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Abstract 

Single-cell RNA-sequencing (scRNA-seq) provides gene expression profiles of individ-
ual cells from complex samples, facilitating the detection of cell type-specific marker 
genes. In scRNA-seq experiments with multiple donors, the population level variation 
brings an extra layer of complexity in cell type-specific gene detection, for example, 
they may not appear in all donors. Motivated by this observation, we develop a sta-
tistical model named scCTS to identify cell type-specific genes from population-level 
scRNA-seq data. Extensive data analyses demonstrate that the proposed method iden-
tifies more biologically meaningful cell type-specific genes compared to traditional 
methods.
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Background
Single-cell RNA sequencing (scRNA-seq) allows the quantification of gene expression 
levels in individual cells [1–3]. In recent years, the scRNA-seq technologies have been 
successfully applied to answer a variety of biological questions, for example, to discover 
new cell types [4], estimate cellular composition in tissue samples [5], uncover novel bio-
logical mechanisms in different biological systems [6–8], etc. Compared to traditional 
bulk RNA sequencing (RNA-seq), the major advantage of scRNA-seq is that the single-
cell expression provides information for understanding the cellular heterogeneity of 
complex samples. A major source of cellular heterogeneity is the cell types, that is, a 
complex sample usually consists of many different types of cells which are functionally 
different. Traditionally, the cell types are defined by their morphological or phenotypical 
features. An often-used technology to define cell type is to use flow cytometry to sort 
cells according to certain cell surface markers. With the gene expression data, the cell 
types can be defined by the expression values of some cell type-specific (CTS) genes, 
which have distinct gene expression profiles in different cell types.
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The CTS genes are defined as the genes with strong differential expression among 
cell types. These genes are often of great interest because they are closely related to 
the cellular identity and function, and potentially the pathologies of different diseases 
[9–11]. They are also useful in various data analysis tasks including cell type annotation 
and identification in scRNA-seq [12] and bulk data deconvolution [13]. For example, in 
scRNA-seq data analyses, a fundamental step is to identify the cell types for all cells. 
There are many cell type annotation methods, either unsupervised [14–16] or super-
vised [17–20]. Most of these methods contain a feature selection step where only the 
expression values for the CTS genes are used. The non-marker genes express uniformly 
in all cell types, thus do not contain information of cell types. Therefore, the feature 
selection step enhances the signal to noise ratio in the data and will lead to better results.

Studies on CTS genes have a long history. Before the wide application of high-through-
put technologies, only limited number of CTS genes can be identified with low-through-
put techniques such as western blot, northern blot, or RT-qPCR. Researchers have 
manually curated CTS genes to systematically study cell types under different conditions 
[21]. With the advances of high-throughput technologies (e.g., gene expression microar-
ray or RNA-seq), CTS genes can be identified more efficiently. However, these methods 
require expressions from purified cell types to call CTS genes. The purification of cell 
types requires cell sorting which is expensive and laborious. In addition, cell sorting relies 
on specific cell surface markers, which are not always available. Compared to the tradi-
tional methods, scRNA-seq provides a much easier and efficient way to identify the CTS 
genes, i.e., they can be identified by differential expression analysis among cell types.

Various methods have been applied to identify CTS genes from scRNA-seq data. There 
are methods based on regular statistical tests for differential expression (DE) analysis, for 
example, Wilcoxon rank sum test and Student’s t test are implemented in Seurat [22] and 
Scanpy [23]. There are also more sophisticated methods like Necessary and Sufficient 
Forest (NS-Forest), which leverages the non-linear attributes of random forest feature 
selection to identify markers that are highly expressed in one specific cell type only [24]. 
Moreover, CTS genes can also be identified by feature selection methods like FEAST 
[25], ELF [26], and scGeneFit [27], which are designed to select the most representative 
marker genes for cell clustering. ZINB-WaVe + DESeq2 selects markers from differen-
tially expressed genes across different cell types [28].

All these methods were developed in early scRNA-seq days where the study only con-
tains one or a few subjects. With the cost reduction, people start performing large-scale 
population level scRNA-seq studies [29–34]. To analyze scRNA-seq data from multi-
ple subjects, all the existing methods ignore one important factor: the between subject 
heterogeneity. Their common approach is to pool cells from all subjects and perform 
differential expression test. Since the CTS genes are not guaranteed to appear in all sub-
jects due to biological or technical reasons, such an approach could lead to undesirable 
results. For example, marker genes with low prevalence in the population will likely to be 
missed. Our major motivation in this work is to design a method for calling CTS marker 
genes in population-level scRNA-seq data, with consideration of subject heterogene-
ity in a rigorous way. The result from this type of analysis is both interesting and use-
ful. Biologically, one wants to know the behavior of CTS genes, i.e., whether they would 
consistently show up in a population, or only appear in a proportion of the subjects. 
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Computationally, the CTS genes are used in several other tasks such as bulk data decon-
volution and cell type identification, so their consistency is important. For example in 
supervised cell type identification, CTS genes are implicitly assumed to appear in both 
reference and target samples [18, 19, 35–37]. If this is violated, the result would suffer.

There are some previous works considering the consistency of CTS genes cross sub-
jects. CellMarker is a manually curated resource that provides CTS genes either from 
scRNA-seq or from other experimental research in human and mouse [38]. In the 
CellMarker database, a CTS gene with more resources reported indicates greater con-
sistency. GeneMarkeR is another database that provides manually curated CTS genes 
from published results [39]. It transforms marker gene statistics across publications to 
a “marker gene score” ranging from 0 to 1. A robust CTS gene should have marker gene 
score greater than 0.5 and be specific to at most two cell types. Fischer and Gillis [40] 
identified replicable CTS genes from Brain Initiative Cell Census Network (BICCN) [41, 
42] based on two metrics: area under the receiver-operator curve (AUROC) and fold 
change, and demonstrated that they can improve bulk sample deconvolution and cell 
typing performance. Even though these works have provided valuable information about 
robust CTS genes, the methods are ad hoc and cannot be directly applied to analyzing 
new datasets.

In this work, we develop a novel statistical method named scCTS to identify CTS 
genes from population-level scRNA-seq data. We define a CTS gene as the one show-
ing differential expression between one cell type and the others. For a gene, we consider 
both its frequency of being a CTS in a population and the strength of the differential 
expression in a Bayesian hierarchical model, and call CTS genes based on the derived 
posterior probability. Our method can identify different types of CTS genes, for exam-
ple, the ones showing strong DE signal in only a small proportion of subjects, or the ones 
consistently showing weak DE signals across subjects. Real data analyses demonstrate 
that our method identifies CTS genes with more biological relevance, as well as provides 
more detailed characteristics for the CTS genes such as consistency and DE strength in 
a population.

Results
Method overview

scCTS incorporates between-subject heterogeneities in a hierarchical model to detect 
CTS markers from the population. Briefly speaking, for a specific cell type k , we first 
define a set of binary random variables to represent the underlying status for all genes 
being cell type specific. Then, for a particular gene g , if it is a maker of cell type k , we fur-
ther define binary random variables to indicate its DE states in each subject, with a con-
ditional prevalence prior. If gene g is not a marker, its conditional prevalence probability 
equals to zero and it will not show DE in any subject. Given a realization of all genes’ DE 
states in all subjects for cell type k , we then model their within-subject log fold changes 
using normal distributions, with positive means for markers showing DE and zero mean 
otherwise. Complete data likelihood is established for each cell type by combining the 
conditional distribution of log fold changes and the prior of all latent variables. The pos-
terior probability of a gene being a CTS marker in each cell type given its log fold change 
can be calculated and used to infer its CTS marker status in the population.
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scCTS does not require CTS marker genes consistently show DE in all subjects. 
Instead, it assumes a probability for them to show DE in a randomly picked subject. Such 
an assumption and the modeling on log fold change allow scCTS to flexibly detect CTS 
markers with different characteristics: (1) consistently show strong DE signal in most 
subjects (high prevalence and large fold changes); (2) consistently show weak DE signals 
in most subjects (high prevalence but small fold changes); (3) show strong DE signals in 
only few subjects (low prevalence but large fold changes). In the following sections, we 
show the advantages of scCTS over Wilcoxon rank sum test using both simulations and 
real data analyses.

Data description

Two sets of scRNA-seq data are used as blueprint for simulation and for real data anal-
yses. The first one is a PBMC Lupus data, which contains twenty-four samples from 
sixteen individuals. The samples come from two batches: in the first batch, there are 
eight control samples from eight individuals with systemic lupus erythematosus (SLE) 
disease; in the second batch, there are eight control samples and eight IFN-beta stim-
ulated samples from another eight individuals with SLE disease. In each sample, there 
are seven cell types: B cells, CD14 + Monocytes, CD4 T cells, CD8 T cells, Dendritic 
cells, FCGR3A + Monocytes, and NK cells (Megakaryocytes were excluded due to its 
extremely small composition in samples). The second dataset is one COVID-19 data-
set, which contains in total 284 samples from 196 individuals, including 171 COVID-
19 patients (22 patients with mild/moderate symptoms, 54 hospitalized patients with 
severe symptoms, and 95 recovered convalescent persons), and 25 healthy controls. The 
data were obtained from various tissue types including human peripheral blood mono-
nuclear cells (PBMCs), bronchoalveolar lavage fluid, and pleural effusion/sputum. In our 
analyses, we only select frozen PBMCs from healthy controls and severe patients with-
out comorbidities, resulting in 13 samples in total. For each of the selected sample, eight 
major cell types are kept: B cells, CD14 + Monocytes, CD 4 T cells, CD8 T cells, den-
dritic cells, NK cells, Plasma cells, and Megakaryocytes cells.

Simulation results

Overview of simulation strategy

We conduct simulations to evaluate the performance of scCTS. We compare with tra-
ditional strategies where one pools cells from all subjects and perform Wilcoxon rank 
sum test, NS-Forest, and ZINB-WaVe + DESeq2. The simulations are constructed based 
on the PBMC Lupus data. Briefly, we simulate expression profiles of 6231 genes for 
10,000 cells from 16 distinct subjects, with each subject having the same four different 
cell types. Both proportion of cells allocated to each subject, and the within-subject cell 
type proportions, as shown in Fig. 1a, align with real data observations. To pertain the 
heterogeneity in baseline expression across different subjects, mean expression of CD4 
T cells from all 16 subjects in the PBMC lupus data are extracted and adopted as the 
baseline expression of cell type 1–4 (Additional file 1: Figure S1(a)). We assume 5% of 
all genes are CTS marker genes for each cell type, and their population prevalence posi-
tively correlates with their effect size estimated from real data (details in the “Methods” 
section). In our simulation, effect sizes of markers of cell type 1–4 are simulated based 
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on empirical positive estimates respectively for B cells, CD8 T cells, FCGR3A + Mono-
cytes cells, and NK cells in the PBMC Lupus data. Because of the positive correlation 
between prevalence and effect size, some markers will have high prevalence and show 
DE effects in all subjects, while the others may occur in only a few of subjects due to 
low prevalence (Additional file 1: Figure S1(b) & Figure S1(c)). This characteristic resem-
bles observations from the real data in Fig.  2. Under above simulation strategies, our 
synthetic data mimics real data well in the aspect of gene-wise mean expression (Addi-
tional file 1: Figure S1(d)). We then apply scCTS and its alternatives to detect CTS mark-
ers. The accuracy of prediction is evaluated by ROC curve and the area under the ROC 
curve, by averaging results of 100 simulations. Detailed simulation procedures are pro-
vided in the “Methods” section.

scCTS provides better CTS gene detection

As shown in Fig. 1b, the scCTS generates the highest ROC curves regarding the accu-
racy of detecting CTS markers compared to Wilcoxon rank sum test, NS-Forest, and 
ZINB-WaVe + DESeq2, and this performance gain is consistent among all four cell 
types with varied effect sizes and proportions. For cell type 2 whose markers gener-
ally show the weakest effect of DE compared to the other three cell types, all the four 
methods output the worst prediction results, but scCTS still maintains the highest 
accuracy than the other three alternatives, suggesting its stronger robustness against 
weak effect sizes. Results displayed in Fig. 1b are obtained when data were simulated 
using cell type proportions from Fig. 1a, which are in fact derived by normalizing the 
proportion of B cells, CD8 T cells, FCGR3A + Monocytes cells and NK cells in PBMC 

Fig. 1 Simulation results. a Barplot showing proportion of cells assigned to each subject in simulations, 
together with the pie chart displaying one set of proportions for the four simulated cell types. b ROC 
curves of detecting cell type-specific DE genes for all cell types, under proportions in a. The methods under 
comparison are scCTS, Wilcoxon rank sum test, NS-Forest and ZINB-WaVe + DESeq2. c Type I error rate and 
false discovery rate from scCTS, Wilcoxon rank sum test, and ZINB-WaVe + DESeq2. For scCTS, different 
thresholds (i.e., 0.25, 0.5, 0.75, 0.95) are applied onto posterior probabilities for the identification of CTS 
markers. d AUC scores of scCTS, Wilcoxon rank sum test, NS-Forest, and ZINB-WaVe + DESeq2 in detecting 
CTS DE genes, under four different cell type compositions suggested in Figure S2(e). Both results in b, c, and 
d are summarized from 100 simulations
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Lupus dataset. To explore the robustness against different cell type proportions, we 
exhaust 35 combinations by randomly sampling four cell types from the original seven 
cell types and display their proportion combinations in Additional file 1: Figure S1(e). 
As shown, four major groups are observed, and the mean of each group only supports 
one cell type to be the majority. With redefined cell type proportions, as summarized 
in Fig. 1c, still the proposed method consistently reports the highest AUC scores than 
the other three compared methods. Overall, the proposed method is more accurate in 
detecting cell type specific markers and is more robust to weak effect sizes and varied 
cell type compositions. This is not surprising, since scCTS captures more information 
in the data. For example, if a CTS gene has low prevalence but high conditional DE 
signal, the signal will be diluted when pooling data from all individuals. Thus, tradi-
tional methods will fail to detect this gene.

In addition to accuracies in overall ranking of detected CTS marker, we also exam-
ine the statistical inference from scCTS. We investigate the type I error rate and false 
discovery rate under nominal level of 0.05 from scCTS and compare it to the alter-
natives. For scCTS, instead of P-value, it relies on the posterior probability, where 
genes with posterior probability greater than certain threshold will be reported as 
CTS markers. Four monotonically increasing thresholds (i.e., 0.25, 0.5, 0.75, 0.95) 
are selected to explore their effects on final inference, the higher the stronger sta-
tistical evidence for being a CTS marker. For comparison, we also incorporate Wil-
coxon rank sum test and ZINB-WaVe + DESeq2 into our evaluation. As shown in the 
left panel of Fig.  1c, scCTS and ZINB-WaVe + DESeq2 are more conservative than 
Wilcoxon test. Similar results were observed for FDR. We further explore the results 
and find the conservativeness is partially due to the first step filtering, where many 
genes with low prevalence and DE signal are filtered out in scCTS. These findings sug-
gest that scCTS requires stronger evidence in detecting CTS markers. In DE analysis, 

Fig. 2 CTS genes do not consistently appear in all samples. a Numbers of genes called as DE by Wilcoxon 
rank sum test in different numbers of samples for different PBMC cell types (B cells, CD14 + Monocytes, CD4 
T cells, CD8 T cells, Dendritic cells, FCGR3A + Monocytes, and NK cells). The y-axis represents the number 
of genes called DE by Wilcoxon rank sum test with FDR < 0.05 in different numbers of samples. The x-axis 
represents the number of samples (from 1 to 24). Different colors represent different cell types. b Heatmap 
represents DE state of CTS genes reported by GeneMarkeR or PanglaoDB in 24 samples of PBMC Lupus data 
for three cell types (B cells, Dendritic cells, and NK cells). Genes are sorted by the number of samples showing 
DE. The DE state represents whether the CTS genes can be called as DEG (one vs. others) by Wilcoxon rank 
sum test with FDR < 0.05 in one sample (1: yes; 0: no)



Page 7 of 24Chen et al. Genome Biology          (2024) 25:269  

being conservative is usually better than liberal, and the ranking of DE genes is more 
important than the DE gene list itself. In real practice, investigators often take the top 
ranked genes for further analyses and validation. The ROC curves show that scCTS 
provides better DE genes ranking.

Real data analysis

We carefully analyze the two real datasets (PBMC Lupus and COVID-19) to compare 
scCTS with NS-Forest, ZINB-WaVe + DESeq2, scGeneFit, FEAST, and Wilcoxon rank 
sum test. The Wilcoxon rank sum test can be replaced by other method such as two-
group t-test, but we found that these two approaches provide similar results. Thus, we 
do not include t-test in the comparison. There are different ways of applying the alterna-
tive methods. The common practice to apply alternative methods such as Wilcoxon rank 
sum test in Seurat is by pooling cells from all subjects. This requires a data integration 
step to remove technical artifacts such as batch effects. One can also apply traditional 
alternative methods on each subject separately and then combine the results from all 
subjects. Below we compare scCTS with both approaches.

CTS genes do not consistently appear across samples

We first explore the characteristics of the CTS genes detected from Wilcoxon rank um 
test. For the PBMC Lupus dataset, we perform Wilcoxon rank sum test in each subject 
for each cell type (one vs. all others). The DE genes (CTS genes) were called by FDR 
< 0.05. From these results, we find that only a small proportion of genes are called as 
DEGs across all samples (Fig.  2a). For example, in CD4 T cells, there are totally 2529 
genes called as DEGs in at least one sample among all 6231 genes. However, only 96 
genes are called as DE in all 24 samples, while 740 genes are called as DE in only one 
sample. Same trend can be observed in other cell types (e.g., CD8 T cells, NK cells) with 
varying number of DEGs called across samples (Additional file 1: Table S1). We then col-
lect CTS genes of PBMC cell types reported by GeneMarkeR [39] and PanglaoDB [43] 
and check whether these CTS genes can be identified by Wilcoxon rank sum test. For 
CTS markers reported by GeneMarkeR or PanglaoDB, we find that only part of them 
consistently show DE signal in all samples (Fig. 2b). For example, in B cells, CTS genes 
like CD19, CD79A, and CD79B are called as DE in all samples; but other CTS genes like 
LTB, TMEM156 [39] are only called as DE in some samples (LTB: 10 out of 24 samples, 
TMEM156: 17 out of 24 samples). These results imply that CTS genes may not consist-
ently appear in all samples (even under the same experimental condition). Thus, a thor-
ough evaluation of CTS genes consistency across samples is needed for both biological 
understanding of different cell types and downstream analyses like cell typing or bulk 
sample deconvolution.

CTS genes called by scCTS show different characteristics

Next, we apply scCTS on the PBMC Lupus data to call CTS genes for different cell types. 
We set the threshold for LFC in estimation procedure loosely as 0 to ensure more CTS 
genes will be detected. The CTS genes are called by P Dgk = 1|Y g > 0.95 for cell type 
k = 1, . . . ,K  and gene g = 1, . . . ,G . The genes called as CTS genes for one cell type 
have different characteristics: probability qg measuring consistency of DE signal across 
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samples, mean and variance of LFC ( mg and τ 2g  ) measuring strength of DE signals across 
samples (Fig. 3a, Additional file 1: Table S2).

The proposed method detects different types of CTS genes. First, some of the CTS 
genes have large LFC ( mg > 1) and high consistency ( qg > 0.9 ), for example, CD14, FTL, 
and TYROBP in CD14 + Monocytes. These three genes are well-known CTS genes for 
Monocytes. Our method identifies all of them but indicates that they have very different 
LFC variances across samples. Smaller LFC variance represents more stable cell type-
specific gene expression signal in the population. Thus, with comparable mean LFC level, 
CTS genes with smaller LFC variance is more preferred for analysis like bulk sample 

Fig. 3 Characteristics of CTS genes identified from samples. a Scatter plots showing different characteristics 
of identified CTS genes in PBMC cell types (B cells, CD14 + Monocytes, CD4 T cells, CD8 T cells, dendritic cells, 
FCGR3A + Monocytes, and NK cells). The y-axis represents estimated frequency of a CTS gene ( qg ) showing 
DE signal across samples, which measures consistency. The x-axis represents the mean value of log2 fold 
change ( mg ) of CTS genes in analyzed samples. The color of the points represents the variance of log2 fold 
change ( τ 2g  ) of CTS genes in analyzed samples (purple: small variance; yellow: large variance). b Boxplots of 
gene expression of all cells in different cell types for 24 samples. Six example CTS genes of CD14 + Monocytes 
(CD14, FTL, TYROBP, CTSL, TKT, and IL6R) are shown. They have different mean values of log2 fold change (LFC), 
variances of LFC (Var), and different probabilities to show DE signal (Freq) in samples. The y-axis is the log 
transformed 10 k counts. The x-axis represents samples
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deconvolution, in which a fixed gene expression profile is used as reference for all sam-
ples. This variance difference (CD14: τ 2g = 0.442 ; FTL: τ 2g = 0.173 ; TYROBP: τ 2g = 0.003 ) 
can be clearly observed in boxplot of gene expression in CD14 + Monocyte cells across 
24 samples (Fig. 3b). Compared to gene CD14 ( τ 2g = 0.442 ) and FTL ( τ 2g = 0.173 ), gene 
TYROBP has much smaller LFC variance ( τ 2g = 0.003 ) and its expression is more con-
sistent across samples in both CD14 + Monocytes and other cell types (Fig. 3b). In con-
trast, gene CD14 and FTL have greater expression variation in CD14 + Monocytes.

In some cell types (e.g., CD14 + Monocytes and Dendritic cells), scCTS also identifies 
some CTS genes have large LFC ( mg > 1), but lower consistency (e.g., qg < 0.9 ) (Fig. 3a). 
For example, gene CTSL (qg = 0.7) only shows high expression in CD14 + Monocytes 
in 16 out of 24 samples, while gene TKT ( qg = 0.25 ) in 8 out of 24 samples (Fig. 3b). 
Moreover, scCTS also identified some CTS genes with small LFC ( mg < 0.3 ) but very 
high consistency ( qg > 0.9 ) (Fig. 3a). One example gene is IL6R (estimated frequency is 
0.96), which is called as DE in only 18 out of 24 samples by Wilcoxon rank sum test for 
CD14 + Monocytes. We can observe that IL6R has higher proportion of cells with non-
zero counts in CD14 + Monocytes than in other cell types (Fig. 3b). Overall, these results 
show that scCTS detects CTS marker genes with different characteristics and provides 
more information for the marker gene properties including consistency and differential 
expression strength.

Comparison of the CTS genes detected by scCTS and Wilcoxon test

We carefully compare the CTS genes detected by scCTS (referred to as “s-markers”) 
and Wilcoxon rank sum test (“w-markers”). Note here we apply Wilcoxon test on each 
sample individually to call marker genes. Below we mainly present the comparison from 
the PBMC Lupus data (Fig. 4, Table 1). Among all genes called as CTS genes by scCTS, 
Table 1 shows the number of genes also called by Wilcoxon rank sum test in different 
number of samples. These numbers show that most scCTS marker genes only show in 
a proportion of samples. For example, in B-cell, 624 out of a total of 933 scCTS genes 
show up in only 1–8 sample. There are also some genes showing in 0 samples by Wil-
coxon test, but called by scCTS. These are genes with low signals in all samples, so they 
are failed to be detected by Wilcoxon test.

There are also some w-markers not called as s-markers, as those are the ones with neg-
ative or very small positive LFC defined as Eq. (2) (blue and gold points in Fig. 4a). Since 
we are only interested in CTS genes with higher expression in cells from target cell type 
than from other cell types, these genes are not called as s-markers. One example is gene 
CD74 in CD14 + Monocytes. In CD14 + Monocytes, CD74 has much higher expression 
than in CD4 T cells, NK cells, and CD8 T cells, but much lower expression values than 
in B cells and Dendritic cells (Fig. 4b). It is more reasonable to define CD74 as CTS gene 
for B cells and Dendritic cells instead of CD14 + Monocytes in these samples. The sig-
nificant Wilcoxon rank sum test statistic of CD74 is due to much higher proportion of 
CD14 + Monocytes than B cells and Dendritic cells (Additional file 1: Table S3, Figure 
S2), which leads to higher rank for expression in cells of CD14 + Monocytes. Besides, 
there are some w-markers with very small positive average LFC across samples (gold in 
Fig. 4a) that their DE signals are too weak to be called as s-markers.
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In addition to Wilcoxon, we also compare scCTS with other methods on the PBMC 
Lupus data. As shown in the figure S3, still most scCTS marker genes only show in a 
proportion of samples respectively by NS-Forest, FEAST, and scGeneFit. We further 
repeat above comparisons on the COVID-19 dataset. Still, among all CTS markers by 

Fig. 4 Comparison between CTS genes called by Wilcoxon rank sum test (w-markers) and by scCTS 
(s-markers). a Scatter plot of DE state of genes in target cell type. The y-axis is proportion of samples in which 
a gene being called DE (w-marker) by Wilcoxon rank sum test with FDR < 0.05 . The x-axis is the mean LFC 
defined in Eq. (2) across all twenty-four samples. Different colors represent posterior probability (pp) of genes 
that are s-markers (grey: pp > 0.95, is a s-marker; gold: pp < 0.95 , not a s-marker and with positive LFC; blue: 
pp = 0 , not a s-marker and with negative LFC). b Three example marker genes show difference between 
Wilcoxon rank sum test and scCTS. The y-axis is the log transformed 10 k counts. The x-axis represents 
samples. CD74 (Monocytes) is w-marker in all samples, but not a s-marker. FAM96B (NK cell) is a s-marker with 
DE signal frequency 0.36, but not w-marker in any sample. SNRPD2 (NK cell) is a s-marker, but not w-marker in 
any sample

Table 1 Number of genes by scCTS, categorized by number of samples showing DE from Wilcoxon 
test

The results are from the PBMC dataset without batch correction, where Wilcoxon test is applied on each of the 16 subjects

Number of 
Samples 
showing 
DE by 
Wilcoxon 
test

B cells CD14 + Monocytes CD4 T 
cells

CD8 T 
cells

Dendritic 
cells

FCGR3A + Monocytes NK cells

0 38 0 151 174 0 0 391

[1,8] 624 18 1135 408 11 13 660

[9,16] 178 347 300 45 257 272 90

[17,24] 93 622 233 25 137 453 65



Page 11 of 24Chen et al. Genome Biology          (2024) 25:269  

scCTS, most of them are only detected in a proportion of samples by alternative tools 
(Additional file 1: Table S4, Figure S4).

CTS markers detected by scCTS are more biologically meaningful

Since there are discrepancies between scCTS and alternative methods from each indi-
vidual, we next explore which method provides more biologically meaningful CTS 
marker genes. Starting from the comparison with Wilcoxon rank sum test, for the genes 
identified as s-markers but not w-markers (referred to as “unique s-marker”), they are 
either with relatively strong DE signal in only a few samples, or with weak but consist-
ent signal in most samples. FAM96B and SNRPD2 are two example CTS genes in NK 
cells (Fig. 4b). We perform enrichment analysis with the unique s-marker genes for B 
cells (38 genes), CD4 T cells (151 genes), CD8 T cells (174 genes), and NK cells (394 
genes). There are in total 87 terms corresponding to different cell types or tissues in the 
Human gene atlas database (http:// biogps. org/ downl oads/) [44, 45] in package “enri-
chR” [46]. Table 2 contains all enriched terms with adjust p-value smaller than 0.05. In 
Table 2, we can observe that in cell type B cells, CD4 T cells, and NK cells, the most sig-
nificantly enriched terms are corresponding cell types. We repeat above analyses for the 
same four cell types using unique w-markers. Results in Additional file 1: Table S5 show 
that, although B cells, CD8 T cells, and NK cells are significantly enriched by respective 
unique w-markers, CD4 T cells are not enriched and the rank of enrichment of B cells 
is lower than that by s-markers. Furthermore, from the same analyses for the COVID-
19 dataset, CD4 T cell, CD8T cells, and NK cells are significantly enriched by unique 
s-marker of corresponding cell types (Additional file 1: Table S6), while none of the 4 cell 
types are enriched by corresponding unique w-markers (Additional file 1: Table S7). We 
repeat the above analysis for the comparison between markers identified by scCTS with 
each of the other methods: NS-Forest, FEAST, scGeneFit, and ZINB-WaVe + DESeq2. 
Results of pathway enrichment from the PBMC Lupus dataset are summarized in Figure 
S5a, with detailed pathway information listed in Table S8-S15. As shown, s-markers for 
six cell types are significantly enriched in corresponding cell types, while at most three 
cell types (CD14 + Monocytes, CD8 T cells and NK cells) are significantly enriched in 

Table 2 The significantly enriched terms in unique s-markers on the PBMC Lupus dataset without 
batch correction

For each cell type, only terms with adjusted p-values < 0.05 are kept and the one corresponding to the same cell type is 
bolded. The unique s-markers are CTS genes called only by scCTS

Rank B cells CD4 T CD8 T NK cells

1 CD19 + B cells (neg. sel.)
(p.adjust: 2.79e − 03)

CD4 + T cells
(p.adjust: 7.57e − 05)

CD56 + NK cells
(p.adjust: 1.42e − 03)

CD56 + NK cells
(p.adjust: 8.33e − 12)

2 CD4 + T cells
(p.adjust: 3.84e − 02)

CD8 + T cells
(p.adjust: 7.57e − 05)

721 B lymphoblasts
(p.adjust: 1.47e − 03)

721 B lymphoblasts
(p.adjust: 1.29e − 06)

3 CD8 + T cells
(p.adjust: 4.29e − 02)

721 B lymphoblasts
(p.adjust: 1.40e − 03)

CD4 + T cells
(p.adjust: 1.22e − 02)

CD4 + T cells
(p.adjust: 1.43e − 04)

4 CD8 + T cells
(p.adjust: 2.70e − 02)

CD8 + T cells
(p.adjust: 9.06e − 04)

5 CD19 + B cells (neg. sel.)
(p.adjust: 2.99e − 02)

Heart
(p.adjust: 4.27e − 02)

6 Lymphoma burkitts (Raji)
(p.adjust: 2.99e − 02)

http://biogps.org/downloads/
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markers uniquely detected by other methods. For the COVID-19 dataset, pathway 
enrichment results are summarized in Figure S5b, with detailed information listed in 
Table  S16-S23. Still, s-markers for most cell types are significantly enriched in corre-
sponding cell types, while at most one cell type (Dendritic cells) is significantly enriched 
in markers uniquely detected by other methods. All these results together indicate that 
the marker genes detected by scCTS are more biologically meaningful than those by the 
alternative methods. Discovery of such CTS genes are the result from a rigorous mod-
eling of the data from many samples together by scCTS.

Prevalence estimates for common CTS marker genes

We further investigate the genes which are both s-markers and w-markers by comparing 
the estimated frequencies for DE from scCTS with the proportion of samples called DE 
by Wilcoxon rank sum test. In Fig. 5a, we can observe that the estimated frequency from 
scCTS is usually higher than the proportion of samples called DE by Wilcoxon rank sum 
test. One example gene is NFATC1. It is an s-marker for CD4 T cells with estimated 
frequency equals to one, while being called DE in only three out of twenty-four samples 

Fig. 5 Consistency comparison between scCTS and Wilcoxon test for genes that are both s-markers and 
w-markers. a Scatter plot of estimated frequency showing DE state by scCTS and Wilcoxon rank sum test 
of genes in target cell type. The y-axis is the estimated frequency showing DE state among samples by 
proposed method. The x-axis is proportion of samples in which a gene being called DE (w-marker) by 
Wilcoxon rank sum test with FDR < 0.05 . Different colors represent estimated mean LFC among samples 
(grey: 0 < LFC ≤ 0.30; green: 0.30 < LFC ≤ 0.6; gold: 0.60 < LFC ≤ 1.00; brown: LFC > 1.00). b Three example 
genes show difference between Wilcoxon rank sum test and proposed method. The y-axis is the log 
transformed 10 k counts. The x-axis represents samples. NFATC1 is a s-marker with weak but consistent DE 
signal in samples but called DE in only 3 out of 24 samples by Wilcoxon rank sum test for CD4 T cells. EIF4A1 is 
a s-marker with DE signal frequency 0.19 but called DE in 19 out of 24 samples by Wilcoxon rank sum test for 
CD14 + Monocytes. CXCR4 is a s-marker with DE signal frequency 0.35 but called DE in 19 out of 24 samples 
by Wilcoxon rank sum test for CD4 T cells
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by Wilcoxon rank sum test. From Fig.  5b, we can observe that the expression pattern 
of NFATC1 in cell types is similar across samples. However, its weak DE signal leads to 
small power to call DE in many samples. Benefitted from pooling samples in analysis, its 
estimated frequency showing DE is one with scCTS. At the same time, there are some 
genes with much lower estimated frequency showing DE with scCTS than the propor-
tion from Wilcoxon rank sum test, such genes including EIF4A1 in CD14 + Monocytes 
and CXCR4 in CD4 T cells (Fig. 5b). In most samples, mean expression of gene EIF4A1 
in CD14 + Monocytes is lower than in Dendritic cells. With definition of Eq. (2), its esti-
mated frequency showing DE is only 0.19. However, it is called DE in 19 out of 24 sam-
ples by Wilcoxon rank sum test. This is due to the high abundance of CD14 + Monocytes 
and low abundance of Dendritic cells (Additional file 1: Table S1). The same applies to 
gene CXCR4 in CD4 T cells. These results show that the results from Wilcoxon test will 
be greatly affected by cell proportions, which is undesirable. On the other hand, scCTS, 
by modeling the log fold change, will avoid such problem.

Results from pooling subjects, batch‑corrected data

Next, we compare scCTS with alternative methods on pooling cells from all subjects, 
which is a common approach in many tools such as Seurat. Due to subject level techni-
cal artifacts such as batch effect, we first run batch effect correction using scMerge [47], 
then call CTS genes on pooled cells using Wilcoxon test, FEAST, NS-Forest, scGene-
Fit, ZINB-WaVe + DESeq2, and scCTS. First discrepancy lies in the number of detected 
CTS markers. For example, the number of CTS marker genes detected by scCTS differs 
greatly from Wilcoxon rank sum test (Additional file 1: Figure S6-S7), and the proportion 
of detected genes shared by both methods is small, ranging from 5 to 14% in the PBMC 
Lupus dataset and 10 to 27% in the COVID-19 dataset. These results suggest a significant 
difference between CTS genes called by scCTS and Wilcoxon rank sum test. We repeat 
the pathway analyses using CTS markers from these batch-corrected data. Compared 
to the results in previous sections, results on pooled, batched-corrected data support 
a greater performance gain of scCTS over Wilcoxon rank sum test and the other meth-
ods, especially for the PBMC Lupus dataset. To be specific, in the comparison of scCTS 
with Wilcoxon rank sum test, six out of seven cell types in the PBMC Lupus dataset are 
strongly enriched with a high rank (top 1 or 2) by the corresponding unique s-mark-
ers (Table  3), and this specificity is clear for dendritic cell which is the only enriched 
term by its unique s-markers. In contrast, none of the seven cell types are enriched by 
w-markers for the corrected PBMC Lupus dataset (Additional file 1: Table S24). For the 
batch-corrected COVID-19 dataset, 6 out of 8 cell types are significantly enriched by 
the corresponding s-markers (Additional file 1: Table S25) while again none of them is 
enriched by w-markers (Additional file  1: Table  S26). Pathway enrichment results by 
unique markers from comparisons between scCTS and each of the other methods on 
the batch corrected datasets are summarized in Figure S8, with all detailed information 
listed in table S27-42. For both datasets, still most cell types are significantly enriched in 
unique s-markers while at most two cell types are significantly enriched by unique mark-
ers from alternative methods.
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In addition to unique markers, we also examine the scCTS markers with different 
characteristics: the ones showing consistently weak DE signals in most subjects (prev-
alence > 0.8 & LFC < 0.2) and showing strong DE signals in only few subjects (prev-
alence < 0.5 & LFC > 0.4). These genes are often failed to be detected by alternative 
tools such as Wilcoxon test in pooled analysis. As expected, both types of markers are 
biologically meaningful according to the pathway analyses. For example, in Additional 
file 1: Table S43, three cell types (CD14 + Monocytes, CD8 T cells and NK cells) of the 
PBMC Lupus dataset are significantly enriched in their markers that show strong DE 
signal but in only few subjects, and this situation is prominent for CD14 + Monocytes 
where the significance comes from only less than 20 marker genes. For consistently 
weak markers, two cell types (CD14 + Monocytes and CD4 T cells) are correspond-
ingly significantly enriched (Additional file  1: Table  S44). Repeated analyses for the 
COVID-19 dataset further support the biological importance of the two groups of 
markers, with stronger evidence (5 out of 8 cell types are enriched) coming from con-
sistently weak markers (Additional file 1: Table S45 and S46).

Overall, results on batch effect corrected datasets further strengthen the conclusion 
that the marker genes detected by scCTS are more biologically meaningful, and the 
performance enhancement over alternative tools is even greater than in the uncor-
rected data.

Table 3 Top 5 significantly enriched terms in unique s-markers on the batch-corrected PBMC Lupus 
dataset

For each cell type, only terms with adjusted p-values < 0.05 are kept and the one corresponding to the same cell type is 
bolded. The unique s-markers are CTS genes called only by scCTS

Rank B cells CD14 + Monocytes CD4 T cells CD8 T cells

1 721 B lymphoblasts 
(P.adjust: 2.69e − 21)

CD33 + Myeloid 
(P.adjust: 1.01e − 74)

CD4 + T cells
(P.adjust: 1.07e − 39)

CD56 + NK cells (P.adjust: 
6.31e − 32)

2 CD19 + B cells
(neg. sel.)
(P.adjust: 1.53e − 20)

CD14 + Monocytes 
(P.adjust: 4.15e − 58)

721 B lymphoblasts 
(P.adjust: 1.35e − 39)

CD8 + T cells
(P.adjust: 3.23e − 15)

3 Lymphoma burkitts 
(Daudi)
(P.adjust: 1.63e − 06)

Whole Blood (P.adjust: 
2.64e − 44)

CD8 + T cells
(P.adjust: 3.69e − 34)

CD4 + T cells
(P.adjust: 2.03e − 14)

4 CD34 + 
(P.adjust: 6.16e − 06)

BDCA4 + dendritic cells
(P.adjust: 1.95e − 07)

CD34 + 
(P.adjust: 1.59e − 13)

Lymphoma burkitts (Raji)
(P.adjust: 2.40e − 02)

5 Lymphoma burkitts 
(Raji)
(P.adjust: 1.91e − 04)

Smooth Muscle 
(P.adjust: 2.76e − 07)

CD105 + Endothelial 
(P.adjust: 1.05e − 11)

Heart
(P.adjust: 2.40e − 02)

Rank Dendritic cells FCGR3A + Monocytes NK cells
1 BDCA4 + dendritic 

cells
(P.adjust: 3.26e − 07)

CD14 + Monocytes 
(P.adjust: 1.15e − 53)

CD56 + NK cells 
(P.adjust: 5.36e − 72)

2 CD33 + Myeloid 
(P.adjust: 2.82e − 41)

CD8 + T cells (P.adjust: 
3.55e − 08)

3 Whole Blood (P.adjust: 
2.51e − 20)

721 B lymphoblasts 
(P.adjust: 5.86e − 08)

4 Smooth Muscle 
(P.adjust: 7.77e − 04)

CD4 + T cells (P.adjust: 
7.26e − 08)

5 Whole Blood
(P.adjust: 9.11e − 08)
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Discussion
Cell type-specific (CTS) genes are of great interests in biological studies because they 
serve as cell type identities and provide insights for many biological and clinical mecha-
nisms under various conditions. They can be also used in many scRNA-seq downstream 
analyses such as cell type annotation and bulk data deconvolution. Existing methods for 
identifying CTS genes from scRNA-seq data ignore the between-subject heterogeneity, 
thus generate results with low accuracy and robustness. Moreover, the characteristics 
of the CTS genes, such as their prevalence in a population, are not reported by tradi-
tional method such as Wilcoxon or t-test. This limits the biological interpretation and 
the application of CTS genes in downstream analyses. For example, if one wants to use 
CTS marker genes to annotation cell types, it is desirable to use markers that show up 
consistently in a population.

In this work, we explore the real data and discover that most of the CTS genes identi-
fied through Wilcoxon rank sum test or reported by public databases (PanglaoDB and 
GeneMarkeR) do not consistently appear in all subjects in a population. Inspired by this 
observation, we develop a novel statistical model scCTS to identify CTS genes from 
population level scRNA-seq data. Results show that our method not only identifies more 
biologically meaningful CTS genes, but also provide more information for these genes, 
including their population prevalence and conditional DE strength, which are impor-
tant and interesting information. Overall, to identify CTS genes from population level 
scRNA-seq data, we recommend applying scCTS on the batch-corrected data since that 
will provide greater performance gain over traditional methods such as Wilcoxon test.

We want to note that the major goal in this work is to develop a method that can 
expand the existing CTS marker database to include the category 2 and 3 genes. In addi-
tion to including more marker genes, scCTS also reports the population level prevalence 
of marker genes, analogous to that the SNP annotation includes minor allele frequency. 
Also, CTS markers in category 3 are analogous to genes identified from bulk data by sta-
tistical methods such as Cancer Outlier Profile Analysis (COPA) [48, 49], Outlier Sums 
(OS) [50], Outlier Robust T-statistic (ORT) [51], Maximum-Ordered Subset T-statistics 
(MOST) [52], and Detection of Imbalanced Differential Signal (DIDS) [53], which aim 
at detecting DE genes activated only in a subset of data to decipher mechanisms that 
are present in a small subset of groups. For example, DIDS identified from a subgroup 
one confirmed gene ABCB1B showing resistance to docetaxel when comparing pri-
mary tumors resistant and sensitive to treatment with docetaxel [53, 54]. Besides, the 
new marker genes can help downstream analyses, such as bulk data deconvolution and 
cell type annotation. There are recent works on using individualized reference panel for 
cell type deconvolution [55] demonstrating the importance of considering the individual 
heterogeneity of marker genes. However, one cannot simply throw the category 2 and 3 
marker genes into an existing deconvolution tool. Rigorous methods are needed to con-
sider the results such as maker gene prevalence from scCTS, which is our research plan 
in the near future.

The reason why many marker genes do not show up in all subjects is from a combi-
nation of biological and technical reasons. The results do show that the DE strength 
has a positive correlation with the prevalence, i.e., stronger marker genes tend to 
show up in more subjects. However, there exist a non-trivial number of genes with 
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rather strong conditional DE signal but low prevalence. To carefully study the behav-
ior of these genes will be interesting and our research plan in the near future. In addi-
tion, we plan to apply our proposed method on atlas-level scRNA-seq datasets and 
create an interactive database in various species or tissues. Moreover, the current 
method does not consider covariates. We will extend the model to incorporate sub-
ject-level covariates in analysis, which can help users to better identify the CTS genes 
under more complex study designs. Further note that DE analysis in single-cell data 
has more dimension than traditional bulk data. The DE can be performed among cell 
types in the same condition, or to compare each cell type between different condi-
tions. We think both comparisons are important. Developing method for comparing 
varied biological conditions of the same cell type from population-level scRNA-seq 
data is our focus in near future.

Conclusions
In this work, we develop a novel statistical model called “scCTS” that incorporates 
between-subject heterogeneity into a hierarchical model to detect CTS markers from 
population level scRNA-seq data. The model is inspired by real data observation that 
CTS markers do not consistently show DE states in all studied subjects. By introduc-
ing a prevalence prior conditioning on the marker status, scCTS allows the CTS mark-
ers show up only in a fraction of the subjects. Under the hierarchical model, we derived 
EM procedures for parameter estimation and used the posterior probabilities of being 
CTS markers for inference. Benchmark simulation studies show that scCTS significantly 
improves the accuracy in identifying CTS markers compared to traditional method 
such as Wilcoxon rank sum test. Extensive real data analyses demonstrate that scCTS 
can identify CTS markers with different characteristics, including high consistency and 
strong/weak effect sizes, and low consistency but strong effect sizes, all of which could 
help to decipher complex mechanisms under different conditions. Also, supported by 
the enrichment evidence of corresponding cell types, unique genes identified by scCTS 
are more biologically meaningful compared to the ones from alternative methods.

Methods
Subject‑level statistics representing gene’s cell type specificity

The input data of the model include scRNA-seq expression data from a population, with 
known cell types for all cells. Suppose there are N  subjects from which we want to iden-
tify CTS genes. In each subject, there are G genes and K  cell types. Let Xgikc be the nor-
malized expression for g th gene ( g = 1, . . . ,G ) of i th subject (i = 1, . . . ,N ) in c th cell 
(c = 1, . . . ,Cik) of k th cell type (k = 1, . . . ,K ) . Here, Cik represents the number of cells 
for subject i in cell type k . The normalization is done by computing the read counts per 
10,000 reads. We assume the normalized expression Xgikc is independent between genes 
and cells for all subjects. Define E

{
Xgikc

}
= µgik , and Var

{
Xgikc

}
= ω

2
gik as the mean and 

variance of the normalized expression value. Then the unbiased estimator for mean 

expression of gene g in cell type k of subject i is: Xgik =

∑Cik
c=1Xgikc

Cik
 . With Central Limit 

Theorem, when Cik is large enough, Xgik ’s approximate distribution is:
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for g = 1, ..,G; i = 1, . . . ,N ; k = 1, . . . ,K .
For the following context, we treat k th cell type as the “target” cell type for which we 

want to identify its CTS genes. In this work, we focus on CTS genes with expression at a 
higher level in only one cell type (i.e., one vs. others).

Let Ygik be the log2 fold change (LFC) of the expression for gene g in cell type k over 
the average of other cell types, in subject i . Ygik is computed as shown in Eq. (2).

A large value of Ygik indicates that gene g is a CTS gene of cell type k in subject i . Our 
computation of LFC is different from most existing methods for identifying CTS genes, 
which pool all cells and perform statistical test. In those methods, the results will be 
affected by the cell type proportions since larger cell types will have greater statistical 
power to obtain significant results. Our definition of mean expression in other cell types 
in Eq. (2) excludes the influence of cell type composition, thus will provide more stable 
results. For the procedures below, we will model Ygik for CTS gene identification. Using 
Ygik instead of the data from individual cells greatly improve the computational efficiency 
without losing much information.

A hierarchical model for CTS genes

We use the hierarchical model shown in equitation (3) to combine the DE information 
from multiple subjects. We define Dgk as a binary random variable representing whether 
gene g is a CTS gene in cell type k ( 1 : yes; 0, no). If gene g is a CTS gene in cell type 
k ( Dgk = 1 ), then it has a probability qgk to be DE (higher expression than the average 
of other cell types) in a randomly picked subject i , which is represented by binary ran-
dom variable Zgik = 1 . We further introduce a random variable �gik to represent the 
expected value of the estimated LFC ( Ygik ), and σgik is the corresponding standard devi-
ation. If gene g is a CTS marker gene in cell type k and shows DE signal in subject i 
( Dgk = Zgik = 1 ), then �gik should be greater than 0; otherwise, it should have expected 
value 0 with a small variation. Putting all pieces together, we have following hierarchical 
model:

Here, mgk is the population level mean LFC of gene g in cell type k ; τ 2gk is the population 
level variance of LFC for gene g in cell type k . Specifically, we assume mgk ≥ thres ≥ 0 and 
Zgi ⊥ Zgi′|Dgk = 1 .  thres is a threshold defined by users, since small LFC is less possible to 
be a marker and has less interest. In the estimation process, Ygik and σ 2

gik
 are estimated from 

(1)Xgik ∼ AN (µgik ,
ω
2
gik

Cik
)

(2)Ygik = log2(Xgik + 1)− log2(

∑
k′�=kXgik′

K − 1
+ 1)

(3)

Ygik |�gik ∼ N
(
�gik , σ

2
gik

)

�gik |Zgik = 1 ∼ N
(
mgk , τ

2
gk

)

�gik |Zgik = 0 ∼ N (0, τ 2gk)

Zgik |Dgk ∼ Bernoulli(qgk × Dgk)

Dgk ∼ Bernoulli(πk)
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each individual subject. The detailed procedure is provided in the Additional file  1 
Sect. "Background".

Identification of CTS marker genes

From the above model, we can obtain several interesting quantities from the model. 
First, the posterior probability of Dgk = 1 provides an overall assessment whether a gene 
is a CTS gene. At the highest level, a gene can be either CTS genes ( Dgk = 1 ) or non-
CTS genes ( Dgk = 0 ). Next, the conditional probability qgk represents the consistency 
for a CTS gene to show DE signals across subjects. The CTS genes are allowed to have 
different frequencies ( qgk ) for showing DE in individual subjects and cell types. Finally, 
mgk represents the conditional subject level DE strength once the gene is deemed CTS 
gene in a subject.

If we merely want to identify CTS marker genes, we only need to look at the posterior 
probability of Dgk = 1 . However, a gene can have large posterior probability of Dgk = 1 if 
it has large qgk ormgk , or both. From our model, different types of CTS marker genes can 
be identified: (1) consistently show strong DE signal in most subjects (large qgk andmgk ); 
(2) consistently show weak DE signals in most subjects (largeqgk , smallmgk ); (3) show 
strong DE signals in only few subjects (smallqgk , largemgk ). Usually, the second type of 
CTS marker genes are difficult to detect from testing on individual subjects one by one, 
because tests for CTS markers with weak signals have very low statistical power, espe-
cially in minor cell types. The third type of markers are difficult to identify by testing on 
pooled data, because DE signal in partial subjects can be weakened after pooling with 
other subjects without DE signals. Our proposed method overcome these limitations 
and can identify all types of marker genes.

These different types of CTS marker genes could have distinct biological meanings and 
computational utilities. For example, CTS marker genes consistently showing strong DE 
signals in all subjects (have large qgk and mgk ) are more preferred for downstream analy-
ses such as cell typing or bulk sample deconvolution, since they can robustly provide 
clear signal to represent a cell type.

Parameters estimation with EM algorithm

The parameters to be estimated from the proposed model include the following: mgk , 
population level mean LFC of gene g in cell type k ; τ 2gk , population level variance of LFC 
of gene g in cell type k ; qgk , probability of CTS marker gene g in cell type k for a ran-
domly picked subject; πk , probability of a randomly picked gene to be a CTS marker 
gene for cell type k among the subjects. Since there are a number of latent variables in 
our model ( �gik ,Zgik , and Dgk ), we develop an EM algorithm to separately estimate 
parameters in every cell type k.

Define φ(x;m, τ 2) to be the probability density at a point x of a normal distribution 
with mean m and variance τ

2 . We further define following values: 
φygik = φ

(
Ygik ;�gik , σ

2
gik

)
 ; φ0gik = φ(�gik ; 0, τ

2
gk) ; and φ1gik = φ(�gik ;mgk , τ

2
gk).

Denote �k =

{
πk , qk ,mk , τ

2

k

} , where qk = {q1k , . . . , qGk },mk = {m1k , . . . ,mGk }, τ
2

k = {τ
2

1k , . . . , τ
2

Gk }.�t are 
the parameters derived at t-th iteration. We can derive the complete likelihood for cell 
type k as follows:
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Then the log-likelihood is:

Theoretically, the estimation should be done by updating all four parameters jointly. 
For computation efficiency, we develop the following procedure to approximate the 
estimate of parameters. The general framework for the modified EM algorithm is as 
follows:

S1. Assume all genes are CTS genes ( Dgk = 1 ) and then estimate mgk , τ 2gk and qgk 
with EM algorithm ( Zgik is missing data) for each gene g = 1, . . . ,G;
S2. Based on estimated mgk and given LFC threshold thres to arbitrarily assign 
Dgk = 0 for genes with mgk ≤ thres;
S3. Estimate πk with EM algorithm, where mgk , τ

2
gk and qgk are fixed as estimates 

derived in S1; Dgk is missing data.

The details of the steps S1 and S3 are shown in Additional file 1: Sect. 3.

Simulation

Data simulation

In our simulations, we assume there are in total 6231 genes and 10,000 cells from 16 sub-
jects, and all subjects contain 4 cell types. The number of genes, subjects, and proportion 
of cells allocated to each subject are the same as those in the preprocessed PBMC Lupus 
dataset. Proportions of the four cell types are established by normalizing the propor-
tion of B cells, CD8 T cells, FCGR3A + Monocytes, and NK cells from the PBMC Lupus 
dataset. In addition, we generate extra 4 groups of cell type proportions, by exploring the 
35 sets of four-out-of-seven combinations from B cells, CD14 + Monocytes, CD4 T cells, 
CD8 T cells, Dendritic cells, FCGR3A + Monocytes, and NK cells (Additional file 1: Fig-
ure S1(e)). With the number of genes, cells, and the allocation of cells defined, the data 
are simulated according to the procedure as bellow.
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First, we generate baseline expression matrix. To mimic the natural between-sub-
ject heterogeneity in baseline expression, we directly extract the profile of CD4 T cells 
from the 16 control subjects in the PBMC lupus dataset and utilize their subject-spe-
cific mean to construct baseline profile (Additional file 1: Figure S1(a)).

Second, for each cell type k , we simulate the marker status of gene g  , by randomly 
sampling Dgk ∼ Bernoulli(πk) . We set πk = 0.05  to allow only a small proportion of 
markers for each cell type. With all marker genes determined ( Dgk = 1 ), we generate 
their mean log fold changes, mgk , by sampling from the empirical distributions esti-
mated from real data. The prevalence probability qgk is then generated according to an 
observed positive correlation between qgk and  mgk from the real data. Based on this 
strategy, some markers with large effect sizes will have high prevalence probabilities 
compared to the others with small effect sizes (Additional file 1: Figure S1(b)).

Then, we generate Zgik ∼ Bernoulli
(
Dgk ∗ qgk

)
, i = 1, 2, . . . , 16 , to determine whether 

maker g  shows DE for cell type k in subject i.
Third, for each subject i and cell type k , suppose the number of cells is nik . We simulate 

the expression count of gene g , Xi,k
gc  , based on the following negative binomial model:

In above model, µi,k
g  refers to the underlying mean and dispersion of gene g in cell type 

k from subject i. si,kgc  is a size factor containing the technical noise cause by variations in 
sequencing depth. We simulate si,kgc  from a uniform distribution of U(0.5, 5). αi

g reflects 
the baseline expression of gene g in subject i , which is obtained previously according to 
the expression of CD4 T cells.
β
i,k
g  quantifies the effect size of gene g when comparing cell type k to the remaining cell 

types in subject i . According to the above model, if gene g is a marker of cell type k and 
shows cell type DE in subject i , then 

β
i,k
g ∼ N

(
mgk , τ

2

gk

) with τ 2gk randomly sampled from 

U(0.1, 0.2) , otherwise, β i,k
g = 0 . Under this setting, even if gene g is the marker of cell-

type k , there would still be no difference between its expression and remaining cell types 
in subject i if its DE effect does not present in that subject, which is clearly shown by 
Additional file 1: Figure S1(c). Another notice about β i,k

g   is that, our simulation allows 
one gene to be the marker of multiple cell types. In this case, β i,k

g  will be further adjusted 
to avoid potential effect cancelation. For example, if gene g is the marker of both cell 
type k1 and k2 , then β̃ i,k1

g = β̃
i,k2
g =

β

i,k1
g +β

i,k2
g

2
.

Given αi
g and β i,k

g  and thus µi,k
g  , the dispersion parameter φi,k

g  is simulated as a function 
of µi,k

g : 0.01

µ
i,k
g

+ 0.1. With mean and dispersion specified, we simulate expression of all 

genes in cell type k from subject i according to the negative binomial distribution of 
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Evaluation

After deriving the simulated data, we compare scCTS method with Wilcoxon rank sum 
test. We use ROC and AUC score to evaluate the accuracy of proposed method, by aver-
aging results of 100 simulations.

Real data analysis

Filtering of cells and genes

For the lupus dataset, we first remove non-singlet cells which were already annotated in 
the dataset. We exclude megakaryocytes because they are very rare (average number of 
cells per patient < 20 ). Next, we filter out genes expressed in fewer than two cells for each 
subject and retain overlapped genes among all subjects. We normalize the gene expres-
sion by library sizes in each cell using a size factor of 1e4. For the COVID-19 dataset, we 
select frozen PBMCs from healthy controls and severe patients without comorbidities. 
In total we select 13 samples. We remove cells for two rare cell types (average number of 
cells per patient < 20 ), neutrophils and macrophages. Genes expressed in fewer than ten 
cells are filtered out for each subject, and the overlapped genes are preserved. The nor-
malization step is performed in the same manner as the PBMC Lupus dataset.

Batch effect correction

To reduce batch effects introduced by different subjects while preserving cell-type 
heterogeneity, we compare multiple batch-effect correction methods: limma [56], 
FastMNN [57], ComBat-seq [58], scMerge [47] and scMerge2 [59]. We employ Uni-
form Manifold Approximation and Projection (UMAP) [60] visualizations and local 
inverse Simpson’s index (LISI) [61] to evaluate the batch correction results. Spe-
cifically, following the methodology from a previous benchmark paper [62], we first 
calculate the iLISI and cLISI metrics for each cell on their gene-level principal com-
ponents, and then obtain the median values of the two metrics. These two median 
values are respectively normalized by the maximum and minimum of iLISI and cLISI 
metrics, denoted as iLISInorm and cLISInorm . A higher iLISInorm/cLISInorm value indi-
cates stronger homogeneity among subjects/cell types, and therefore we compute the 
F1 score as follows:

Additional file 1: Figure S9-S11 illustrate that scMerge achieves the best overall per-
formance on the two datasets. Thereby we utilize the expression matrix corrected by 
scMerge.
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