genome assembly” and “Metagen-
omics” sections) and pangenome representation (the “Pangenomes” section) as well as 
sequence identification or matching [54].

The construction of dBGs from a sequence can be summarized into four main steps: 
(1) k-mer enumeration, (2) graph construction, (3) graph compaction, and (4) graph 
cleaning. Firstly, the set of distinct k-mers is extracted from the input sequence and the 
graph is constructed as previously explained. Then, all paths with all but the first and 
last nodes having an in- and out-degree of 1 (known as unitigs) are compacted into a 
single node to obtain a compacted dBG (cdBG). Finally, all paths with low support (i.e., 
representing rare k-mers in the read dataset) are pruned because they probably origi-
nate from sequencing errors. Moreover, bubbles in the graph, often caused by polymor-
phisms or repeated regions, may be collapsed based on criteria like read coverage and 
path length, depending on the specific dBG implementations [96]. Of note, when a dBGs 
is constructed starting from a collection of datasets, nodes can be labeled with addi-
tional information, such as the sample of origin for a given k-mer, resulting in what is 
known as a “colored” dBG [97, 98].

The primary advantage of dBGs lies in the compact representation of the input 
sequences, as repeated substrings are represented only once in the graph, significantly 
reducing the space required for storage. However, storing the dBG of large sequences can 
have a substantial memory footprint, especially in its initial and uncompacted form [99]. 
This represents the main bottleneck to the scalability of dBG construction. For instance, 
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the dBG representation of the 20-Gbp white spruce genome required around 4.3 TB of 
memory [100]. Complicating matters, dBG construction is not easily parallelizable [101]. 
Given the exponential increase of sequencing data handled by researchers, there has 
been a concerted effort to leverage minimizers to improve the efficiency of dBG con-
struction, with particular emphasis on k-mer enumeration and graph compaction.

One way to optimize dBG construction is to parallelize the process. BCALM2 [51] 
executes parallel graph compaction by categorizing k-mers into disk buckets utilizing 
s-mer minimizers selected in the k-1 prefixes and suffixes of the k-mers. K-mers with 
distinct minimizers at the two ends are assigned to different disk-buckets. Subsequently, 
k-mers within the same disk-bucket undergo compaction by grouping minimizers to 
identify overlaps. The relatively small size of the buckets allows for parallel compaction 
through an in-memory algorithm. The original k-mers are then utilized to merge unitigs 
from different disk-buckets, effectively reuniting k-mers that were initially assigned to 
two separate disk-buckets. This merging operation is also conducted in parallel, since 
the algorithm ensures that strings requiring reunification (i.e., sharing the same k-mer 
at one extremity) are grouped into the same partition. This allows each partition to be 
processed independently. This final step enables the reconstruction of maximal unitigs, 
resulting in a cdBG. Compared to previous endeavors [102, 103], BCALM2 was shown 
to reduce the time and the memory required for k-mer counting and graph compaction 
of the White Spruce and Loblolly Pine genomes by 1 to 2 orders of magnitude [51].

Bifrost utilizes minimizers for the construction and indexing of colored and com-
pacted dBGs (ccdBGs) in a highly parallelized manner. The algorithm integrates mini-
mizers within the framework of Blocked Bloom Filters (BBFs), a data structure designed 
for memory-efficient membership queries of an element in a set [52]. During the inser-
tion of a k-mer into BBFs, Bifrost leverages the hash value of its minimizer to determine 
the appropriate BBF block for the k-mer. This ensures that sequences preceding or suc-
ceeding a particular k-mer are included in the same BBF block. Since k-mers in differ-
ent BBF blocks can be handled independently, this optimization significantly contributes 
to the parallelization of unitig extraction, dBG compaction and navigation, decreasing 
the runtime and memory required. Bifrost was shown to construct a ccdBG of around 
110,000 Salmonella strains in 93 h using about 100 GB of memory [52].

GGCAT  represents a significant improvement over Bifrost, achieving a 5 × faster con-
struction of a ccdBG from a collection of 100 datasets of human genome sequences and 
a 480 × faster query for k = 27 [53]. The key innovation of GGCAT  lies in integrating k-
mer enumeration with unitig construction in a highly parallelizable manner. This begins 
by partitioning the input sequence into substrings having k-2 characters overlap and 
having all (k-1)-mers within each substring share the same minimizer. These substrings 
are further extended with one linking base in each direction, to ensure that consecutive 
substrings overlap by exactly k bases. Subsequently, the substrings are grouped based 
on their minimizers. For each group of substrings, k-mer counting is performed con-
currently. This grouping guarantees that overlapping k-mers are stored and processed 
independently, allowing parallelization of the unitig construction process. The algorithm 
then initiates unitig construction by starting with each k-mer and extending it both left 
and right. This extension process involves identifying potential overlaps and matches 
with neighboring k-mers in the same group. Reaching the linking bases during extension 
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signifies the endpoint of the unitig in that direction. The corresponding k-mer and the 
unitig will be stored as a tuple. Finally, these tuples are processed based on overlapping 
k-mers (found in another group) to generate maximal unitigs by iteratively merging unit-
igs [53].

More recently, SSHash has been developed for constructing dBGs with high scalability 
[104, 105], building on ideas introduced by BLight [106]. BLight is an efficient exact data 
structure that allows membership queries of a k-mer and its associated information. It 
splits unitigs of the cdBG into super-k-mers, which are sequences composed of consecu-
tive k-mers sharing the same minimizer. The set of k-mers of a super-k-mer is indexed 
using a minimal perfect hash function associating identifiers to k-mers used during que-
rying. Such a function bijectively maps each of i inputs (keys) into a unique integer in the 
range of {0..i-1} without collisions.

SSHash improves storage efficiency by storing absolute offsets that point to the posi-
tions in the genomic sequences where each super-k-mer starts, instead of indexing the 
concatenation of super-k-mers. This improves space efficiency since, in practice, several 
super-k-mers are small. Additionally, SSHash leverages the fact that minimizers have 
a skewed distribution: most minimizers appear only once, while a few appear multiple 
times. Frequent minimizers are managed with a minimal-perfect Hash function. This 
ensures efficient and constant-time lookups (i.e., reporting the unique identifier of k-
mer in the set) when the number of offsets represented by a minimizer is large. Infre-
quent minimizers are managed by a regular lookup procedure where entries are directly 
accessed and iterated through until a match is found. This dual strategy enhances both 
storage efficiency, retrieval, and manipulation of genomic data, which is crucial for tasks 
like sequence alignment. Of note, SSHash has been extended to represent weights (i.e., 
abundance counts) [105] and attracted interests in the literature for indexing genomes 
[31, 107], and k-mer/unitig membership queries [108].

Fulgor integrates GGCAT  with the SSHash data structure to optimize the represen-
tation of ccdBGs which could be used for alignment-free matching of metagenomic 
sequences against a reference database (aka pseudo-alignment) [54]. Initially, GGCAT  
constructs a ccdBG from a given set of reference sequences. Fulgor employs the SSHash 
data structure to efficiently store the ccdBG unitigs. By leveraging SSHash, Fulgor effi-
ciently stores ccdBG components in a compact way, optimizing memory usage and ena-
bling fast queries for consecutive k-mers, which often share the same minimizer. To be 
more exact, unitigs are sorted by their color IDs and are stored via SSHash. This enables 
Fulgor to compute the color of each unitig using a rank query on the bit vector where 1 
shows a change in color of consecutive unitigs (rank-one query returns the sum of the 
1 s in a vector). Fulgor was shown to build a ccdBG from 150,000 Salmonella strains in 
under 5 h, utilizing approximately 137 GB of RAM, resulting in an index with size of only 
70 GB, which was further reduced to 7.5GB  [98] (much smaller than those of the com-
petitors). This represents a significant improvement over the above-mentioned perfor-
mance reported for Bifrost on a similar dataset.

In summary, the optimization of dBG construction through the use of minimizers has 
led to significant advancements in genomic data analysis. Innovations such as BCALM2, 
Bifrost, and GGCAT  have demonstrated how minimizers can enhance parallelization and 
efficiency in k-mer enumeration and graph compaction. Additionally, the development 
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of data structures like SSHash has optimized the storage and query of dBGs. The inte-
gration of these advancements in tools like Fulgor exemplifies the potential for further 
improvements in dBG representation, particularly in the efficient handling and querying 
of large-scale datasets.

De novo genome assembly

In this section, we review the application of minimizers to the problem of de novo 
genome assembly to achieve contiguous, high-quality assemblies of large genomes in 
a computationally efficient fashion. De novo genome assembly deals with the problem 
of reconstructing a consensus sequence G of length |G| from a randomly sampled set 
of reads of length r, where r < <|G| [109, 110]. This problem has also been extended to 
assemble all haplotypes of a diploid or polyploid species [111–113].

A straightforward approach to de novo genome assembly entails searching for over-
laps between reads to infer a consensus set of sequences that approximates the original 
genome. This approach is known as overlap layout consensus (OLC) [114, 115], which is 
particularly good at handling sequencing errors or genomic regions with high heterozy-
gosity by allowing overlaps with mismatches [101]. However, finding overlaps between 
reads usually needs all-vs-all comparison resulting in quadratic time in the number of 
reads. Thus, the more reads that are present in a dataset, the more computationally pro-
hibitive it becomes to find overlaps and a consensus [116]. This is notably the case when 
handling millions of short reads, a scenario which is typical of the output generated by 
Illumina sequencing technologies.

OLC remains a popular approach for genome assembly, particularly when dealing 
with long-read technologies such as ONT and PacBio with higher error rates. In these 
cases, heuristics are often employed to mitigate the all-vs-all alignment bottleneck. For 
example, Hifiasm leverages minimizers to find overlaps among reads and perform read 
correction, making it capable of generating highly contiguous and haplotype-resolved 
assemblies of large eukaryotic genomes using PacBio HiFi reads [117].

On the other hand, dBGs have emerged as a powerful alternative to OLC for the 
assembly problem. Indeed, following dBG construction (the “Representing de Bruijn 
graphs” section), contigs (i.e., contiguous segments of the genome being assembled) are 
extracted from the simplified paths of the compacted and cleaned dBG [96]. The num-
ber of nodes of an error-cleaned dBG saturates at higher sequencing depths but mainly 
depends on the size of the sequenced genome [116]. Thus, dBGs lead to a progressive 
reduction in computational time and memory required to assemble a genome [96, 100], 
bringing the time complexity of genome assembly down to O(|G|) where |G| is the 
genome size. This makes dBGs more suitable to assemble deeply sequenced genomes, 
especially when working with short-reads technologies.

Since their introduction, dBG-based assemblers performed well with bacterial and 
small eukaryotic genomes but needed a substantial amount of time and memory when 
handling large eukaryotic genomes [101]. For example, ABySS, one of the pioneering 
dBG-based genome assemblers capable of assembling mammalian-sized genomes [118], 
needed 87 h on a cluster of 21 eight-core machines, each one equipped with 16 GB of 
RAM, to assemble a human genome in > 4 million contigs. Moreover, dBGs rely on 
perfect k-1 overlaps between k-mers. This poses a challenge when dealing with long 
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error-prone reads, as it gives rise to branches in the assembly graphs [119]. Thus, while 
the construction of dBGs is theoretically dependent on the genome’s size, the inevitable 
inclusion of sequencing errors can inflate the graph size.

The challenges in assembling large and complex genomes pushed researchers to find 
ways to optimize dBG construction by optimizing k-mer enumeration and reducing 
the size of the dBG to be stored in memory [116, 120]. This approach was pioneered 
by the developers of the assembly software SparseAssembler [121], which builds sparse 
dBGs by storing only a subset of k-mers evenly distributed across the input reads. This 
approach (conceptually similar to minimizers) allows to preserve the overall graph struc-
ture while storing only a small fraction of the nucleotides from the input data, thereby 
decreasing memory usage and speeding up graph construction. Indeed, SparseAssem-
bler is reported to assemble a 370-Mbp rice plant genome in 5 h, reaching a memory 
peak of 5 GB. They showed a notable reduction compared to other popular assemblers at 
the time, such as AbySS, which required 13 h and 69 GB of RAM to complete the same 
task with comparable assembly quality [121].

Following SparseAssembler, new tools optimized the construction of sparse dBGs by 
opting for a minimizer-centric approach. This approach is particularly powerful when 
combined with long error-prone sequencing reads of large genomes, where the number 
of k-mers to be stored in memory becomes a serious burden on the performance of the 
assembler.

The MBG tool identifies minimizers in the input sequences and stores their position 
on the reads. A dBG is constructed by using the minimizers as nodes and connecting 
them with edges if they are adjacent in a read [55, 56] (Fig. 5). Following graph cleaning 
and compaction, the dBG is converted back to the original base pair sequence. Simi-
larly, rust-mdBG identifies minimizers from the original reads and subsequently scans 
the reads to pinpoint their positions. Then, it creates a set of tuples, each containing a 
specified number (k′) of adjacent minimizers. The order of these minimizers in a tuple 
is determined by their relative positions on the reads. These minimizers can appear 
multiple times within the same tuple or across different tuples, mirroring their occur-
rences in the original reads. In the resulting dBG, these tuples become the nodes, with 
edges established between nodes if there is a k′-1 overlap between the corresponding 
tuples [75]. The minimizer-space dBG construction results in a notable reduction in 
graph size, given that the graph selectively retains only the bases linked with minimizers. 
This focused representation provides an effective strategy for capturing crucial genomic 
information while minimizing data storage. Finally, it enables streamlined graph com-
paction and cleaning processes before inferring the final contigs. This is achieved by con-
catenating the read sequences spanned by the minimizers within the minimizer-space 
dBG. For example, rust-mdBG assembled the human genome in 10 min using 10 GB of 
RAM with 8 threads using high-fidelity (HiFi) long reads.

At the time of its introduction, the La Jolla Assembler (LJA) was shown to achieve the 
more contiguous assembly of the human genome using HiFi reads, generating fivefold 
fewer misassemblies (i.e., incorrectly assembled sequences) than other software such 
as hifiasm and hiCanu [57]. LJA’s approach involves extracting minimizers from input 
reads, including the k-mer suffixes and prefixes of each read in the minimizer set to 
ensure that overlapping reads share a minimizer. Subsequently, a dBG is constructed in 
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the minimizer space by defining “splits,” which are substrings between pairs of consecu-
tive minimizers in the reads. These splits serve as edges connecting minimizers (nodes). 
Following dBG construction, LJA generates sequences known as “disjointing” via a 
random walk through the graph. Although disjointing may not directly correspond to 
sequences in the original genome, they efficiently preserve all the k-mers from the origi-
nal read set in a reduced number of sequences. This feature allows them to be manipu-
lated to construct a more time- and memory-efficient cdBG from k-mers extracted from 
the disjointigs [57].

Finally, minimizers can also be combined with multiple data types to improve genome 
assembly efficiency and accuracy [122]. The assembler ntJoin builds an ordered mini-
mizer sketch from both a de novo assembled genome and a reference genome [58]. This 
sketch forms the basis of an undirected graph where minimizers serve as nodes, and 
edges connect minimizers that are adjacent in at least one of the sketches. The user can 
assign weights to the edges, prioritizing either the de novo assembled genome or the ref-
erence genome. Following a pruning process that removes edges with low support, the 
sequences of minimizers along linear paths are translated into ordered oriented contigs. 
This approach’s strength lies in its ability to address misassembly and facilitate efficient 
scaffolding to a reference in an alignment-free manner.

The Wengan assembler employs minimizers to execute hybrid assemblies, combin-
ing short, paired-end Illumina reads with long PacBio and/or ONT reads [59]. Ini-
tially, Wengan constructs a cdBG from short reads, with the option for users to choose 
BCALM2 for graph compaction. The presence of repeat sequences introduces branches 
in the dBG, potentially leading to chimeric contigs. To mitigate this, an alignment-free 
approach, inspired by minimap2 (see the “Read alignment” section) [40], maps short 
paired-end reads to the resultant contigs. Junctions between chimeric regions exhibit 
lower coverage, enabling the detection and subsequent trimming or splitting of chimeric 
contigs into shorter, non-chimeric counterparts. In the next phase, Wengan capitalizes 
on long reads to generate synthetic paired reads, tailoring them with varying insert sizes 
(e.g., 0.5 kb to 200 kb with ultralong ONT reads) to span repetitive regions. These syn-
thetic reads are then mapped to short-read contigs using the minimizer-based approach. 
Given their diverse insert sizes, some reads span multiple contigs, proving especially 
beneficial when spanning contigs containing repeats. The mapping information is 
instrumental in constructing a synthetic scaffolding graph, illustrating potential orienta-
tion and distances between contigs based on the mapping of synthetic reads. This graph 
is streamlined using information from long reads and the mapping locations of their cor-
responding synthetic reads to establish accurate paths, facilitating the construction and 
validation of the assembly backbone. Finally, contigs not encompassed in the backbone, 
likely associated with repeats or short sequences, are inserted by aligning minimizers in 
the backbone with those at the edges of the excluded contigs. This strategic employment 
of minimizers enables Wengan to achieve superior contiguity in assembling the human 
genome, surpassing the benchmark set by the GRCh38 reference genome.

In conclusion, the challenges of de novo genome assembly, particularly for large and 
complex genomes, have driven the introduction of minimizers in several steps of genome 
assembly. The minimizer-centric approach, exemplified by tools like MBG, rust-mdBG 
and LJA, has proven instrumental in reducing computational burden and enhancing 



Page 21 of 35Ndiaye et al. Genome Biology          (2024) 25:270  

efficiency of graph construction, significantly reducing memory requirements. Addi-
tionally, combining minimizers with diverse data types, as seen in ntJoin and Wengan, 
enhances assembly accuracy and efficiency. Overall, the adoption of minimizers repre-
sents a pivotal advancement in de novo genome assembly, addressing challenges associ-
ated with large genomes, computational complexity, and sequencing errors.

Pangenomes

Introduction

Traditional reference genomes, which consist of linear sequences representing a single 
copy of each chromosome in an individual, fail to capture the genetic diversity within 
populations [60, 85]. This incomplete representation introduces bias in read mapping 
and downstream analyses, in particular “reference bias,” which is when read aligners 
penalize differences between the reads and the reference (i.e., genetic variations), result-
ing in fewer mapped reads or lower reported mapping quality [123]. Such biases impede 
discoveries on genotype–phenotype associations and gene function [124]. Pangenomes, 
encompassing the entire genomic diversity within a species or group of related species, 
offer a solution. Mapping sequences, particularly short reads, against a pangenome has 
been shown to reduce bias compared to more traditional methods (the “Read alignment” 
section) that map to the classic reference genome [61].

The concept of pangenomes, initially applied to bacterial genomes, has expanded to 
eukaryotic genomes, focusing on structural variants and haplotypes across individu-
als and populations. Pangenome representations range from collections of core genes 
and accessory genes in prokaryotes [125–127], to complex graphs of whole genomes 
or regions of interest capturing genetic variation in eukaryotes [60]. See review articles 
[128] for a history of pangenomes, [129, 130] for pangenome data structures, [131, 132] 
for pangenome construction, and [62, 133, 134] for their applications.

Various solutions have been proposed to store, analyze, and represent pangenomes. 
Originally, core and dispensable genes were identified through traditional align-
ment approaches like Smith-Waterman [135], which aligned linear representations of 
genomes or gene sets (sequence strings) of the genomes of interest. This approach dis-
tinguishes gene sets that align across all genomes (i.e., core genes in bacterial strains) 
from those that do not (dispensable genes) [125]. Orthology calling approaches comple-
mented this by analyzing gene homology across genomes using tools like BLAST and 
OrthoMCL, categorizing genes based on their presence across gene families [136, 137]. 
While using genes themselves as the input streamlines this process, they depend heavily 
on the accuracy of the initial gene annotations [138]. However, these strategies primar-
ily suit prokaryotic genomes, rather than eukaryotic ones. Moreover, they struggle to 
scale with increasing genome numbers and sizes. To address these limitations, another 
strategy involves indexing and compressing aligned sequences to optimize memory use 
and accelerate gene alignments, exploiting identical regions in sequence collections [139, 
140]. This approach, though efficient in memory reduction, generally fails to adequately 
represent longer genetic variations, such as translocations, inversions, or duplications, 
due to its reliance on classical methods which assume collinearity [60, 141]. Pangenome 
reference graphs (PanRG) have emerged as an efficient alternative, leveraging graph 
structures to accurately represent genetic variation [132].
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A basic approach to creating a pangenome graph involves constructing a compacted 
de Bruijn graph (cdBG) from a set of genomes. Recall that minimizers can be used to 
efficiently provide a more compact representation of such graphs (Fig. 5). However, this 
approach does not store information about the origin of sequences that come from dif-
ferent samples [99, 142, 143]. Colored cdBGs (ccdBGs) were introduced to label k-mers 
with sample information with a different color in the graph as is done in Bifrost or Fulgor 
(the “Representing de Bruijn graphs” section) [52, 97]. However, ccdBGs do not store 
the chromosomal coordinates, preventing the mapping of genomic features. VG (vari-
ation graph) is a toolkit for creating and manipulating pangenome graphs where each 
node is a sequence and paths represent potential sequences of a population. Such graph 
structure has been extensively leveraged by the VG team and others for DNA/RNA read 
alignment, variant calling, and genotyping [144]. Scaling up pangenomes to hundreds 
of human genomes remains computationally challenging and current efforts focus on 
developing methods able to accurately capture genomic variants across more genomes 
[131, 145].

Minimizers play a critical role in the construction and indexing of pangenome graphs, 
enhancing the efficiency of genome graph algorithms. These algorithms, such as mini-
graph, the PanGenome Research Toolkit, Giraffe, and Pandora, use minimizers, which 
finally results in improving their memory and time efficiency, in addition to enhancing 
the accuracy of read mappings [60–63].

Eukaryotic pangenome methods that use minimizers

A well-known tool for building pangenome graphs is minigraph, which is also designed 
for mapping sequences to the graph [60]. The minigraph software constructs the graph 
iteratively by mapping each assembled sequence to an existing graph. Nodes in the 
graph are sequences which are stored in the format of the reference graphical fragment 
assembly (rGFA) benefiting from a stable coordinate system. Such coordinates allow for 
referencing any sequence to the positions of an input classic linear reference genome.

To map sequences to the graph, minigraph adopts a strategy akin to minimap2 (the 
“Read alignment” section). First, it identifies seed minimizers from node sequences and 
the query sequence, resulting in anchors. Then, linear chains are found without con-
sidering the graph topology. Finally, the second round of chaining takes into account 
whether they are connected on the graph or not. Compared to minimap2, minimizers 
can be more distant from each other in minigraph’s chaining allowing for mapping chro-
mosome-long query sequences. Besides, minigraph is equipped with new heuristics for 
handling large gaps by speeding up the chaining process [60, 146]. In contrast to other 
graph aligners, such as GraphAligner and VG toolkit, which are limited to mapping 
small variations, minigraph’s approach allows for handling larger genomic variations. 
One drawback of minigraph is that it cannot call variations smaller than 50 bases. This 
limitation is addressed in minigraph-cactus using a base aligner [145, 147]. Furthermore, 
minigraph’s dependency on a linear reference genome for graph construction might 
introduce a bias, in contrast to VG. The authors contend that reference pangenomes 
should not replace classic linear genomes, but complement them, as reference pange-
nomes excel at identifying longer variants within more “problematic” regions, while lin-
ear genomes remain effective for analyzing smaller variations in more stable regions. Of 
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note, minigraph has been used for constructing the first human reference pangenome 
[145, 147].

In contrast, there are methods that focus on smaller regions instead of whole genomes 
but are able to model them in different resolutions. The pangenome research toolkit 
(PGR-TK) [62] does not have a stable coordinate system but uses an index based on min-
imizers. It uses sparse hierarchical minimizer pairs as nodes of the graph. This frame-
work reduces the time and storage needed to construct the graph using new parameters 
like the minimum distance between minimizer pairs to adjust the level of detail or vari-
ation size of interest. This has proven useful to study complex human genome regions of 
interest like the MHC class II locus or the ampliconic genes OPN1MW and OPN1MW2 
[62].

In mapping applications, the VG-MAP algorithm [85], part of the VG toolkit, faces 
challenges with its time and cost efficiency due to the large number of paths it evalu-
ates in the graph, being an order of magnitude slower than typical linear mappers. Con-
versely, Giraffe [61] achieves at least one order of magnitude less time than VG-MAP 
and can be even faster than linear mappers such as BWA-MEM (the “Read alignment” 
section). Giraffe uses several techniques to optimize the process. First, it leverages previ-
ously observed genomic paths to constrain the alignment search space, rather than com-
binatorially expanding the possible paths in the graph. Second, it uses a BWT to index 
haplotypes, split into sequences of nodes in the VG pangenome graph. Crucially, Giraffe 
uses minimizers (k = 29 and w = 11) for finding matches between reads and the node 
sequences, as the seed of the seed-and-extend approach. A hash table is used for index-
ing the minimizers where keys (k-mers) and values (a pointer to a sorted array of hits 
as graph positions) are 64 and 128 bits, respectively. Minimizers in high-scoring clus-
ters of seeds with minimum graph distance are extended, forming gapless alignments for 
most low-error short reads. When gapless alignment is not possible, gapped alignment 
is performed using dynamic programming [61]. In summary, using minimizers not only 
optimizes alignment efficiency but also underscores their role in advancing pangenome 
mapping technologies.

Prokaryotic pangenome

While eukaryotic pangenome methods leverage minimizers for enhanced resolution and 
efficiency, prokaryotic genomes present particular challenges as well. Bacteria harbor a 
vast genetic diversity within a species, much of which is not captured by a single genome. 
The underrepresentation of genetic diversity associated with the classic linear genome 
references is especially problematic in bacteria. This disparity underscores the necessity 
of the PanRG to accurately represent the full spectrum of genetic material, especially 
considering that the core genes that are present in the single-reference genome are only 
a small percentage of the number of individual’s genes [63].

For variant calling, most graph-based methods, adept for human pangenomes, often 
require a linear reference genome and/or generate a genome-wide PanRG. However, 
Pandora [63] offers a novel solution capturing the diversity of prokaryotic pangenom-
ics by introducing “local” graphs. A pandora PanRG is an unordered collection of sev-
eral local graphs, which are directed acyclic. Each local graph is created from an MSA 
of a genomic region (genic or intergenic) from assemblies of different species or strains 
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using a recursive clustering algorithm on MSA’s rows and columns. The local graphs are 
indexed using a minimizer scheme (with parameters of k and w) generalized to sequence 
graphs by considering paths of sequences with length w + k − 1 as the minimizer win-
dow. When mapping reads to PanRG, Pandora decides which local graph (i.e., a genomic 
region) is present in the sample. To do so, another graph is constructed where each node 
is a minimizer and an edge shows adjacent minimizers on the original local graph. Pan-
dora uses a global index to map each minimizer to local graphs, which is used for com-
paring them to reads’ minimizers and finding hits. Finally, genotyped variants are found 
using a maximum likelihood approach based on a Poisson model reported in a file with 
variant call format where the chromosome field represents the local graph [63].

This advancement in prokaryotic genome analysis complements the progress made in 
eukaryotic pangenome methods, where minimizers also play a crucial role. As genome 
sequencing becomes increasingly widespread, pangenomes are likely to become the 
new standard for reference genomes. Such large amounts of data need efficient stor-
age solutions and search algorithms. The implementation of minimizers has been key to 
scaling up the construction of variation graphs, with successes such as assembling the 
draft human pangenome [145]. The integration of minimizers across different genomic 
studies exemplifies their contribution to modern genomics of less well-studied species, 
which may exhibit even more genetic variation than humans.

Metagenomics

Metagenomics is the study of genomic sequences from the natural environment, often in 
large quantities. The goal is to identify the microbial taxa that exist in complex biological 
and environmental samples [148, 149]. This field encounters various computational chal-
lenges in identifying samples due to the complex definition of species or subspecies of 
certain bacteria or viruses. The initial challenge arises from high-throughput sequencing 
technologies that generate millions of reads. There are two different analyses to process 
these large quantities of data: first, classifying the taxonomy and, second, assembling it 
(Table 1).

Metagenomics classifiers

To classify metagenomic data, a reference database is usually needed. The amount of 
previously stored sequences and how quickly the classifier can retrieve the data are 
important in determining the efficiency of the classifier [148]. Expanding the reference 
database can improve classification, but if the taxa are not known, or very different from 
the database, it can be difficult for classifiers to identify the origin of each read of the 
sequenced sample. Additionally, the larger the database, the longer the run time can take 
[148].

There are several read classifiers in the field of metagenomics that use k-mers and 
minimizers to maximize efficiency and precision. One of the first classifiers is called 
MEGAN, a metagenome analyzer that examines a set of unknown DNA sequences and 
compares them against databases of known sequences using BLAST [150]. MEGAN 
finds the lowest common ancestor (LCA) of BLAST hits to assign reads to taxa. This tool 
pre-dates the use of k-mers and minimizers but is an important milestone in the devel-
opment of more efficient classifiers.
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Kraken exceeds the speed and accuracy of MEGAN by using exact-match database 
queries of k-mers rather than the alignments of sequences [64, 151]. Kraken’s database 
contains both k-mers and the LCA of all organisms whose genome contains that k-
mer. Sequences are classified by searching the database for each k-mer and then using 
the LCA taxa to determine the appropriate leaf label of a species in a phylogenetic tree 
with the default of k = 31. In short, to classify a sequence S, the algorithm collects all 
the k-mers within that sequence denoted as K(S) and then maps each k-mer to the LCA 
taxon of all the genomes that contain the specific k-mer. Then, the LCA taxa and the 
ancestors build a “classification tree” which is used to classify S by assigning a weight 
to each node calculated as the number of k-mers associated with it. Finally, the root to 
leaf path in the classification tree is scored by the sum of all the node weights within the 
path. The maximum score of the root to leaf path is then deemed the “classification path” 
and the sequence S is assigned to the label corresponding to its leaf [45]. One of the con-
straints of Kraken is the memory usage. The Kraken database requires 70 GB (based on 
the dataset in [65]), which can grow larger with more genomes added by the user.

Kraken2 improved upon Kraken by changing the structure from a sorted pair list of 
(k-mer, LCA) indexed by minimizers to a compact hash table which is used to map mini-
mizers to LCAs [65]. Storing only minimizers of length s, (s ≤ k), instead of keeping all 
the k-mers, significantly reduced the reference database to 10.6 GB based on the dataset 
in [65], which is a sixfold decrease in memory usage. Kraken2 uses the standard linear-
time algorithm for computing minimizers in which s-mers are minimizers. This algo-
rithm uses a double-ended queue in which candidate s-mers are put in the back of the 
queue, keeping their original position in the sequence. When a new candidate is found, 
the old candidates with greater values in terms of lexicographical ordering are removed 
and the new candidate is pushed to the back of the queue [27]. The computational com-
plexity of this approach of calculating new minimizer is O(1) in contrast to Θ(k) for the 
first version of Kraken.

K2Mem (Kraken2 with memory) is a classifier based on Kraken2, bolstered with an 
enhanced memory requirement. The classifier detects novel minimizers from the input 
sequencing data and stores them to improve the classification of reads [66]. The process 
has two main steps. First, all reads are processed and the new minimizers are stored in 
an additional minimizer map revealing the taxa. Second, the same input reads are clas-
sified using the compact hash table while additional minimizers are found. Compared to 
Kraken2, K2Mem has better total time (from start to finish), due to the new minimizer 
search phase. Its classification time (time to classify a read) is similar to that of Kraken2, 
but it requires slightly more memory due to the additional minimizer map.

Most classifiers work with short reads since that is often what is available with 
metagenomic datasets. However, the MetaMaps algorithm was developed to analyze 
long-read metagenomic datasets. It works by mapping each long read using a minimizer-
based approximate mapping strategy [67]. Since it is becoming increasingly common to 
have long-read datasets due to improved technology and cost efficiency, these long-read 
algorithms have vastly improved the field.
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Metagenomic assemblers

The second type of software tool that we review in the field of metagenomics is metage-
nome assemblers (Table  1). While de novo genome assembly (the “De novo genome 
assembly” section) typically deals with a genome of a single species, metagenomic 
assemblers face two main challenges: distinguishing between repeats/orthologous 
sequences and species as well as coping or accounting for different coverage levels per 
species [152]. In this section, we survey MetaProb2, an algorithm that uses minimizers 
for assembling the metagenomic data.

MetaProb2 is an unsupervised metagenomics binning method that uses minimizers 
to assemble reads into unitigs [68]. First, reads are grouped based on their common 
subsequence using minimap2 (assumed to be of the same species) and then assembled 
using long-read de novo assembly algorithms, such as miniasm. The use of minimizers 
is critical because it stores a fraction of the k-mers to perform all-vs-all comparisons 
between sequences, which results in faster computation and lower memory usage. Based 
on the information provided by the overlap detection along with the paired-end reads, 
the assembler groups unitigs that are likely from the same species. Lastly, the inferred 
number of species and their abundance in the sample are kept using sequence signatures 
based on k-mer statistics. Overall, MetaProb2 has good performance in terms of preci-
sion and recall when comparing real and simulated datasets. Recently, metaMDBG has 
been proposed [153] for metagenomics assembly from HiFi reads which works in the 
minimizer space (see the “De novo genome assembly” section). Minimizers are a cru-
cial step forward in the field of metagenomic classification and assembly tools both with 
computational speed and memory usage.

Minimizer alternatives
The use of minimizers has become increasingly popular in bioinformatics for efficient 
sequence analysis. However, several alternative methods have been proposed to increase 
the efficiency and overcome the limitations of minimizers, especially in scenarios with 
highly divergent sequences with substitutions and indels where k-mer-based approaches 
are prone to fail.

Universal hitting sets (UHS)

Universal hitting sets (UHS) were introduced as an alternative to minimizers with the 
hope to decrease the resulting density. A UHS is a set of k-mers that is guaranteed to 
have at least one hit in every L long sequence. While a complete set of all possible k-mers 
serves as a UHS, the focus lies in finding the optimal UHS, the smallest set satisfying this 
criterion [36].

The process of identifying the most compact UHS presents a significant chal-
lenge, classified as nondeterministic polynomial-time (NP) hard. However, certain 
heuristic approaches offer partial solutions [36, 154]. The DOCKS algorithm is one 
such heuristic, operating in a two-phase manner: initially, it constructs a complete 
dBG and determines the minimum number of vertices required to remove to make 
the dBG acyclic. Subsequently, DOCKS eliminates the smallest possible vertex set 
to ensure that it covers all paths of length (L-k). Although the initial phase is poly-
nomially solvable, the latter phase is NP-hard necessitating heuristic strategies for 
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better resolution [36]. PASHA [154] is a method similar to DOCKS, which is identi-
cal to DOCKS in its first step but uses a randomized parallel algorithm to enhance 
speed and efficiency. While UHS provides a smaller and more evenly distributed set 
than a minimizer scheme, its computational demand escalates exponentially with an 
increase in k, limiting DOCKS and PASHA’s practical application to k < 13 and k < 16, 
respectively. Nonetheless, these methods can reduce the density by up to 30% com-
pared to random minimizers [155].

Most of the algorithms designed for constructing a UHS offer the flexibility to take 
a target sequence as input. This enables the algorithms to incorporate k-mers from 
this target sequence into the final UHS with a higher probability than k-mers that 
are not in the target sequence. This feature is particularly beneficial for tailoring 
the UHS to be more effective for sequences of interest, such as the human genome. 
In the subsequent section, we will explore polar sets, a closely related concept that 
addresses the challenge of creating sequence-specific sketches.

Sequence‑specific minimizers via polar sets

Unlike UHS, which ensure coverage by guaranteeing at least one hit in every L-long 
sequence, polar sets are designed to guarantee dispersion. This means that each pair of 
selected k-mers in a polar set is spaced at least L nucleotides apart, ensuring that each 
L-long window is hit at most once [156]. Polar sets achieve a low-density sketch, approx-
imating the theoretical lower bound (1/w), and are effective even with large k values. 
Finding polar sets is shown to be NP-hard, but a heuristic algorithm is proposed to iden-
tify their approximations in linear time. Similar to UHS, polar sets require a lookup table 
for each k-mer in the query sequence. This is a drawback for non-random minimizers 
that do not use a hash function [156].

Asymptotically optimal minimizers

Miniception introduces an innovative approach by utilizing a secondary smaller mini-
mizer to improve the efficiency of the primary, larger minimizer [32]. Specifically, the 
“smaller” refers to a minimizer with a smaller window size (w0) and k-mer length (k0), 
whereas the “larger” minimizer operates with a larger window size (w) and k-mer length 
(k), where k = k0 + w0 and w > w0. This dual-minimizer setup has been shown to achieve 
an upper bound expected density of 1.67/(w + 1), which is lower than the 2/(w + 1) 
density of traditional random minimizers. Moreover, similar to the random minimizer, 
Miniception operates with linear time complexity, making it more efficient than UHS or 
polar sets, which are slowed down by their need for table lookups. Such k-mer precom-
putation of a lookup table during sketching is not a requirement for Miniception, allow-
ing high scalability to large values of k without the overhead of managing precomputed 
k-mer sets. While having these advantages in time and memory performance, the lower 
bound of the resulting sketch (1.67/(w + 1)) is higher than the theoretical lower bound 
(1/w), which can be achieved using UHS or Polar Sets.

Syncmers

Minimizers are a context-dependent method, meaning that the selection of a k-mer can 
be influenced by mutations in positions outside of the k-mer within the same window. 
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Syncmers are designed with the principle that resistance to mutation (i.e., degree of con-
servation) is more important than achieving a sketch with low density. Syncmers work 
by selecting k-mers by inspecting the position of the smallest-valued substring of length 
s (s-mer where s < k) within the k-mer [23]. Variations of syncmers have been proposed, 
one of which is closed-syncmer; a k-mer is selected if the smallest s-mer is located at 
either its first or last position, making syncmers a context-free method. Selection of a 
k-mer solely depends on its own sequence, not on its flanking sequence. The authors 
also present evidence that syncmers can attain higher conservation and lower density 
compared to minimizers, as utilized by the minimap2 read mapper and the Kraken tax-
onomy classification algorithm [23]. It is shown theoretically that syncmers can decrease 
the chaining time without significantly increasing extension time in a seed-chain-extend 
heuristic of read alignment [157].

Strobemers

The syncmer scheme represents an advancement of k-mer-based methods by minimiz-
ing the impact of mutations through a context-free selection process. However, they 
are, at their core, still susceptible to the intrinsic limitations of k-mer-based approaches, 
where even minor mutations can alter the selection and representation of k-mers, poten-
tially affecting alignment accuracy and efficiency. In contrast, strobemers aim to address 
and mitigate these limitations more effectively by employing a novel strategy that links 
two or more spaced k-mers (strobes). These strobes are extracted from non-contiguous 
sequences (variable intervals within the sequence), resulting in a higher level of flexibility 
and robustness achieved by strobemers [158]. This approach allows for the accommoda-
tion of indels and more complex mutations without losing the ability to accurately iden-
tify and align sequences [158]. Despite the advantages of strobemers, they do require 
more parameters to optimize than other techniques like minimizers.

Building on the concepts of strobemers and syncmers, Strobealign is designed as a 
faster and more accurate alternative to traditional aligners (e.g., bowtie2, minimap2) for 
aligning read sequences. Strobealign works by first using syncmers to create a sketch of 
the sequence. These sketches are then linked to form strobemers, employing variable 
size and fuzzy seeds for alignment. This innovative process reduces the number of seed 
candidates, resulting in enhanced speed maintaining high accuracy [159].

In summary, alternative methods to minimizer enhance sequence sketching by lower-
ing the density and improving the resilience to mutations. Each of these methods offers a 
unique approach yet, retaining similarities to minimizers. These methods present varied 
trade-offs between density, speed, scalability, and complexity of parameters to choose, 
making the choice of the most suitable approach dependent on the specific needs and 
requirements of the analysis.

Discussion and conclusion
Minimizers are an effective approach to reduce the data complexity and volume that 
needs to be dealt with by genomics methods to efficiently utilize or simply query infor-
mation. This is achieved by creating “sketches” of sequences that occupy less space 
compared to the sequences themselves. We presented examples of extensions of the 



Page 29 of 35Ndiaye et al. Genome Biology          (2024) 25:270  

minimizer scheme and applications in different data processing techniques. The versatil-
ity and effectiveness of minimizers make them a valuable tool for solving a wide range 
of problems, particularly in genomics. Here, we reviewed five important applications of 
minimizers including read alignment, read correction, genome assembly, pangenomics, 
and metagenomics. Specifically, when it comes to de novo genome assembly, the combi-
nation of de Bruijn graphs and minimizers is a powerful approach, achieving contiguous, 
high-quality assemblies of large genomes. In metagenomics, minimizers significantly 
improved classification and assembly methods tackling many challenges of complex-
ity that arise with millions of short-reads and the memory space used by genomic 
sequences. Nevertheless, minimizers have several other uses such as k-mer counting 
[160], sequence compression [161], contamination detection and sequence classification 
[162, 163], querying databases [164, 165], synteny detection [166] in addition to variant 
calling, and multiple sequence alignments [167].

Limitations of minimizers, especially in reducing density to the theoretical minimum, 
inspired researchers to devise alternative algorithms such as universal hitting sets (UHS), 
syncmers, and strobemers. Another limitation of minimizers became evident in estimat-
ing sequence similarity which is shown to be a biased estimator [168] which is addressed 
by developing “minmer,” a new scheme where several k-mers are selected per window 
[169]. While these new algorithms have their own constraints, they attempt to enhance 
the efficiency of minimizers in specific scenarios and to a certain extent. Another chal-
lenge is the choice of parameters including the k value and the window size, which is not 
the case for full-text indexing approaches like FM-index [140] or MOVI [170]. Notably, 
a variable-length minimizer scheme (called finimizers) has recently been proposed guar-
anteeing maximum minimizer frequencies [171]. Overall, minimizer-based approaches 
will continue to evolve and improve as technology advances and the cost of sequencing 
and memory usage decreases. Specifically, lines of research are concerned with theo-
retical error analysis and investigating how to choose the efficient minimizer ordering to 
best approach the theoretical minimum density.

The minimizer and alternative approaches can be used in several new applications, 
specifically for methods that are based on k-mer counting (metagenomics abundance 
estimation), sequence comparison (gene clustering), and feature selection (convolutional 
neural networks [172, 173] and gene regulatory network [174, 175]), in addition to pre-
processing techniques, such as partitioning sequence data for efficient parallel process-
ing and storage.
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