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Abstract 

Batch effects in omics data are notoriously common technical variations unrelated 
to study objectives, and may result in misleading outcomes if uncorrected, or hinder 
biomedical discovery if over-corrected. Assessing and mitigating batch effects is crucial 
for ensuring the reliability and reproducibility of omics data and minimizing the impact 
of technical variations on biological interpretation. In this review, we highlight the pro-
found negative impact of batch effects and the urgent need to address this challeng-
ing problem in large-scale omics studies. We summarize potential sources of batch 
effects, current progress in evaluating and correcting them, and consortium efforts 
aiming to tackle them.

Introduction
Batch effects are technical variations that are irrelevant to study factors of interest. They 
are introduced into high-throughput data due to variations in experimental conditions 
over time, using data from different labs or machines, or using data from different analy-
sis pipelines [1–4]. Batch effects can be commonly seen in omics data, such as genomics 
[5–8], transcriptomics [4, 9, 10], proteomics, metabolomics [11], and multiomics inte-
gration [12, 13]. Recent advances in single-cell sequencing technology (i.e., scRNA-seq) 
have provided opportunities for resolving gene expression heterogeneity in single cells. 
Nevertheless, it brings more complex batch effects to arise [14, 15]. Batch effects can 
introduce noise that can dilute biological signals, reduce statistical power, or even result 
in misleading, biased, or non-reproducible results [3]. What is worse, batch effects can 
act as a paramount factor contributing to irreproducibility, resulting in retracted arti-
cles, invalidated research findings, and economic losses [16].

Batch effects are more complex in omics data because they involve multiple types 
of data that are measured on different platforms and have different distributions 
and scales [12, 17]. Multiomics profiling is a powerful tool for identifying differen-
tial features between biological groups based on multiple omics types [18, 19], and 
has demonstrated incredible potential in biomedical research to discover biomarkers 
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for clinical diagnosis, prognosis, and therapeutic action [20–24]. The rapid advance-
ment of technology and the reduction in costs have made the analysis of multiomics 
data common in research. However, this has also led to an increase in the occurrence 
of batch effects [1]. With more researchers performing multiomics analyses, tackling 
batch effects in multiomic integration is urgently needed.

Furthermore, the challenges of batch effects are magnified in longitudinal and/or 
multi-center studies. Many longitudinal studies aim to determine how a time-varying 
exposure affects the outcome variable(s). However, technical variables may affect the 
outcome in the same way as the exposure. For example, sample processing time in 
generating omics data is probably confounded with the exposure time. Such scenarios 
are particularly problematic to identify features that change over time, because it is 
difficult or almost impossible to distinguish whether the detected changes are driven 
by time/exposure or caused by an artifact from batch effects [25].

Recently, single-cell technologies such as scRNA-seq have provided opportunities 
to gain in-depth insights into samples with heterogeneity. However, compared to tra-
ditional RNA-seq technologies, or named bulk RNA-seq, scRNA-seq suffers higher 
technical variations [26]. Specifically, scRNA-seq methods have lower RNA input, 
higher dropout rates, and a higher proportion of zero counts, low-abundance tran-
scripts, and cell-to-cell variations than bulk RNA-seq [27]. These factors make batch 
effects more severe in single-cell data than in bulk data. Batch effects and the selec-
tion of correction algorithms have been shown to be predominant factors in large-
scale and/or multi-batch scRNA-seq data [14, 15, 26].

Despite extensive research and discussions on developing and comparing batch 
effect correction algorithms (BECAs), finding solutions for tackling batch effects is 
still an active research topic. One possible reason is that the disparity in nature of the 
batch effects makes it difficult to have a one-fit-all tool. New BECAs continue to be 
developed, presenting a bewildering choice of various BECAs to investigators. Inves-
tigators may get confused in choosing a proper method, each with its own set of capa-
bilities and limitations. One could argue that the underlying cause of batch effects 
might have not yet been correctly identified, leading to conflicting or confusing con-
clusions in this field.

There have also been extensive reviews written on issues of batch effects, in RNA-seq/
microarray [4], scRNA-seq [1], proteomics [2, 28], metabolomics [11], and multiomics 
[3, 29]. A systematic review of the topic at the omics level is still much needed, due to the 
complexity of batch effects across omics types and what could be learned from the com-
monalities of batch effects across omics types. Previous research has shown that some 
issues are shared across various omics types, while others are specific to certain fields 
[17]. Consequently, several BECAs that were originally developed based on one omics 
type are shown to be applicable to other omics types [30, 31], while others are applica-
ble to certain omics type(s) as they were developed to address platform-specific prob-
lems [32]. With the rapid advancement of technology, the field of batch effects is rapidly 
evolving. Although there is already a significant body of research on this topic of batch 
effects, the idea of batch effects in omics data is not adequately addressed. Therefore, the 
field needs more work to handle the complexity and diversity of large-scale, multiomics 
data. A comprehensive review of the topic at the omics level can help investigators better 
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understand the potential sources of batch effects, and implement appropriate strategies 
to minimize or correct them.

In this review, we first highlight the profound negative impact of batch effects and the 
continuous need to address this problem. Next, we review and discuss potential sources 
of batch effects, the current progress of diagnostics and correction of batch effects, 
and consortium efforts to harness batch effects. Finally, we discuss current challenges 
and future directions to tackle the batch effect problem and push forward multiomics 
integration.

Profound negative impact of batch effects
Batch effects may lead to incorrect conclusions

Batch effects have profound negative impacts. In the most benign cases, batch effects 
will lead to increased variability and decreased power to detect a real biological signal. 
Batch effects can also interfere with downstream statistical analysis. Batch-correlated 
features can be erroneously identified in differential gene expression analysis [33–35] 
and prediction [36], especially when batch and biological outcomes are highly corre-
lated. In some worse cases, batch effects are correlated with one or more outcomes of 
interest in an experiment, affecting the interpretation of the data and leading to incor-
rect conclusions.

One example is that, in a clinical trial study, batch effects were introduced by a change 
in the RNA-extraction solution that was used in generating gene expression profiles, 
resulting in a shift in the gene-based risk calculation. This further resulted in incorrect 
classification outcomes for 162 patients, 28 of whom received incorrect or unnecessary 
chemotherapy regimens [37].

In another example, the cross-species differences between human and mouse were 
reported to be greater than the cross-tissue differences within the same species [38]. 
However, a more rigorous analysis of the data showed that data of human and mouse 
came from different subject designs, and the data generation timepoints were differ-
ent by 3 years [39]. Batch effects were responsible for the so-called differences between 
human and mouse species. After batch correction, the gene expression data from human 
and mouse tended to cluster by tissue rather than by species [39].

Batch effect is a paramount factor contributing to irreproducibility

Reproducibility is a fundamental requirement in scientific research and there has 
been a growing concern among both scientists and the public on the lack of reproduc-
ibility [40–42]. A survey conducted by Nature found that 90% of respondents (1576 
respondents surveyed) believed that there was a reproducibility crisis, with over half 
considering it a significant crisis [42]. Among the massive factors contributing to irre-
producibility, batch effect(s) from reagent variability and experimental bias are para-
mount factors [16, 42].

Irreproducibility caused by batch effects can also result in rejected papers, discredited 
research findings, and financial losses [43]. Many high-profile articles were retracted 
due to batch-effect-driven irreproducibility of the key results [44, 45]. For instance, the 
authors of a study published in Nature Method identified a genetically encoded, fluo-
rescent serotonin biosensor with high affinity and specificity [46]. However, the authors 
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later noticed that the sensitivity of the biosensor was highly dependent on the reagent 
batch, especially the batch of fetal bovine serum (FBS). When the batch of FBS was 
changed, the key results of the article could not be reproduced. The article was therefore 
retracted [44]. Moreover, despite overcoming many barriers and challenges [47], RPCB 
(Reproducibility Project: Cancer Biology) team still failed to reproduce over half of high-
profile cancer studies [40, 41], highlighting the importance of eliminating batch effects 
across laboratories and making scientific results reproducible.

Sources and possible solutions for addressing batch effects
The fundamental cause of batch effects can be partially attributed to the basic assump-
tions of data representation in omics data [13]. In biomedical research, the concentration 
or abundance (C) of an analyte in a sample is crucial, and measurement technologies 
aim to provide the information. In quantitative omics profiling, the absolute instrument 
readout or intensity (I)—such as FPKM, FOT, or peak area, regardless of any per-sam-
ple normalization method applied—is often used as a surrogate for C. This relies on the 
assumption that under any experimental conditions, there is a linear and fixed relation-
ship (f, or sensitivity) between I and C, expressed as I = f(C). However, in practice, due 
to differences in diverse experimental factors, the relationship f may fluctuate. These 
fluctuations make I inherently inconsistent across different batches, leading to inevitable 
batch effects in omics data [13].

The occurrence of batch effects can be traced back to diverse origins and can emerge 
at every step of a high-throughput study. Despite the fact that some sources are common 
to numerous omics types, some are exclusive to particular fields. In-depth discussions 
have been conducted to elaborate on the sources of batch effects in genomics [48], tran-
scriptomics [35, 49], proteomics [28], and metabolomics [11]. Here we highlight some of 
the most encountered sources of cross-batch variations during different phases of a typi-
cal high-throughput study (Fig. 1 and Table 1).

Study design

During the study design stage, some sources of batch effects can be introduced, includ-
ing the choice of high-throughput technology, sample size, and number of batches. 
Among them, it has been reported that flawed or confounded study design is one of the 
critical sources of cross-study irreproducibility [42, 50]. This can happen if the samples 
are not collected in a randomized manner or if they are selected based on a specific 
characteristic, such as age, gender, or clinical outcome. This can lead to systematic dif-
ferences between the batches, which can be difficult to correct for during data analysis. 
Another factor that is related to batch effects is the degree of treatment effect of interest 
[51]. If the degree of treatment effect of interest is minor, the expression profiles would 
be more susceptible to technical variations.

Sample preparation and storage

Variables in sample collection, preparation, and storage may introduce technical varia-
tions and affect the results of high-throughput profiling. These variables include proto-
col procedures, reagent lots, storage conditions, operators, and labs (Fig. 1).
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Protocol procedure is one of the most important sources of cross-batch variations [52]. 
For example, plasma is widely used in biomarker discovery due to its easy accessibility 
[53, 54]. However, the biospecimens are likely exposed for varying periods of time and 
temperatures prior to centrifugation for plasma separation, which may cause significant 
changes in proteins [55] and metabolites [56–58]. Moreover, different blood processing 
protocols, such as different centrifugal forces, may result in different quantifications of 
plasma mRNA [59, 60]. These situations are likely to occur in large-scale studies when 
samples are collected at multiple centers/biobanks to fulfill the sample-size requirement.

Other factors, such as reagents, equipment, sample storage conditions, operators, and 
labs can also lead to variability in the quality and quantity of the samples across batches. 
For example, tubes that are coated with anticoagulants are widely used for the storage 
of blood samples. However, it has been reported that different types or concentrations 
of anticoagulants can result in differences in proteomics and metabolomics profiling of 
blood samples [11, 55]. Storage conditions, e.g., the numbers of freeze/thaw cycles, are 
sometimes overlooked, but samples stored under different conditions may have system-
atic differences in molecular profiling [61]. Moreover, the operator is another important 
contributor. When samples are processed by manual pipetting, there is a risk of person-
nel variability due to differences in pipetting techniques [62–64]. When different batches 

Fig. 1 Sources and possible solutions for addressing batch effects
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Table 1 Potential sources of batch effects for different omics data types

Sources Stage Common or specific 
omics type

Description

Flawed or confounded 
study design

Study design Common This can happen if the 
samples are not collected 
in a randomized manner or 
if they are selected based 
on a specific characteristic, 
such as age, gender, or clini-
cal outcome.

Degree of treatment 
effect of interest

Study design Common A minor treatment effect 
size makes it more difficult 
to distinguish from batch 
effects compared to large 
treatment effects.

Protocol procedure Sample preparation and 
storage

Common Different centrifugal forces 
during plasma separation, 
or time and temperatures 
prior to centrifugation, may 
cause significant changes 
in mRNA, proteins, and 
metabolites.

Sample storage condi-
tions

Sample preparation and 
storage

Common Variations in sample storage 
temperature, duration, 
freeze-thaw cycles, etc. can 
impact stability and intro-
duce batch effects.

RNA enrichment protocol High-throughput experi-
ments

Bulk and single-cell 
RNA-seq

Distinct transcriptomes 
are represented in librar-
ies prepared by different 
protocols, in particular 
expression profiles of non-
polyadenylated transcripts, 
3’UTRs and introns.

Instrument variability High-throughput experi-
ments

LC-MS proteomics and 
metabolomics

Instrument variability can 
arise from differences in the 
performance of the mass 
spectrometers, chromatog-
raphy systems, and other 
instrumental factors. It leads 
to increased variability and 
decreased power to detect 
biologically meaningful 
responses.

Signal drift High-throughput experi-
ments

LC-MS proteomics and 
metabolomics

Signal drift is the gradual 
change in the intensity of 
the detected signal over 
time.

Analysis pipeline Data analysis Common Use of different algorithms 
or parameters in the com-
putational pipeline induces 
batch effects.

Reference database Data analysis Common The alignment to different 
reference databases may 
lead to different results, 
because reference data-
bases vary greatly in terms 
of their curation, complete-
ness and comprehensive-
ness
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of samples are processed by different operators independently, the cumulative differ-
ences in sample volumes may become nonnegligible.

High‑throughput experiments

DNA sequencing

One of the main sources of batch effects in DNA sequencing is the use of different 
sequencing platforms, which can lead to differences in the quality and quantity of the 

Table 1 (continued)

Sources Stage Common or specific 
omics type

Description

Treatment of missing 
values

Data analysis LC-MS proteomics and 
metabolomics

The methods of treatment 
of missing values, e.g., 
removing all features with 
missing values, filling with 
zeros or randomly small 
values or re-quantification/
prediction based on differ-
ent algorithms, can intro-
duce bias and aggravate 
batch variations.

Reagents Multiple Common Variations in the quality, 
composition, or perfor-
mance of reagents used 
during sample prepara-
tion, processing, and data 
acquisition can introduce 
systematic technical biases, 
leading to batch-specific 
patterns. Differences in rea-
gent lots, manufacturers, or 
expiration dates can further 
exacerbate these issues, 
making careful selection 
and consistent usage of 
reagents across all samples 
essential to minimize batch 
effects.

Equipment Multiple Common Different equipment used 
for sample processing or 
data acquisition, or varia-
tions in the performance 
and calibration of the same 
equipment over time, can 
introduce systematic biases 
that manifest as batch 
effects.

Lab Multiple Common Environmental factors such 
as temperature, humidity, 
and air quality within the 
laboratory can vary over 
time and across different 
lab spaces, potentially 
impacting sample stability, 
enzymatic reactions, and 
instrument performance.

Operators Multiple Common When samples are pro-
cessed by manual pipetting, 
there is a risk of personnel 
variability due to differences 
in pipetting techniques.
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sequencing data between batches. There is a vibrant and diverse market for sequenc-
ing platforms, including Illumina HiSeq and NovaSeq, ThermoFisher Ion Torrent, 
BGISEQ-500 and MGISEQ-2000, the GenapSys GS111, Oxford Nanopore Technolo-
gies (ONT) Flongle, MinION and PromethION flow cells, and PacBio CCS platforms, to 
name a few, with the diversity of cost, throughput, speed, sequence lengths, error rates, 
and bias [48, 65]. Other sources, such as experiment kits (i.e., exome capture kits for 
whole exome sequencing), sequencing depth, sequencing quality, and sequencing labs 
were showed variations between batches [5–7, 66].

Bulk and single‑cell RNA‑seq

For bulk and single-cell RNA-seq, one of the major sources is protocol. Specifically, 
for bulk RNA-seq, poly-A enrichment and ribosomal RNA (rRNA) depletion are two 
common protocols used to enrich mRNA from total RNA samples in RNA-seq experi-
ments. Poly-A enrichment protocol involves capturing the poly-A tail of mRNA mol-
ecules using oligo(dT) beads, while rRNA depletion protocol involves removing rRNA 
molecules from the total RNA samples. Differences in RNA enrichment protocols can 
result in differences in the RNA population that is captured [67, 68]. Distinct transcrip-
tomes are represented in libraries prepared by different protocols, in particular expres-
sion profiles of non-polyadenylated transcripts, 3’UTRs and introns [35], which can 
contribute to batch effects [69]. Moreover, diverse RNA extraction and library construc-
tion protocols are used in scRNA-seq, resulting in highly sensitive technical variability 
and biological heterogeneity, which can lead to batch effects [26]. Variabilities in any 
step of the scRNA-seq protocol can introduce batch effects. For example, differences in 
the efficiency of reverse transcription, the amount of cDNA amplified, or the quality of 
sequencing reads can lead to batch effects in downstream analyses [14]. Several publica-
tions have compared and reviewed scRNA-seq protocols in detail [70–72].

Lab is another important contributor to batch effects in RNA-seq. Investigators from 
the Sequencing Quality Control (SEQC) consortium examined three sequencing plat-
forms at multiple laboratory sites using reference RNA samples with built-in controls 
and observed differences across labs and platforms [34, 73]. Recently, we performed a 
multi-lab RNA-seq experiment based on Quartet RNA reference materials, a suite of 
four RNA samples derived from immortalized B-lymphoblastoid cell lines from a family 
quartet of parents and monozygotic twin daughters, and found a vast diversity of expres-
sion profiles across labs in both poly-A and RiboZero protocols [69]. Similarly, strong 
lab effects were reported in scRNA-seq data using reference samples [14].

Additionally, other sources of batch effects in RNA-seq and scRNA-seq involve RNA 
quality [74], RNA purity [75], library size [49], sequencing platforms [35], etc.

LC‑MS proteomics and metabolomics

Instrument variability is a major source of batch effects in LC-MS proteomics and 
metabolomics experiments [76, 77]. This can arise from differences in the performance 
of the mass spectrometers, chromatography systems, and other instrumental factors.

Signal drift within the instrument makes sample processing order another factor of 
batch effects of LC-MS technology [2, 11, 78]. Signal drift is the gradual change in the 
intensity of the detected signal over time due to various factors such as fluctuations in 
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LC performance, variations in electrospray process, changes in ion transfer caused by 
fouled or moved optics, and changes in detector sensitivity [79]. When samples are pro-
cessed in batches, the processing order can influence the degree of signal drift, leading to 
batch effects in the data.

Moreover, lab differences were also observed in proteomics [80–82] and metabo-
lomics experiments [83, 84], resulting from large variations of precursor mass-to-charge 
ratio (m/z) of the ion and retention times (rt) across labs [85].

Data analysis

Throughout the entire analytical workflow, data analysis has the inherent potential to 
introduce technical or unwanted variations at each juncture. Different analysis meth-
ods clearly lead to increased variability, and results may be different due to the analysis 
approach. It should be noted that the analytic variability can be avoided when apply-
ing the same analysis method to all the data. However, with the widespread adoption of 
high-throughput sequencing, especially in multi-center, long-term longitudinal studies 
or clinical applications, it is not rare that different processing methods are applied to 
different batches of data, especially when the raw data are not available. In these cases, 
different analysis methods can become a potential contributor to variations and broadly 
regarded as a source of batch effects, as have been reported across diverse fields, such as 
genomics [66, 86, 87], transcriptomics [73, 88], proteomics [89], and metabolomics [11].

For genomics data, Pan et  al., conducted whole genome sequencing (WGS) of the 
same eight DNA samples from three library kits in six labs and called variants with 56 
combinations of aligners and callers [87]. Bioinformatics pipelines (callers and align-
ers), together with sequencing platform and library preparation influenced the ger-
mline mutation detection. Among them, bioinformatics pipelines have shown a larger 
impact. Similar results were also observed by O’Rawe et  al., in terms of whole-exome 
and genome sequencing data [90].

For bulk RNA-seq data, the SEQC consortium found that data analysis pipelines, 
including gene quantification, junction identification, and differential expression con-
tributed to measurement performances and variations were large for transcript-level 
profiling [73]. Similarly, Sahraeian et al. constructed a comparative study for RNA-seq 
workflows, by assessing 39 analysis tools with ~120 combinations and finding a diversity 
of performances in terms of read alignment, assembly, isoform detection, quantification, 
RNA editing, and RNA-seq-based variant calling [88].

For LC-MS proteomics and metabolomics data, the use of different searching methods 
to decode tandem mass spectra and match them to databases of theoretical tryptic pep-
tides or metabolites is a source of variability, because of differences in the searching tools 
with different false discovery rates. Furthermore, the peak alignment to different refer-
ence databases may lead to different results, because reference databases vary greatly in 
terms of their curation, completeness, and comprehensiveness [81]. In addition, because 
missing values are common in proteomics and metabolomics data and are batch- and 
feature-specific, the methods of treatment of missing values, e.g., removing all features 
with missing values, filling with zeros or randomly small values or re-quantification/pre-
diction based on different algorithms, can introduce bias and aggravate batch variations 
[2, 80].
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Possible solutions

Some possible solutions can be applied to minimize batch effects in the high-throughput 
study (Fig. 1). Notably, some of these solutions are in line with the principle of reproduc-
ibility in scientific research [16, 50, 91].

First, careful study design will somehow be effective. It is important to ensure that 
the samples are collected in a randomized manner if possible. If the degree of treat-
ment effect of interest is minor in the study, the study may be more susceptible to batch 
effects, and researchers should pay more attention to study design, such as setting more 
replicates and choosing more rigorous measurement technologies. It should be noted 
that randomization in study design is ideal but almost impossible in reality. In longitu-
dinal and multi-center studies, it is inevitable for a study design to include confounded 
batches and biological factors. On the other hand, even in a perfectly designed study, 
batches will still be introduced, because the experiments may span a long period of time 
or involve personnel changes. In these cases, recording as many technical factors as pos-
sible can be useful in the following analysis, including diagnosis and correction of batch 
effects, as described below. In addition, the use of automated sample preparation sys-
tems can also help minimize variability between batches.

Secondly, standard operating procedures (SOPs) shall be established and validated at 
the beginning of a large-scale study, with strict adherence by all operators and techni-
cians. This also includes using the same wet lab conditions (reagents, equipment, etc.), 
as well as the same dry lab conditions (analysis pipeline with the same parameters, soft-
ware, etc.). If achieving these is challenging, it is crucial to conduct an objective assess-
ment to ensure that any differences between these variations are insignificant.

Thirdly, appropriate controls should be included to help evaluate and correct batch 
effects, and further improve intra- and inter- batch reproducibility. For example, inves-
tigators can involve replicate samples or reference samples within each batch. Adding 
spike-ins to study samples can also be applied. Multicomics reference samples and spike-
in products have been reviewed in our accompanying work [92].

Finally, proper analysis methods should be applied to mitigate the effects, including 
diagnostics and evaluation methods, normalization, and/or BECA method(s), which 
have been mentioned in the next sections.

Diagnostics and evaluation of batch effects
Prior to performing BECAs, diagnostics and evaluation is needed to understand the 
existence of batch effects and the estimation of the proportion of variation in the data 
resulting from batch effects. Additionally, evaluation is also needed to be applied after 
performing BECAs to estimate whether batch effects have been successfully removed. 
These evaluation steps are particularly important, because some BECAs should only 
be conducted when necessary, and serious errors might be introduced when improper 
BECAs are used [3].

The evaluation of batch effects can be performed not only based on expression pro-
files, but also based on quality control metrics [93], such as read coverage [29, 48], GC 
content [48], nucleotide composition [8], mapping rate [48], and mismatch rate [48]. 
Batch effects in quality control metrics may further affect data processes such as data 
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filtering, normalization, and interpretation. Some tools, for example, BatchQC, were 
developed for facilitating diagnostics and evaluation of batch effects [94].

In this section, we first describe a typical workflow regarding when and why evalua-
tion methods can be performed. We subsequently provide a dozen of visualizations and 
measurements to specifically show how to perform the evaluation methods. It should 
be noted that, most methods for evaluating batch effects are focused on quantity omics 
rather than qualitative omics such as WGS. Methods for determining whether batch 
effects exist in qualitative omics data warrant further investigations.

Typical workflow

In a typical analysis workflow, five major stages can be applied to transform the raw data 
matrix into a finalized data matrix that is ready for downstream analyses. This includes 
initial assessments, normalization, diagnostics of batch effects, batch correction, and 
assessment of the correction of batch effects (Fig. 2a).

Initial assessments can be applied based on the raw data matrix to determine the size 
of biases. Specifically, data quality assessment can be applied to check for any errors, 
inconsistencies, missing values, outliers, or noise in the data and correct them if pos-
sible. Additionally, data exploration tools can be applied to summarize the main charac-
teristics of the data, such as the number of variables, the range of values, the distribution 
of values, and the correlation between variables.

According to the data quality and structure learned from the initial assessment, a nor-
malization step can be performed to adjust distributional differences across samples and 
make samples more comparable in the global pattern. Meanwhile, normalization is to 
make the data to have a normal distribution or a unit norm to facilitate downstream 
statistical analyses, which is quite common in omics analysis. Dozens of normalization 
methods for correcting experimental variations and biases in high-throughput data have 
been developed, which have been extensively discussed in the reviews [95, 96].

Because batch effects may affect different genes in different ways [29] and normali-
zation does not necessarily remove batch effects, diagnostics of batch effects can be 
applied to identify the source and patterns of batch effects and select an appropriate 
BECA. If batch effects exist in the datasets, batch correction can be applied to address 
feature-specific biases, which are summarized in the next section. It should be noted 
that normalization may eliminate the need for additional data correction. This can be 
confirmed through diagnostic plots and measurements, as described below. If the results 
after normalization are satisfactory, it is recommended to minimize data manipulation 
[2].

Finally, assessment of the correction of batch effects can be applied to test whether 
batch effects have been successfully migrated while retaining biological signals of inter-
est. Sometimes it is not easy because true biological signals are probably previously 
unknown.

Visualization

One of the most common methods for diagnosing and evaluating batch effects is visu-
alization, which provides an initial impression of the effectiveness of BECAs. To better 
illustrate visualization tools in terms of assessing batch effects, we employ a multi-batch 



Page 12 of 27Yu et al. Genome Biology          (2024) 25:254 

RNA-seq dataset of four Quartet RNA reference materials [69], including 27 libraries 
from three batches. Different numbers of replicates (n=5~9) of reference materials are 
included in each batch to mimic a confounded scenario where replicates of reference 
materials are not equally distributed across batches. Data are available at Open Archive 
for Miscellaneous Data (OMIX) (accession number: OMIX002254) [97]. The examples 
have been performed using ratio-based scaling as the method for batch effect removal 
(Fig. 2b–f). Detailed information of the dataset, as well as code for reproducing the anal-
ysis has been deposited on GitHub [98].

First, dimensionality reduction methods are the most widely used visualization meth-
ods to identify the major sources of variation in high-dimensional data, including lin-
ear-based method(s) such as principal component analysis (PCA), and non-linear-based 
methods such as T-distributed stochastic neighbor embedding (t-SNE) [99] and uni-
form manifold approximation and projection (UMAP) [100, 101]. If batch effects exist, 

Fig. 2 Diagnostics and visualization of batch effects. a Overview of a typical analysis workflow. b–f 
Examples of visualization plots before and after batch correction. The dataset used for visualization is an 
RNA-seq dataset from four Quartet RNA reference materials [69], including 27 libraries from three batches. 
The examples have been performed using ratio-based scaling as the method for batch effect removal. b 
Dimensionality reduction methods, including principal component analysis (PCA), T-distributed stochastic 
neighbor embedding (t-SNE), and uniform manifold approximation and projection (UMAP). c Hierarchical 
clustering analysis (HCA). d Relative log expression (RLE) plot. e Principal variance component analysis (PVCA) 
coupled with bar plots. f The expression pattern of a representative gene across batches
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samples will tend to be grouped by batches (Fig. 2b). It should be noted that t-SNE and 
UMAP are good at revealing local structures in high-dimensional data but cannot pre-
serve the global structure of the data, which means that the relative distances and posi-
tions between clusters produced by the two methods are less meaningful [102].

Secondly, hierarchical clustering analysis (HCA) can be applied to show the clustering 
of the data by batches or by biological groups and indicate the presence or absence of 
batch effects (Fig. 2c). HCA is a dendrogram algorithm that groups similar samples into 
a cluster tree. Hierarchical clustering is often combined with a heatmap, mapping quan-
titative values in the data matrix to colors which facilitates the assessment of patterns in 
the dataset.

Thirdly, relative log expression (RLE) plot which shows the distribution of the log-
ratios of each gene’s intensity over its geometric mean across all samples can help detect 
batch effects by comparing RLE values across different batches or groups of samples 
[103]. If there is a batch effect, the RLE plot may display the batch-specific distributions 
of medians or variances (Fig. 2d).

Fourthly, principal variance component analysis (PVCA) coupled with bar plots can 
be used for quantifying and visualization of the proportion of variations of experimen-
tal effects including batch (Fig.  2e). PVCA leverages the strengths of two methods to 
estimate the variance components: PCA and variance component analysis (VCA). PCA 
finds low-dimensional linear combinations of data with maintaining maximal variability, 
whereas VCA analysis attributes and partitions variability into known sources through a 
mixed linear model [104].

Finally, one straightforward way is to plot the expression patterns of individual fea-
tures across batches. Technical factors (e.g., batch, processing order) can be used in the 
x-axis, and expression profiles can be used in the y-axis (Fig. 2f ).

Measurements

While visualization alone may not provide a comprehensive evaluation, applying quan-
titative measurements is necessary to accurately assess the batch effect removal process. 
The following quantitative measurements may be employed for evaluating batch effects 
(Table 2).

First, distance-based metrics are proposed to calculate sample-wise distances to meas-
ure the similarity of samples across batches, such as alignment score [105], Distance 
ratio score (DRS) [106], Guided PCA [107], k-nearest neighbor batch-effect test (kBET) 
[108], Local inverse Simpson’s index (LISI) [15, 109], Shannon Entropy [110], and signal-
to-noise ratio (SNR) [13]. kBET is a widely used metric in scRNA-seq and is used to 
measure the batch mixing at the local level of the k-nearest neighbors [108]. kBET is 
easy to implement and sensitive to detect small batch effects. However, the disadvan-
tages of kBET include its inability to work if class or batch proportions are highly con-
founded, if extreme outliers are present, or if high data-specific heterogeneity is present 
[1, 108]. Additionally, we previously proposed a metric called SNR for quantifying the 
ability to separate distinct biological groups when multiple batches of data were inte-
grated [13, 32]. SNR is calculated based on PCA and measures the ability to differentiate 
intrinsic biological differences among distinct groups (“signal”) from technical variations 
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Table 2 Representative measurements for evaluating batch effects

Name Data type Category Description Refs

Alignment score scRNA-seq Distance Alignment score examines 
the local neighborhood of 
each cell after alignment. 
It is calculated using a near-
est-neighbor graph based 
on the cells’ embedding 
in some low-dimensional 
space.

 [105]

Distance ratio score (DRS) microarray Distance For a sample of a certain 
sample type, distance 
ratio score is the log of 
the ratio of the distance 
to the closest sample of a 
different sample type to 
the distance to the closest 
sample belonging to a 
different batch but the 
same sample type. The DRS 
is high if samples of the 
same type cluster together 
irrespective of batch since 
the denominator will be 
small compared to the 
numerator.

 [106]

Guided PCA (gPCA) RNA-seq, copy number 
alteration, methylation

Distance gPCA is an extension of 
PCA to quantify and visual-
ize the existence of batch 
effects. gPCA is guided by 
a batch indicator matrix 
using the singular-value 
decomposition (SVD) 
algorithm to look for batch 
effects in the data.

 [107]

k-nearest neighbor batch-
effect test (kBET)

scRNA-seq Distance kBET uses a Chi-based test 
for random neighborhoods 
of fixed size to determine 
whether they are well 
mixed, followed by an 
averaging of the binary test 
results to return an overall 
rejection rate. This result is 
easy to interpret: low rejec-
tion rates imply well-mixed 
replicates.

 [108]

Local inverse Simpson’s 
index (LISI)

scRNA-seq Distance LISI is a diversity index to 
measure the diversity of 
gene expression in scRNA-
seq data and identify areas 
of high diversity that may 
be affected by batch effect. 
LISI first selects neigh-
bors based on the local 
distribution of distances 
with a fixed perplexity. The 
selected neighbors are 
then used to compute the 
inverse Simpson’s index 
for diversity, which is the 
effective number of types 
present in this neighbor-
hood.

 [15, 109]



Page 15 of 27Yu et al. Genome Biology          (2024) 25:254  

Table 2 (continued)

Name Data type Category Description Refs

Shannon Entropy scRNA-seq Distance The entropy-based metric 
is computed as follows: a 
k-NN graph is constructed 
based on the normal-
ized data using Euclidean 
distance. The distribu-
tion of individuals in the 
neighborhood of each 
cell is then computed. 
Shannon entropy is further 
computed as a measure of 
diversity, resulting in one 
entropy value per cell.

 [110]

Signal-to-noise ratio (SNR) RNA-seq, proteomics, 
metabolomics, miRNA-seq, 
methylation

Distance SNR is defined as the ratio 
of the average distance 
among different samples 
to the average distance 
among technical replicates 
of the same sample. Based 
on principal component 
analysis (PCA), distances 
between two samples in 
the space defined by the 
first two PCs were used 
to represent distances 
between the two samples. 
A higher SNR value 
indicates a lower technical 
effect in the data.

 [13]

Adjusted rand index (ARI) multiple Cluster ARI measures the similarity 
of the true labels and the 
clustering labels while 
ignoring permutations 
with chance normaliza-
tion, which means random 
assignments will have an 
ARI score close to zero. ARI 
is in the range of -1 to 1, 
with 1 being the perfect 
clustering.

 [111]

Average silhouette width 
(ASW)

scRNA-seq Cluster The calculation of a silhou-
ette aims to determine 
whether a particular 
clustering has minimized 
within-cluster dissimilarity 
and maximized inter-clus-
ter dissimilarity.

 [112]

Plow from seqQscorer RNA-seq, ChiP-seq, DNase-
seq

Cluster A metric  Plow is a machine-
learning derived prob-
ability for a sample to be 
of low quality, as derived 
by the seqQscorer tool. If 
 Plow scores between the 
batches are significantly 
different, it means there are 
batch effects.

 [74, 113]
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including batch effects of the same groups (“noise”). Generally, a higher SNR value indi-
cates higher distinguishing power, and vice versa.

Secondly, cluster-based metrics are proposed to calculate the clustering accuracy or 
similarity against the batch effects, such as adjusted rand index (ARI) [111], average sil-
houette width (ASW) [112], and  Plow from seqQscorer software [113]. ARI measures the 
similarity between the true labels and the clustering labels and reducing the influence of 
random permutations, which means random assignments will have an ARI score close 
to zero. The meaning of ARI depends on the setting of true class labels of the samples. A 
larger value of ARI with biological groups as the true groups value means better perfor-
mance, while a smaller value of ARI batch denotes better batch effect correction.

Thirdly, as differential expression and prediction are two important downstream anal-
ysis tasks for quantitative omics, evaluations based on these tasks can demonstrate the 
need and effectiveness of BECAs with respect to biological interest, as performed in [32, 
36, 114] and reviewed in [4]. Cross-batch results can be compared with the true set (i.e., 
truly differentially or non-differentially expressed features) to evaluate the performance 
of differential expression. Various metrics can be applied, including metrics based on the 
confusion matrix (i.e., true positives, true negatives, false positives, and false negatives), 
such as sensitivity or true positive rate (TPR), specificity or true negative rate (TNR), the 
positive predictive value (PPV), the negative predictive value (NPC), accuracy (ACC), 
and the Matthews correlation coefficient (MCC). Moreover, numerical metrics can also 
be applied, for example, the correlation coefficient representing the consistency of fold-
changes with the true set, and the root mean square error (RMSE) representing the dis-
tance with the true set in fold-changes [69]. It should be noted that the determination 
of the true set is important before evaluations. The inclusion of a proper size of true set 
representing clinical purposes is preferred. The large size of the true set makes the evalu-
ation easy and straightforward, but it does not help evaluate the ability to detect subtler 
differential expression for clinical purposes.

Moreover, cross-batch prediction is a critical aspect of multiomics analysis, particu-
larly when it comes to identifying and validating molecular expression signatures that 
can be used for diagnosis, prognosis, and prediction of diseases and subsequent bio-
marker development [36]. In many cases, a predictive model is built using a batch of 

Table 2 (continued)

Name Data type Category Description Refs

Performances of identify-
ing DEFs

Multiple Downstream Comparison with the truly 
differentially or non-
differentially expressed 
features, using metrics such 
as true positive rate (TPR), 
true negative rate (TNR), 
precision, recall, Matthews 
correlation coefficient 
(MCC), etc.

Performance of predictive 
modeling

Multiple Downstream Classification models: ROC 
curve, confusion matrix
Regression endpoint: 
mean squared error (MSE), 
mean absolute error (MAE), 
R-squared
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samples (existing data), which is then applied to other batches of samples (future data). 
These datasets may be confounded with batch effects, which can negatively impact pre-
diction by obscuring and washing out any predictive power of useful biological varia-
tions between certain outcomes [36, 114, 115]. Cross-batch prediction results can be 
compared with the truth (e.g., clinical endpoint) to evaluate the performance of predic-
tion. There are various metrics that can be applied. For classification models, metrics 
based on the confusion matrix listed above and area under curve (AUC)) can be applied 
[115], while for regression models, mean squared error (MSE), mean absolute error 
(MAE), and R-squared can be used [116].

Additionally, Zhang et al. presented moment-based metrics for interrogating the shape 
of the distribution of batches to determine how batch effect should be adjusted [117].

Currently available batch‑effect correction algorithms (BECAs)
When batch effects are confirmed to exist in datasets, actions are needed to be taken to 
avoid confounding effects in data analysis. Various strategies have been proposed to cor-
rect or minimize batch effects. Here, BECAs can be classified into four categories based 
on their underlying assumptions, including location-scale (LS) methods, matrix-factor-
ization (MF) methods, distance-neighborhood based (DN) methods, and deep-learning 
(DL) methods (Fig. 3 and Additional file 1).

Location‑scale (LS) methods

LS methods assume a statistical model for the location (mean) and/or scale (variance) 
of the data within the batches and proceed to adjust the batches in order to agree with 
these models [4].

ComBat is one of the most widely used BECAs in transcriptomics [118, 119] pro-
teomics [120], and metabolomics [121]. It uses an empirical Bayes framework to esti-
mate the magnitude (mean and variance) of batch effects, and then remove them [31]. 
Several extensions of the ComBat method have been developed. For example, modified 
ComBat (M-ComBat) transforms all feature distributions into a pre-determined “refer-
ence” batch, instead of the overall mean, providing more flexibility [122]. This reference-
batch approach not only effectively corrects for batch effects but also holds the potential 
to facilitate validation of newly discovered biomarkers while enhancing predictions of 
pathway activities and drug effects [117]. A regularized version of ComBat (reComBat) 
[123] replaces a linear regression with a regularized linear regression model to handle 
highly correlated batch-sample situations. ComBat-seq, an extended version of ComBat 
for RNA-seq count data, retains the integer nature of count data and make the batch-
adjusted data compatible with software packages that require integer counts [124].

Another example is the ratio-based method, i.e., by scaling the absolute feature val-
ues of study samples relative to those of concurrently profiled reference material(s). The 
ratio-based method is broadly effective in multiomics datasets, especially when batch 
effects are completely confounded with biological factors of study interests [32]. On the 
other hand, while the ratio-based method performed favorably in both balanced and 
confounded scenarios, it is not free of limitations. The ratio-based method is possible 
when the introduction of a reference sample can be decided as part of the experimental 
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design. It is not applicable when combining already-existing datasets, as the reference 
sample may not exist or be possible.

Matrix‑factorization (MF) methods

MF methods assume that the observed data can be decomposed into a product of matri-
ces that capture different sources of variation, and that this decomposition can be used 
to identify and remove batch effects from the data. Many matrix-factorization methods 
based on a diversity of statistical models have been developed and have been widely used 
in batch removal (Fig. 3).

The Surrogate Variable Analysis (SVA) method assumes that there are hidden fac-
tors, or surrogate variables, that are related to the batch effects and can be used to cor-
rect them [125]. SVA operates by specifying the number of latent factors to remove 
unwanted sources of variation while retaining differences among the specified primary 
variables. Alternatively, the software estimates the number of latent factors through a 
function call, and then performs the operation of estimating surrogate variables. Based 
on this algorithm, SVA can be successfully applied even when batch information is 
unclear. However, an inappropriate number of latent factors may result in the removal of 
potentially important biological information encoded in the latent variables. In this case, 

Fig. 3 Cluster tree of batch effect correction algorithms (BECAs). Detailed descriptions and references of 
BECAs are listed in additional file 1. The plot provides examples of representative BECAs, rather than an 
exhaustive compilation of all existing BECAs
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SVA may not be appropriate for studies with unknown subgroups of biological interests 
[126], such as molecular subtyping studies. Several methods have been developed for 
improving the original SVA, such as direct SVA (dSVA) [127], permuted-SVA (pSVA) 
[128], and svapls [129]. Moreover, since SVA was initially developed based on microar-
ray data, tools for adoption in RNA-seq (e.g., SVAseq [130]), proteomics (e.g., EigenMS 
[131], LIMBR [132]), and metabolomics (e.g., EigenMS [131, 133]) have been developed.

Remove Unwanted Variation (RUV) is a linear model-based batch correction algo-
rithm that removes unwanted technical variation from gene expression data by first 
estimating unwanted variation using technical replicates or negative control genes. The 
unwanted variation is then subtracted from the original data to obtain corrected expres-
sion values. Traditional RUV methods include: RUVseq [134] and RUV-III [135] for 
RNA-seq, RUV-III-NB [136] for scRNA-seq, RUV-III-C [78] for LC-MS proteomics, and 
RUV-random [137] for LC-MS metabolomics. These methods require actual technical 
replicates or negative controls in the data to estimate unwanted variation. When such 
controls are not available, RUV-III-PRPS is developed to extend RUV-III algorithm by 
constructing pseudo-samples that mimic technical replicates [49]. Pseudo-samples are 
created by averaging gene expression levels within biological subpopulations that are 
homogeneous with respect to unwanted factors. RUV-III-PRPS then uses these pseudo-
samples just like technical replicates to fit and remove unwanted variation.

Distance‑neighborhood (DN) methods

DN methods assume that batch effects cause systematic differences between groups of 
samples that are close in the high-dimensional space or projected space, and that these 
differences can be corrected by adjusting the data to make these groups more similar.

BECAs based on mutual nearest neighbors (MNN), such as mnnCorrect [138], deep-
MNN [139], work by the removal of discrepancies between biologically related batches 
according to the presence of MNNs between batches, which are considered to define the 
most similar cells of the same type across batches. DN methods are effective in correct-
ing for batch effects in scRNA-seq data because they rely on the assumptions, includ-
ing (i) there is at least one cell population that is present in both batches, (ii) the batch 
effect is almost orthogonal to the biological subspace, and (iii) the batch effect is consist-
ent across cells [138]. By identifying groups of cells with similar expression profiles and 
adjusting the data within each group, these methods can effectively correct for batch 
effects and improve the accuracy of downstream analyses [140]. In contrast, bulk RNA 
sequencing and proteomics data are often generated from a larger number of cells and 
are less prone to similar technical variations across samples due to differences in experi-
mental conditions.

Deep‑learning‑based (DL) methods

DL methods usually use neural network algorithms to identify and remove batch effects 
from the data, including AutoClass [141], DESC [142], scGen [143], scVI [144], and 
so on. The basic assumption of these methods is to train a neural network to learn the 
relationship between gene expression values and experimental batch information in 
a dataset. The trained network can then be used to predict the batch information for 
each sample in the dataset based on its gene expression values. The predicted batch 
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information can then be used to adjust the gene expression values to correct for batch 
effects.

DL-based BECAs are often used in scRNA-seq because scRNA-seq data are high-
dimensional and highly heterogeneous, which means they have a large number of sam-
ples with distinct gene expression profiles across multiple cell types. The relationships 
between gene expression profiles and batch information may be complex and non-linear. 
DL methods may learn complex nonlinear relationships between expressions and sam-
ples. Moreover, a large number of samples in scRNA-seq may provide sufficient data for 
training appropriate models and further obtaining satisfactory results. Of note, inves-
tigators should be aware of the risk of overfitting when DL-based BECAs are applied 
[141].

It is important to note that each type of BECAs has its own strengths and limitations, 
and the choice of method depends on the nature of the data, the sources of batch effects, 
and the specific goals of the analysis. Moreover, batch effect correction is still an active 
area of research, for example, with single-cell data. New methods are emerging and 
being evaluated. Therefore, it is recommended to carefully evaluate the performance of 
different BECAs in each specific context before choosing one for analysis.

Current consortium efforts
Many consortium efforts have been conducted to set standards and benchmark technol-
ogies, which also improve in batch evaluation and correction. In particular, consortium 
work is important and valuable for identifying the causes and sources of batch effects, 
developing and evaluating methods for reliable BECAs, and establishing best practices 
and guidelines for data analysis.

MAQC/SEQC

The MicroArray Quality Control (MAQC) and Sequencing Quality Control (SEQC) 
consortiums have made great efforts to assess the quality and reliability of emerg-
ing omics technologies, and to develop best practices for data analysis and interpreta-
tion [145]. The MAQC/SEQC projects have been conducted in four phases, namely 
MAQC-I, MAQC-II, MAQC-III/SEQC, and MAQC-IV/SEQC2. The MAQC-I project 
was published in 2006 and assessed the precision and comparability of microarray and 
quantitative RT-PCR datasets [146]. The MAQC-II was published in 2010 and assessed 
the performance of various machine-learning and data-analysis methods in microarray-
based predictive models [115]. With the rapid development of RNA-seq technology, the 
MAQC-III/SEQC was published in 2014 and examined the reproducibility of RNA-seq 
and compared the performance of different RNA-seq platforms and DNA microar-
rays. Recently, the MAQC-IV/SEQC2 project was published in 2021 and benchmarked 
sequencing platforms in several applications [147], including genome sequencing [87, 
148], cancer genomics [66, 149, 150], scRNA-seq [14], circulating tumor DNA [151], 
DNA methylation [152], and targeted RNA sequencing.

The MAQC consortium evaluated the impact of batch effects on gene expression 
measurements by analyzing the same set of RNA reference materials that were distrib-
uted to multiple laboratories around the world. It played an important role in high-
lighting the issue of batch effects in genomic data and in developing methods for batch 
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correction that have become standard practice in the field. Specifically, ratio-based 
expression profiles, defined as a fold-change or a ratio of expression levels between two 
sample groups for the same gene, agreed well across multiple transcriptomic technol-
ogies, including RNA-seq, microarray, and qPCR [73, 146]. Moreover, the ratio-based 
method was found to outperform others in terms of cross-batch prediction in clinical 
outcomes [36]. Furthermore, Risso et al. developed a new BECA strategy, called RUVseq, 
that adjusted for nuisance technical effects by performing factor analysis on suitable 
sets of control genes (e.g., ERCC spike-ins) or samples (e.g., replicate libraries) [134]. 
Recently, Chen et al. conducted a multi-center study focusing on the evaluation of data 
generation and bioinformatics tools using reference cell lines and found that batch-effect 
correction was by far the most important factor in correctly classifying the cells [14]. 
Nevertheless, reproducibility across centers was high when appropriate bioinformatic 
methods were applied. Additionally, RNA reference materials and datasets generated by 
the MAQC consortium have served as resources for the research community to develop 
and evaluate BECAs.

Multiomics Quartet project

The Quartet project team established a set of publicly available multiomics reference 
materials of matched DNA [86], RNA [69], proteins [82], and metabolites [83] derived 
from immortalized cell lines and assessed reliability across batches, labs, platforms, and 
omics types [13]. The results showed that the variation in gene expression measurements 
between laboratories was largely due to technical factors, such as differences in experi-
mental protocols and equipment, rather than biological differences between samples 
[32]. Similar findings were obtained in DNA methylation, miRNA-seq, LC-MS proteom-
ics, and LC-MS metablomics [13]. Importantly, the Quartet project found the “absolute” 
feature quantitation as the root cause of irreproducibility in multiomics measurement 
and data integration, and urged a paradigm shift from “absolute” to “ratio”-based mul-
tiomics profiling with common reference materials, i.e., by scaling the “absolute” omics 
data of study samples relative to those of concurrently measured universal reference 
materials on a feature-by-feature basis. The ratio-based multiomics data are much more 
resistant to batch effects [13].

Challenges and future directions
One of the major challenges of batch effect issues is evaluation and quantifying the 
impact of batch effects on the data. This can be difficult because batch effects can arise 
from various sources, including differences in sample preparation, sequencing technol-
ogy, experimental conditions, and sometimes the sources are unknown or difficult to 
measure. It is important to develop methods that can accurately identify and quantify 
batch effects to minimize their impact on the downstream data analysis.

Another challenge in batch effect research is the generalization of batch effect correc-
tion methods across different datasets and experimental conditions. Batch effect correc-
tion methods may not always work well on new datasets or under different experimental 
conditions. On the other hand, because correcting batch effects requires fitting a model 
that captures the batch effects while preserving the biological signal, overfitting can 
occur and result in a loss of statistical power and generalization to new data. Hence, it 
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is important to develop methods that can generalize well across different datasets and 
experimental conditions to ensure the reliability and reproducibility of the data.

The third challenge is software and algorithm selection. There are various soft-
ware packages and algorithms available for batch effect correction, each with different 
assumptions and limitations. Selecting the appropriate method for a specific dataset can 
be challenging, especially for non-experts.

Metagenomics (microbiome) research introduces unique challenges in batch effect 
correction due to its compositional structure and sparse count data [153, 154]. Tradi-
tional techniques like ComBat and RUV, developed for gene expression data, may not 
fully address these unique characteristics. Novel methods, such as ConQuR [155] and 
PLSDA [156], have been specifically designed for metagenomics data. Despite advance-
ments, there is room for improvement in batch effect correction for microbiome data. 
For example, ConQuR’s performance may be influenced by low-frequency taxa, and 
PLSDA may not be suitable when batch and treatment effects interact non-linearly. 
Thus, ongoing research focuses on developing more robust and efficient methods for 
batch effect correction in microbiome analysis.

Finally, batch effects are not limited to quantitative omics data alone, but also affect 
qualitative data, such as mutations, alternative splicing events, RNA editing events, and 
so on. However, there is a lack of established methods to remove batch effects from qual-
itative data. This highlights the need for developing and validating new methods to cor-
rect batch effects in qualitative data to ensure the accuracy and reproducibility of the 
results.

Conclusion
Batch effects are a common challenge in omics data analysis, especially in large-scale 
studies where samples are processed in batches or over an extended period of time. 
Assessing and mitigating batch effects is crucial for ensuring the reliability and repro-
ducibility of omics data and minimizing the impact of technical variation on biological 
interpretation. As the data continue to grow, we expect experimental design and BECAs 
to also grow in importance and take center stage in large-scale applications in research 
and clinic. Quantifying multiomics data in a “ratio” scale during data generation stage 
has the potential to get rid of the enigmatic batch effects when common reference mate-
rials are adopted as the baseline in multiomics profiling.
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