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Abstract 

Background:  The shoot apical meristem (SAM), from which all above-ground tis-
sues of plants are derived, is critical to plant morphology and development. In maize 
(Zea mays), loss-of-function mutant studies have identified several SAM-related genes, 
most encoding homeobox transcription factors (TFs), located upstream of hierarchical 
networks of hundreds of genes.

Results:  Here, we collect 46 transcriptome and 16 translatome datasets across 62 
different tissues or stages from the maize inbred line B73. We construct a dynamic 
regulome for 27 members of three SAM-related homeobox subfamilies (KNOX, 
WOX, and ZF-HD) through machine-learning models for the detection of TF targets 
across different tissues and stages by combining tsCUT&Tag, ATAC-seq, and expres-
sion profiling. This dynamic regulome demonstrates the distinct binding specificity 
and co-factors for these homeobox subfamilies, indicative of functional divergence 
between and within them. Furthermore, we assemble a SAM dynamic regulome, illus-
trating potential functional mechanisms associated with plant architecture. Lastly, we 
generate a wox13a mutant that provides evidence that WOX13A directly regulates Gn1 
expression to modulate plant height, validating the regulome of SAM-related home-
obox genes.

Conclusions:  The SAM-related homeobox transcription-factor regulome presents 
an unprecedented opportunity to dissect the molecular mechanisms governing 
SAM maintenance and development, thereby advancing our understanding of maize 
growth and shoot architecture.
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Background
In plants, the shoot apical meristem (SAM) is a domed structure at the aerial growth 
tip that contains stem cells that generate daughter cells that will differentiate to become 
above-ground organs. The balance of organ initiation and stem-cell maintenance leads to 
constraints in SAM size and shape [1, 2]. SAM architecture is determined in part by the 
genetic background, and several genes contributing to the gross morphology of the SAM 
have been identified through mutant screens [3]. In the world’s most-produced crop 
maize (Zea mays L.), several SAM-related genes have been identified in this manner; 
these genes show distinct SAM-specific expression patterns and act at the top of hierar-
chical networks comprising hundreds of genes [4–7]. Some cloned SAM-related genes 
are homeobox genes encoding a protein containing a typical DNA-binding domain of 
60 amino acids, known as a homeodomain, which is present in dozens of transcription 
factors (TFs).

Homeobox proteins can be classified into 14 distinct classes in plants, encompassing 
well-established subfamilies such as KNOTTED1-like homeobox (KNOX), zinc-finger 
homeodomain (ZF-HD), WUSCHEL-related homeobox (WOX), and homeodomain 
leucine zipper (HD-ZIP), as well as emerging evolutionary categories such as plant 
homeodomain (PHD) and DNA-binding homeobox (DDT) [8]. The fundamental role 
of homeobox proteins lies in the control they exert over the progression of growth 
and development. Typically, members of the KNOX subfamily have major roles in the 
proper regulation of orchestrating plant growth and development, including the regula-
tion of meristem formation and the maintenance of organ morphogenesis [9–11]. The 
HD-ZIP subfamily exhibits substantial potential in enhancing plant growth behind plant 
responses to environmental stressors [12, 13]. Similarly, the WOX subfamily contributes 
to early embryogenesis, the sustained activity of meristematic stem cells, and the devel-
opment of lateral organs [14–16]. Research on HD-containing proteins in plants began 
in maize, wherein Knotted1 was first identified in controlling leaf differentiation [17, 18]. 
Subsequently, the functional importance of numerous genes encoding proteins with HD 
domains has been corroborated across diverse plant species, including Rough sheath1 
(Rs1), Gnarley1 (Gn1), Narrow sheath1 (Ns1), and Ns2, among others [19, 5, 20]. Collec-
tively, these findings underscore the immense regulatory potential of the homeobox TF 
family in shaping plant growth, development, and responses to environmental stimulus.

Homeobox TFs interact with the promoter regions of specific target genes. A single 
TF can potentially target hundreds to thousands of genes, and the collective interactions 
among multiple TFs and their respective targets establish a central regulatory network 
that governs nearly all aspects of organismal biology [21, 22]. Despite the biological sig-
nificance of TF regulatory networks, there has been a persistent bottleneck in the identi-
fication of such networks. This bottleneck necessitates the collection of vast amounts of 
information through individual experiments, each targeting a single TF [23, 24]. In the 
case of plants, additional challenges arise due to the relative lack of specific antibodies 
that can be used for chromatin immunoprecipitation followed by sequencing (ChIP-seq) 
assays, as well as the recalcitrance or difficulty of crop transformation for the expression 
of a construct encoding an epitope-tagged version of a TF of interest [21, 25]. Recent 
attempts to address this issue have employed genome-wide analyses that combine sin-
gle ChIP experiments with high-throughput sequencing. For example, a regulatory 
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network consisting of 112 TFs was identified in human colorectal-cancer cells and a net-
work comprising 104 leaf-related TFs was reconstructed in maize [26, 27]. However, it is 
worth noting that such studies remain relatively scarce, and elucidation of the landscape 
underlying regulatory networks within plant genomes remains challenging.

We previously devised a transient and simplified cleavage under targets and tagmen-
tation method known as tsCUT&Tag, which can deduce the targets of TFs across dif-
ferent plant tissues and stages based on a comprehensive machine-learning model [28]. 
Here, we employed tsCUT&Tag, co-expression networks, and gene-regulatory net-
works to dissect the regulome of homeobox TFs that are strongly associated with SAM 
maintenance and development in maize. We constructed regulatory networks, offering 
a valuable resource for dissecting the intricate regulatory mechanisms conferring plant 
architecture in maize via homeobox TFs. We provide evidence for the pivotal role of 
WOX13A in regulating Gn1, ultimately influencing plant height. Our findings shed light 
on the regulatory patterns of SAM-related homeobox TFs and well-known SAM func-
tional genes.

Results
SAM‑related homeobox genes are enriched in KNOX, WOX, and ZF‑HD subfamilies

Homeobox genes are TFs that control tissue differentiation and development [29]. Sev-
eral key homeobox genes have been cloned and shown to function in the SAM in maize. 
To ascertain the functional relevance of these genes in SAM development, we first 
assembled 26 well-known SAM functional genes and described their mutant pheno-
types [30–40] (Fig. 1A, Additional file 2: Table S1). This includes nine homeobox TFs. Of 
these, Kn1, Gn1, ZmBLH12, and ZmBLH14 displayed elevated expression levels within 
the SAM and related meristems (Additional file 1: Fig. S1) [4, 5, 17]. We leveraged an 
existing maize multi-omics integrative network [41] to define the direct interconnected 
network for these 26 genes at both the co-expression and co-translation levels (Fig. 1B, 
Additional file 3: Table S2). Focusing on the homeobox family within the co-translation 
and co-expression integrated network (co-network) of SAM functional genes, three 
homeobox subfamilies are either co-expressed or co-translated alongside SAM func-
tional genes (Fig.  1C). The KNOX, WOX, and ZF-HD subfamilies have a statistically 
significantly higher co-expression ratio with SAM functional genes compared to ran-
domly selected control genes (Fig. 1C), suggesting that these subfamilies are more likely 
to function in the SAM. Next, we established a gene-regulatory network (GRN) centered 
on the three-most-significantly enriched subfamilies in the co-network (Fig. 1C), namely 
KNOX, WOX, and ZF-HD, to scrutinize in more detail the regulatory mechanisms of 
SAM functional genes.

Genome‑wide binding sites of maize SAM‑related TFs

Toward dissecting the molecular mechanisms by which maize SAM-related TFs shape 
tissue differentiation and development, we cloned full-length coding sequences of 
SAM-related TF genes from the KNOX, WOX, and ZF-HD homeobox subfamilies 
from a maize TFome (Additional file  4: Table  S3) [42]. To check sequence homology 
between maize V3 and V5 genome-annotation releases, we aligned protein sequences 
for each TF. Twenty-three of the 27 studied TFs have identical V3 and V5 protein 
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sequences. Four genes, Zm00001eb354880, Zm00001eb058930, Zm00001eb295920, and 
Zm00001eb217470, have minor differences between the two versions (Additional file 1: 
Fig. S2). We conducted tsCUT&Tag experiments by integrating CUT&Tag in B73 pro-
toplasts, and ATAC-seq and RNA-seq across various tissues and stages [28] to catalog 
genomic binding sites for each TF. We successfully performed nearly 100 tsCUT&Tag 
experiments on three TF subfamilies. Subsequently, a standardized pipeline was used 
for data processing with stringent criteria for normalized strand cross-correlation coef-
ficient (NSC) and relative strand cross-correlation coefficient (RSC), both set at > 1.05 
and 1.0, respectively (Additional file 5: Table S4). The Pearson correlation coefficient for 
reproducibility between biological replicates was set at ≥ 0.8 (Additional file 1: Fig. S3). 
A dataset comprising 27 TFs, each with at least two biological replicates, was compiled. 
Among them, seven members belong to the KNOX subfamily and 10 each to the WOX 
and ZF-HD subfamilies. We delineated the genomic relationships among these home-
obox TFs through a phylogenetic analysis, finding higher phylogenetic affinity within 
subfamilies except for the KNOX subfamily member Ns1, which is more closely related 
to the WOX subfamily members (Additional file 1: Fig. S4).

Following a series of stringent bioinformatics analyses and filters (see the “Meth-
ods” section), we identified a total of 30,915 reproducible TF-bound sites for these 

Fig. 1  Genes co-expressed and co-translated with known SAM functional genes are statistically significantly 
enriched in the KNOX, ZF-HD, and WOX subfamilies. A Heatmap representation of the expression levels of 
known SAM functional genes in the SAM, differentiated reproductive tissues, and other mature tissues. B 
Co-expression and co-translation genome networks of known SAM functional genes. MaxS: max scaling. 
C Proportion of known SAM functional genes in co-expression and co-translation networks for different 
homeobox subfamilies compared to random control genes (an equal random selection of genes in all 
co-networks). ** represents significance, ns represents no-significance
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SAM-related TFs (Fig. 2A). The number of binding peaks showed considerable vari-
ability among TFs, with a median value of approximately 5002 binding sites per TF 
(Inter-quantile range [IQR] 1016 to 8677) (Additional file  1: Fig. S5A, Additional 
file  6: Table  S5). The number of regulated target genes detected by tsCUT&Tag 
experiments ranged from 962 to 7227 per TF (Additional file 1: Fig. S5B, Additional 
file  6: Table  S5). The genomic distribution of binding peaks showed a bias toward 
the promoter regions of target genes, as previously described [43] (Fig.  2B and C, 
P < 7.2E − 10). Most tested TFs preferentially bound sequences containing core ATTA 
and CCAA motifs, consistent with Arabidopsis homeobox TFs (Additional file 7: Fig. 
S6) [44]. With these target-gene datasets for each SAM-related homeobox TF, we 
then constructed a comprehensive regulome.

We performed gene-ontology (GO) enrichment analysis on the putative target 
genes of using -Log10(FDR) as the enrichment standard. We saw statistically signifi-
cant enrichment in functions related to transport processes, growth and develop-
ment, and responses to hormones and stress (-Log10(FDR) > 2) (Additional file  7: 
Table  S6). For example, several target genes are related to plant-hormone stimuli, 
including auxin, abscisic acid, gibberellin, cytokinin, and brassinosteroids. Other 
enriched target genes are involved in organ development and morphogenesis. Taken 
together, genes from the regulome of SAM-related homeobox TFs have physiological 

Fig. 2  The regulome of maize SAM-related homeobox subfamilies. A Total number and percentage 
of binding peaks identified by tsCUT&Tag for KNOX, ZF-HD, and WOX subfamily members. B Metaplot 
showing the distribution of TF binding sites for KNOX, ZF-HD, and WOX family members tested. C Heatmap 
representation of tsCUT&Tag and ATAC-seq signals over ~ 3 kb of sequence upstream and downstream of the 
transcription start site (TSS) for the SAM-related homeobox TFs Rs1 and Ns1. D Zm00001eb007470 (ZmRPH1) 
in the genome browser. ATAC-seq and TF binding results are shown. SAM, shoot apical meristem
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relevance and constitute a network resource for further understanding maize growth 
and development.

Target hubs and HOT regions are enriched for regulatory genes

Genomic regions with high TF occupancy are frequently associated with important 
functions [45, 46]. Here, we aggregated all TF-target-gene interactions for the 27 tested 
TFs. 77.2% of potential target genes are bound simultaneously by multiple TFs. As the 
number of binding TFs increases, the number of co-regulated target genes decreases, 
indicating that most TFs co-regulate a limited number of target genes (Additional file 1: 
Fig. S7A). Notably, the proportion of overlapping target genes regulated by TFs within 
subfamilies is statistically significantly higher than between subfamilies (P = 0.004, KS-
test) (Additional file 1: Fig. S7B).

Hub target genes engage in crosstalk between different signaling pathways and rep-
resent important TF targets [47]. We built a random TF-target-gene distribution to 
delineate the hub target genes by randomizing the relationship between TFs and their 
potential target genes, while preserving the number of potential target genes for each TF, 
as previously described (Additional file 1: Fig. S8A) [48]. Based on the 99th percentile 
values of the randomized distributions, we defined 3,168 potential target genes without 
enhancer enrichment, which are bound by 13 or more TFs, as hub targets (Additional 
file 8: Table S7). Complementary to hub target genes, we characterized “hot” regions in 
the genome as regions bound by many TFs. Hot regions are distinct from hub genes in 
that they can be bound by many TFs at different locations. Their occupancy follows a 
negative exponential curve [48] (Additional file 1: Fig. S8B). A total of 3053 hot regions 
without enhancer enrichment were identified, defined as regions bound by 12 or more 
TFs (Additional file 8: Table S7). These hot regions are linked with 2773 target genes. 
We observed that 2,608 (~ 82.3%) of 3168 hub targets overlap with hot regions, with the 
remaining 17.7% of hub genes not being associated with hot regions because of the many 
TFs that bind to their loci target at different regions (Additional file 1: Fig. S8C).

Next, we surveyed regulatory complexity and identified a specific set of low-complex-
ity genes, i.e. those bound by a single TF (Additional file 8: Table S7). GO-term enrich-
ment analysis on these genes revealed their association with protein-complex biogenesis 
and assembly, and growth (Additional file  1: Fig. S6D). However, hub genes exhibited 
a pronounced enrichment within critical pathways, including signal transduction, pho-
toprotection, defense response, and hormone-signaling pathways, underscoring their 
important roles in regulatory networks (Additional file 1: Fig. S8E).

We also identified several potential target genes bound by more than 20 TFs. For 
example, Zm00001eb007470 (ZmRPH1, encoding a microtubule-associated protein) 
showed a high-TF-occupancy region bound by 24 TFs (Fig. 2D). ZmRPH1 contributes to 
cytoskeletal architecture and its over-expression induces a dwarf phenotype [49].

KNOX, WOX, and ZF‑HD subfamilies partially overlap in binding‑site specificity

Some TFs function collaboratively in organisms. To further delineate TF combinations, 
we visualized genome-wide mapping and quantified the frequency of co-localization of 
all possible pairs of TFs to target genes, based on the presence of their respective binding 
peaks within each TF sample (Additional file 1: Fig. S9A and Additional file 1: Fig. S9B). 
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Specifically, we considered all TF pairs that bind to the same target genes via non-over-
lapping motifs. Most pairs of TFs showed a low degree of co-localization for their bind-
ing sites within target genes and co-localizing TFs predominantly belong to the same 
subfamily.

To evaluate binding-site specificity within the three homeobox subfamilies, we per-
formed a comparative analysis and saw that ~ 51% of all detected peaks are present for 
at least two subfamilies (Fig. 2A). This finding indicates that although these three sub-
families have distinct binding profiles, they also show substantial overlap in their bind-
ing sites among individual members within each subfamily. We performed motif analysis 
using the upstream and downstream regulatory regions of peak summits bound by 
KNOX-only, WOX-only, ZF-HD-only members, or bound by all subfamilies referred 
to as shared peaks. Shared-peak subsets were enriched for the core motifs ATTA and 
CCAA. However, WOX-only and KNOX-only peaks only retuned one over-represented 
motif, CCAA. Notably, we detected ATTA-enriched motifs in ZF-HD-only peaks 
(Fig. 3A).

Although different TFs within the same subfamily shared more target genes (53% 
average) than different TFs across different subfamilies (49% average; P = 0.004, Addi-
tional file 1: Fig. S7B), we observed that at least 74–89% of all target genes from one of 
the three TF subfamilies were also among the targets of at least one of the other two 
subfamilies (Fig. 3B). This indicates that the target genes specifically regulated by each 
subfamily accounted for only 10.7–26.4% of the total regulated by that subfamily. We 
then tested whether the four categories of target genes (Fig. 3C) were associated with 
unique functions. GO-term enrichment analysis revealed that genes co-occupied by 
all members of all three TF homeobox families are statistically significantly enriched 
in terms related to “plant-organ development,” “flower development,” “leaf develop-
ment,” “response to hormone,” “fruit development,” and “signal transduction” (Fig. 3C). 
However, genes exclusively targeted by KNOX-type TFs (KNOX-only) were enriched 

Fig. 3  Binding specificity of KNOX, ZF-HD and WOX subfamily TFs to unique and shared peaks in their target 
genes. A Sequence logos for the top motifs identified for sites bound by WOX-only, ZF-HD-only, KNOX-only 
TFs, or peaks shared among them. Values represent the E-value of each motif. B Venn diagram of target genes 
overlapping among KNOX, ZF-HD, and WOX subfamilies. C Functional enrichment of WOX-only, ZF-HD-only, 
KNOX-only, or shared target genes determined by GO analysis. SN, mean SumNormalizer
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for terms associated with “plant-type cell wall,” and WOX-only targets were enriched 
for “chloroplast” and “meristem maintenance.” We detected no statistically significant 
enrichment for GO terms among high-confidence genes exclusively targeted by ZF-HD-
specific TFs (Fig.  3C). Collectively, these results underscore the propensity of KNOX, 
WOX, and ZF-HD subfamily TFs to frequently co-regulate the same locus.

Functional differentiation of SAM‑related TFs

Gene duplication is a fundamental mechanism underpinning the functional diversifi-
cation of paralogous genes resulting from whole-genome duplication (WGD), tandem 
duplication (TD), duplication mediated by transposition (TRD), proximal duplication 
(PD), and dispersed duplication (DSD) [50, 51]. To enhance the construction of the regu-
lome, we additionally gathered published ChIP-seq data for three subfamilies, namely 
Kn1 of KNOX, for analysis [51]. We identified 14 duplicated gene pairs, which we classi-
fied as having arisen from WGD (three pairs), PD (one pair), TRD (five pairs), and DSD 
(five pairs) (Additional file  9: Table  S8) [51]. These duplications predominantly arose 
during the divergence of the Magnoliophyta, Petrosaviidae, Commelinids, and Poaceae 
and ultimately the speciation of Z. mays (Additional file  1: Fig. S10A and Additional 
file 1: Fig. S10B, Additional file 9: Table S8).

To probe the functional fates that genes may assume after duplication events, we 
examined the temporal and spatial expression patterns of duplicated genes across maize 
development by RNA-seq. We identified two duplicate pairs showing the same over-
all pattern of expression (i.e., conserved duplications), with the remaining two pairs 
showing distinct expression patterns (i.e., divergent duplications), with ~ 70% of the 
duplications showing partial expression divergence (Additional file 9: Table S8). Protein-
sequence divergence might also lead to functional differentiation. To explore regulome 
divergence between duplicated gene pairs, we introduce an index—divergence score 
(DS) [52] to assess differentiation between two regulatory networks. Notably, as protein-
sequence similarity increased, new regulatory networks emerged (Fig.  4A, R = 0.56, 
P = 0.01). The randomized DS displays a normal distribution (Fig. S11). Consequently, 
we categorized duplications as conserved, partially diverged, or diverged, with a 95% 
threshold (Fig. 4B, Additional file 9: Table S8). The duplicated pair Zhd1 and Zhd21 is 
conserved at the regulome level, indicating that these TFs regulate the expression of the 
same genes. By contrast, four duplicate pairs, such as Kn1 and Lg3, showed divergence in 
the cohort of genes that each encoded TF regulates, and the remaining pairs (11/14) fell 
in between, leading us to define them as partially diverged (Fig. 4B).

By integrating the differentiation pattern observed at the transcriptome and regu-
lome levels, we noticed one divergent duplication with the same behavior across these 
two regulatory levels (Fig. 4C). Kn1 and Liguleless3 (Lg3) (a TRD), showed functional 
differentiation and bear distinct cis-elements within their promoter regions and 
have different gene structures, resulting in a diversification of combinatorial regula-
tion (Additional file 1: Fig. S12, A and B). The duplicate genes also differed in their 
expression patterns, with Kn1 more highly expressed than others in differentiated 
tissues, but similar in mature tissues (Fig. 12C). Additionally, analysis of Kn1 target 
genes and differentially expressed genes (DEGs) in the kn1 mutant revealed that Kn1 
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targets Lg3 and up-regulates its expression (Fig.  4D) [17]. Functional enrichment 
analysis of target genes indicated that both Kn1 and Lg3 exhibit a broad spectrum 
of hormone-related regulatory functions (Fig. 4E). However, Kn1 targets specifically 
participate in regulation of circadian rhythm, vegetative phase change, and growth 
and development of flowers and leaves (Fig. 4E). Meanwhile, Lg3 targets are involved 
in regulation of leaf senescence (Fig. 4E). These findings align with previous findings 
that Kn1 primarily functions in regulating the differentiation of SAM into cell groups 
with distinct functions, and in growth and development of lateral organs. Moreover, 
Kn1 often interacts with Lg3 and Lg4 to jointly regulate leaf development [51]. We 
conclude that Kn1 duplication that gave rise to Lg3 led to the subfunctionalization 
of fate differentiation. This example revealed that divergence in the connectivity of 

Fig. 4  Conservation and divergence in networks among duplicated genes. A Increased protein-sequence 
similarity is associated with greater similarity in gene-regulatory networks (GRN) generated by tsCUT&Tag. 
B Network rewiring between duplicate pairs of TFs may remain unchanged after duplication (conserved), 
involve both common and unique connections (partly diverged), or exhibit few common connections 
(diverged). Examples from each scenario in the classes of duplicates are shown at right. Nodes are denoted 
as 1:1000. C Pattern of conservation or divergence between transcriptome and regulome data for the same 
duplicate pairs of TFs. D Differential expression analysis based on RNA-seq between wild type and the kn1 
mutant. E GO terms of target genes regulated by Kn1 and Lg3
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the regulome between duplicated genes is accompanied by divergence in expression, 
hinting at functional divergence.

Tissue‑ or stage‑dynamic networks of SAM‑related TFs

Plant development and phenotypic variation are governed by precise and multifaceted 
GRNs [41, 53, 54]. Here, we constructed a GRN using information integrated from all 
target genes identified by tsCUT&Tag, co-expression, and co-translation [41]. This net-
work contained 235,043 edges and 18,463 nodes, providing a substantial resource to 
facilitate the functional dissection of maize SAM-related homeobox TFs.

In a typical network, the in-degree of nodes represents the number of genes that can 
be regulated or interact with a given node. We evaluated the distribution of in-degree 
values, which showed the characteristics of a scale-free network for the SAM-related 
homeobox TFs (Additional file 1: Fig. S13A). Moreover, converting in-degree values to 
their log2 values resulted in a pattern consistent with a power-law distribution (R2 = 0.87) 
(Additional file 1: Fig. S13B). Hot nodes within the network had more connectivity than 
others, signifying their importance in shaping information-flow pathways. We selected 
the top 10% of nodes with the highest degree of connectivity, corresponding to 1844 
genes; of these, ~ 45% (822 genes) were also hub targets bound by 13 TFs or more, as 
determined by our tsCUT&Tag experiments (Additional file  1: Fig. S13C, Additional 
file 10: Table S9). GO enrichment analysis of these genes underscored their involvement 
in physiology, including “signal transduction,” “response to hormone,” “organ senes-
cence,” and “defense response,” indicative of the important roles these nodes play within 
the network (Additional file 1: Fig. S13D).

To further dissect the functional roles of SAM-related homeobox TFs, we gath-
ered comprehensive RNA-seq, ribosome profiling (Ribo-seq), and ATAC-seq data-
sets collected from various B73 tissues: leaves, SAM, internodes, stems, tassels and 
endosperm (Additional file 11: Table S10). We defined 18,242–26,493 genes across dif-
ferent tissues or stages as being expressed, with a minimum expression level of tran-
scripts (TPM > 1) (Additional file  1: Fig. S14A, Additional file  11: Table  S10). We also 
detected between ~ 50% and ~ 80% of the target genes identified by tsCUT&Tag as being 
expressed in a specific tissue or stage (Additional file 1: Fig. S14B). ATAC-seq unveiled 
4187–27,145 accessible-chromatin regions spanning tissue stages. Between these two 
datasets, 10–74% of the target genes identified by tsCUT&Tag overlap with ATAC-seq 
open regions in specific tissues or stages. Within accessible-chromatin regions across 
different tissues, each TF regulates 521–5353 target genes (Additional file 1: Fig. S14C 
and Additional file 1: S14D). The transcriptome GRN and translatome GRN also showed 
a substantial overlap with the target genes for each TF, ranging from 0.3–27% and 0–30% 
of target genes as detected by tsCUT&Tag (Additional file 1: Fig. S14E and Additional 
file 1: Fig. S14F).

To construct tissue-specific dynamic regulatory networks, we first designed a 
machine-learning model using ATAC-seq and tsCUT&Tag data from etiolated seed-
lings. The accuracy of the multi-layer  perceptron models for the 27 TFs ranged from 
0.75 to 0.96 (Additional file 12: Table S11). The constructed models were then used to 
predict TF binding sites in the SAM based on ATAC-seq data. We predicted hundreds 
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of TF binding sites in the SAM (Additional file 13: Table S12). These binding sites were 
used to build the SAM dynamic regulatory network.

We constructed SAM dynamic networks by integrating multiple datasets. To acquire 
high-confidence TF-DNA regulatory associations, we required the target genes pre-
dicted by tsCUT&Tag and ATAC-seq to coexist in both the transcriptome and trans-
latome GRNs. Simultaneously, we required the target genes expressed in the SAM 
(TPM > 1). Ultimately, we constructed a dynamic SAM network (Fig.  5A, Additional 
file  14: Table  S13). It contained several known functional genes that influence plant 
architecture, flowering, and grain development, such as BEL1-like homeodomain12 
(ZmBLH12), BEL1-like homeodomain12 (ZmBLH14), and Fasciated Ear4 (Fea4) 
(Fig. 5A). GO enrichment analysis demonstrated that the SAM dynamic network is pre-
dominantly enriched for genes related to “meristem development,” “meristem initiation,” 
“meristem maintenance,” “shoot system development,” “hormone-mediated signaling 
pathway” (gibberellin, ethylene, and auxin), “tissue development” (flower, fruit, seed, 
leaves), and cell differentiation (Fig. 5B). Together, these findings highlight the biological 
significance inherent in SAM dynamic networks, providing insights into the functional 
characteristics of hitherto unclassified genes.

Networks of SAM‑related TFs associated with plant height

Plant height is an important agronomic trait with a complex regulatory mechanism 
[55]. We collated a list of published functional genes related to maize plant height 
and divided them into more than 12 distinct modules encompassing hormone-sign-
aling pathways (gibberellin, auxin, brassinosteroid, cytokinin, ethylene, abscisic acid, 
and strigolactone), phytochrome signaling, as well as pathways involved in vegetative 
and reproductive development, SAM maintenance and determinacy, microtubule cel-
lulose, sugar metabolism, and nutrition. We then constructed a plant-height func-
tional network selected by an integrated network based on this list of ~ 78 known 
functional genes and TF genes (Fig. 6A, Additional file 15: Table S14). An example of 

Fig. 5  SAM dynamic regulatory landscape of maize TFs. A–B The dynamic regulatory network in the SAM 
(A) and their functional annotation by GO enrichment (B). RichFactor represents the ratio of the input gene 
number in the pathway to the background gene number in the pathway
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the resulting network, namely for Knox6, illustrates how homeobox TFs exert their 
influence on plant height through a multitude of distinct pathways (Fig.  6B). Each 
functional gene appeared to be affected by multiple homeobox TFs, as shown for 
Vanishing tassel2 (Vt2), demonstrating the complexity of the molecular network gov-
erning plant height (Fig.  6C). As an example, Vt2 is involved in auxin biosynthesis, 
this gene is simultaneously regulated by KNOX members Knox6 and Hb20 (Fig. 7D). 
Moreover, Knox6 also bound to the Hb20 locus, indicating that one KNOX TF can 
regulate another KNOX gene (Fig. 7D). To validate these regulatory relationships, we 
conducted firefly luciferase (LUC) reporter assays in maize protoplasts. We cloned 
2-kb Vt2 and Hb20 promoter regions upstream of the LUC reporter gene and used 
Knox6 and Hb20 as effectors. Knox6 and Hb20 repressed the transcription of the Vt2, 

Fig. 6  Network of known plant-height functional genes and TFs in maize. A Regulatory network showing 
the connection between SAM-related TFs and known plant-height functional genes, with different colors 
indicating the various pathways depicted to the right. B Knox6 regulates diverse biological pathways. 
Color-coded dots correspond to categories shown in A. CVt2, a functional target gene, is regulated by 
multiple TFs. Color-coded dots are the same as A. D Genome browser view of the association of Knox6 and 
Hb20 with the Vt2 and Hb20 promoters. E, F Dual-luciferase reporter assay (E) and diagram of the proposed 
module (F) indicating that transcription from the Vt2 promoter is repressed by Knox6 and Hb20, whereas 
transcription from the Hb20 promoter is induced by Knox6. “Treatment” refers to the co-transformation of 
the pM999 vector containing the TF effector and the p0800 vector containing the 2-kb promoter region of 
the target gene. “Control” refers to the co-transformation of the empty pM999 vector with the p0800 vector 
containing the 2-kb promoter
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Knox6 activated the Hb20 (Fig. 6E and F), indicating that Knox6 and Hb20 have regu-
latory roles in auxin biosynthesis, thereby influencing plant height [56].

Loss of ZmWOX13A function contributes to plant‑height variation in maize

To test the functional hypothesis of genes inferred from the network, we selected 
WOX13A, which was most highly expressed in internodes and was highly connected in 
the plant-height transcriptional GRN, suggesting that it might play a role in determin-
ing plant height (Fig.  7A). We used CRISPR-Cas9-mediated genome editing to gener-
ate a loss-of-function wox13a mutant carrying a 1-bp deletion from the second exon, 
causing a frameshift and leading to premature termination of translation (Fig. 7B). We 
performed RNA-seq on internode samples at the V6 stage on the wild type (KN5585) 

Fig. 7  WOX13A regulates the expression of Gn1 and affects maize architecture. AWOX13A expression across 
different tissues and stages. B Strategy for the CRISPR–Cas9-based isolation of a WOX13A knockout mutant. C 
Differential expression analysis based on RNA-seq of V6-stage internodes from wild type and wox13a mutant. 
The position of Gn1 is annotated. D Venn diagram showing the overlap between target genes identified 
by tsCUT&Tag and DEGs obtained by RNA-seq. E Dual-luciferase reporter assay showing Gn1 transcription 
is induced by WOX13A. “Treatment” refers to the co-transformation of the pM999 vector containing the TF 
effector and the p0800 vector containing the 2-kb promoter region of the target gene. “Control” refers to 
the co-transformation of the empty pM999 vector with the p0800 vector containing the 2-kb promoter. F 
Representative phenotypes wild-type KN5585 and the wox13a mutant. Scale bar: 20 cm. G Plant height and 
ear height of KN5585 and wox13a plants grown in Shandong and Hubei, China. Statistical significance was 
determined by Student’s t test. **, P < 0.01; ***, P < 0.001
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and wox13a mutant, finding 490 DEGs (P < 0.05 and absolute Log2(FC) > 1) (Fig.  7C, 
Additional file  16: Table  S15). We also defined 5839 genes as direct WOX13A targets 
by tsCUT&Tag; the overlap between the two gene lists identified 74 genes as WOX13A-
regulated genes (Fig. 7C and D). Gn1 was among these — a well-known SAM-related 
and plant-height gene (Fig.  7B and D). By transient luciferase-reporter assay using a 
Gn1pro:LUC reporter and a WOX13A effector, we confirmed WOX13A activates the 
Gn1 expression (Fig. 7E). To rigorously examine wox13a developmental defects, we grew 
wild-type KN558 and wox13a mutants in the field at two locations in China over two 
locations. Plant and ear height in wox13a mutants were consistently statistically signifi-
cantly shorter than KN5585 controls (Fig.  7F and G). These findings strongly suggest 
that WOX13A induces Gn1 expression, consequently influencing the overall plant archi-
tecture of maize.

Discussion
Attaining optimal plant architecture in maize represents a critical determinant for 
achieving high yields. The establishment of plant architecture depends largely on the 
development of the SAM [57, 58]. In maize, some of the cloned SAM-related functional 
genes belong to the homeobox-protein family, underscoring their role in plant architec-
ture. Toward identifying the molecular networks governing maize architecture, we gen-
erated a comprehensive molecular regulatory network and dynamic regulatory networks 
for key plant-architecture tissues by focusing on 27 SAM homeobox TFs. We compared 
the generated homeobox integrated network resource with the genes influenced by 
known SAM functional genes in maize. Our study found that 84.3% (4758/5647) of tar-
get genes identified by FEA4 ChIP-seq were present in our homeobox integrated net-
work (Additional file 1: Fig. S15A) [59]. Additionally, 41.7% of the nodes in our generated 
SAM dynamic network overlapped with FEA4 target genes (Additional file 1: Fig. S15B). 
Approximately 62.6% of the differentially expressed genes between the grx triple mutant 
and wild type were also found in the homeobox integrated network (Additional file 1: 
Fig. S15C) [38]. Similarly, about 58% of DEGs between the ub2/ub3 double mutant tassel 
and wild-type tassel at the V5 stage were present in the homeobox integrated network 
(Additional file 1: Fig. S15D) [60]. These findings demonstrate that the targets affected by 
known SAM functional genes are largely present in the generated homeobox integrated 
network, validating its biological significance. Furthermore, the homeobox integrated 
network includes a larger number of network nodes and potential functions, providing 
an invaluable resource and foundation for in-depth exploration into the multifaceted 
functions of homeobox TFs within the context of maize growth and development.

tsCUT&Tag offers advantages such as a straightforward experimental procedure, time 
and cost efficiency, and high throughput. However, it still has some limitations in plant 
epigenetic studies. Enzymatic digestion of the plant cell wall is a stress treatment that 
may affect the regulatory networks of certain TFs, especially those related to chemi-
cal stimuli [49]. Additionally, tsCUT&Tag is reliant on the availability of high-quality 
protoplasts. Obtaining such protoplasts can be challenging due to the spatiotemporal 
specificity of TFs [61]. Integrating data from techniques like ATAC-seq and RNA-seq 
from specific tissues can aid in constructing the tissue regulatory landscape of TFs and 
enhance accuracy in analyzing tissue dynamic networks [28]. Although tsCUT&Tag 
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uses a machine-learning model based on the ATAC-seq and RNA-seq data and could 
predict the targets of TFs across different tissues and stages with an accuracy of ~ 70% 
[28], we still need to be cautious since there are some false positives.

Gene duplications constitute a fundamental mechanism underlying the expansion of 
gene families and the diversification of gene functions, thereby serving as a significant 
catalyst for genome evolution. A deep understanding of DNA-binding specificity among 
distinct TF subfamily members is crucial for characterizing genetic redundancy and 
diversity, functional differentiation of duplications, and more. In this study, we estab-
lished that members originating from the same subfamily exhibit only relatively minor 
differences in binding site specificity and target genes, indicating a substantial degree 
of functional redundancy within individual homeobox TF families. Furthermore, we 
saw contrasting fates of duplications to SAM-related homeobox genes at the transcrip-
tome and regulome levels. Kn1 and Lg3 are an example of a divergent duplication, with 
Kn1 regulating Lg3 expression to ensure proper inflorescence growth, indicative of 
subfunctionalization.

Dissecting regulatory networks is an efficient method for exploring highly dynamic 
and complex principles of functional genomics [62]. Here, we curated an expansive reg-
ulatory network encompassing 27 homeobox TFs, comprising 235,043 edges and 18,463 
nodes, reflecting a complexity and redundancy of regulation and supervision that is con-
sistent with performance in animals [63–65]. Compared to other investigations around 
homeobox functional genes [17, 19, 20], the GRNs we identified encapsulate a compre-
hensive spectrum of genetic-information flow across diverse pathways. Notably, all TFs 
investigated here regulate at least three distinct biological pathways, and at least two or 
more TFs converge to control genes within the same pathway, collectively revealing a 
multifaceted mode of transcriptional coordination.

Rational deployment of favorable gene combinations may potentially contribute to 
functional enhancements. Our understanding of TFs remains somewhat limited in the 
context of integrated networks, prompting us to integrate additional datasets to cre-
ate dynamic regulatory networks across various maize growth stages and tissues. This 
network within distinct tissues harbors distinct functional pathways, comprised both 
known functional genes and those with unknown functions. Such networks aid in the 
rapid discovery of functional genes and their regulatory relationships. Exploring the 
functions of target genes is a valuable tool for the prediction of the biological roles asso-
ciated with individual TFs. Through empirical validation, we demonstrated that Knox6 
and Hb20 repress the Vt2 transcription, a key functional gene involved in auxin biosyn-
thesis. This empirical confirmation reinforces a model wherein Knox6 and Hb20 par-
ticipate in the regulation of auxin biosynthesis. We generated a wox13a mutant via gene 
editing, which demonstrated that WOX13A influences plant height through its regu-
lation of the functional gene Gn1. These findings collectively underscore the powerful 
predictive capabilities of GRNs in delineating the functions of TFs and scoping the com-
plex regulatory interplay among TFs themselves, as well as between TFs and their target 
genes, within diverse biological pathways.



Page 16 of 24Luo et al. Genome Biology          (2024) 25:245 

Conclusions
In summary, we generated a comprehensive dynamic regulome of SAM-related home-
obox genes with tsCUT&Tag data of maize homeobox genes. By reproducing the regu-
latory associations between plant-height functional genes and SAM-related homeobox 
genes, our findings contribute to the identification and characterization of regulatory 
mechanisms governing plant architecture. We identify a novel role for Wox13A in con-
trol of plant height, further assisting rational improvement of agronomic traits.

Methods
Plant materials and vector construction

Seeds of maize (Zea mays inbred line B73) were planted in a growth chamber in con-
trolled conditions (25  °C, in continuous darkness) for approximately 10 days. The sec-
ondary yellow leaves were used for protoplast isolation and tsCUT&Tag. B73 seeds were 
also planted in a greenhouse under local environmental conditions in Wuhan. Samples 
from the shoot apical meristem of V4-stage seedlings, as well as the internode and stem 
of V5-stage seedlings, were collected for ATAC-seq. KN5585 and the wox13a mutant 
were planted in a greenhouse, also under local environmental conditions. Internode 
samples from V6-stage plants were harvested for RNA-seq. KN5585 and wox13a were 
cultivated for phenotypic observation in Zibo, Shandong during the spring of 2022, and 
in both Zibo, Shandong, and Wuhan, Hubei (China) during the spring of 2023.

Thirty-two maize vectors containing genes listed in Additional file  4: Table  S3 were 
amplified from the maize TFome using primers TF-F and TF-R, as previously described 
[42]. Full-length coding sequences were cloned into linearized pM999-GFP at the XbaI 
restriction site through homologous recombination. Transformation-grade plasmids 
were then prepared according to previously described methods [54].

Protoplast isolation, transformation, and tsCUT&Tag assay

Isolate and transformation of maize protoplasts was done as previously described [28]. 
For CUT&Tag assays, the tsCUT&Tag procedure [28] was followed, based on CUT&Tag 
procedure with adjustments [66]. The CUT&Tag assays were conducted using a com-
mercial kit (Vazyme, In-Situ ChIP Library Prep Kit for Illumina, TD901-TD902). The 
TF–target DNA libraries were constructed with distinct indexes (Vazyme, TruePrep™ 
Index Kit V4 for Illumina, TD204) and sequenced on an Illumina NovaSeq platform at 
Annoroad (Beijing, China).

ATAC‑seq

The construction of ATAC-seq libraries for the SAM, stem and internode samples was 
performed following a previously established protocol with some modifications [67, 
68]. In brief, native nuclei were extracted and pelleted by centrifugation and then resus-
pended in 20 μL 1 × TTBL buffer (VAHTS, TD501). For each library, ~ 10,000 nuclei 
were treated with Tn5 (VAHTS, TD501) in the presence of 0.3% v/v Triton X-100 at 
37 °C for 30 min. Samples were purified using a Qiagen MinElute kit and then amplified 
to construct a library with a TruePrep DNA Library Prep Kit V2 for Illumina sequencing 
(TD501, Vazyme). The resulting amplicons underwent size selection using DNA clean 
beads (KAPA) and were prepared for 150-bp paired-end sequencing.
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Analysis of TF peaks and open chromatin

Clean reads were aligned to the B73 maize reference genome version 5.0 using Bow-
tie2 software [69–71]. Aligned reads were filtered to retain those with mapping quality 
(MAPQ) > 30 and exclude reads mapping to multiple locations in the genome by retain-
ing AS:I: < N > tag and removing the XS:i: < N > tag. We used BEDTools to eliminate reads 
at the TF site to mitigate vector contamination [72]. SAMtools rmdup was applied to 
discard duplicated sequences, yielding the BAM file for subsequent analysis [73]. TF 
peak calling was performed using MACS2 (version 2.1.1) with control background sub-
traction and specifying the genome size (-g 2.1e + 9) [74]. Macs2 peaks are re-sized 
to ~ 150 bp around the summit and aggregate signal values. The merged-peak calling cri-
teria employed a 1% (0.01) irreproducible discovery rate (IDR) threshold. Open-chro-
matin regions were identified with a cutoff P value of 0.00001 by MACS2-call-summit 
[74]. Target genes were defined as the closest gene containing a peak summit within 2-kb 
upstream and downstream of the TSS and annotated via ChIPseeker [75]. Cross-corre-
lation analysis was conducted using phantompeakqualtools, yielding two metrics, nor-
malized strand cross-correlation coefficent (NSC) and relative strand cross-correlation 
coefficient (RSC) [76]. Conversion of.bam files to.bigwig files was carried out using deep-
Tools bamCoverage, applying reads-per-genome coverage (RPGC) normalization [77]. 
Heatmaps were generated using deepTools computeMatrix, plotHeatmap, and plotPro-
file [77]. Motif analysis was conducted using MEME-chip with the following parameters: 
-meme-mod anr -meme-minw 4 -meme-maxw 15 -meme-nmotifs 10 -meme-p 8. Input 
fasta sequence files for MEME-chip were generated by extracting 50  bp of sequence 
upstream and downstream of the peak summit using BEDtools and getfasta [72, 78]. To 
evaluate the reproducibility between biological replicates, Pearson’s correlation coef-
ficients were calculated using deepTools (version 3.2.0) multiBamSummary. Biological 
replicates with Pearson’s correlation coefficient ≥ 0.8 were retained for further analyses.

Identification of hub genes and hot regions

Hub targets were defined as described in previous studies [46, 79]. The identification 
of hub-target genes followed the protocol described in their respective procedures. 
Hub genes were defined as genes identified by more TFs than the 99th percentile of the 
maximal value in 100 randomizations of the columns in the TF-to-gene matrix, while 
preserving the total number of TF targets in each randomization. Similarly, the identi-
fication of hot regions followed the same strategy as that used for hub genes. Specifi-
cally, hub genes were defined as genes targeted by more than 13 TFs, while hot regions 
were characterized as those being bound by more than 12 TFs. Hotspot regions were 
screened using candidate enhancers identified previously [80].

RNA‑seq and differential expression analysis

To generate an expression map throughout the growth period, RNA-seq data were com-
piled from multiple sources [41] [81]. RNA-seq data obtained from the SAM 10 func-
tional domains were included [82]. Ribo-seq data from 16 tissues or stages were used as 
reported by [41]. Internode samples were collected in triplicate from KN5585 and the 
wox13a mutant at the V6 stage. Total RNA was extracted using a Direct-zol RNA Micro-
prep kit (Zymo Research) following the manufacturer’s instructions. RNA-seq libraries 
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were prepared and sequenced as 150-bp paired-end reads at BGI (Shenzhen, China), 
through BGISEQ-500RS.

For all RNA-seq analyses, RSEM [83] was used to align the data to the B73 reference 
genome version 5.0 and estimate gene-expression levels. Genes differentially expressed 
between WT and mutant were identified with DESeq2 [84] with the following param-
eters: P value < 0.05, absolute Log2(Fold-Change) > 1. GO-term enrichment analysis was 
conducted using singular-enrichment analysis with agriGO (version 2.0, http://​syste​
msbio​logy.​cau.​edu.​cn/​agriG​Ov2/), with the threshold set at FDR < 0.01 [85].

TF co‑regulation

The degree of colocalization between TFs was quantified within each sample. The step in 
deciphering the combinatorial regulatory code is to identify the location of TFs. Initially, 
a heatmap was employed to illustrate the enrichment level of genome-wide peak regions 
for the 27 TFs using R. For the coregulatory matrix, the TFs were clustered based on the 
Jaccard distance (1—Jaccard Index) between their peak sets using average-linkage hier-
archical clustering based on R.

Evaluation of gene divergence

Duplications were selected from three subfamilies derived from the download genome 
duplications reported by [51]. To predict cis-acting elements within the promoter 
regions, 1-kb regions upstream of the transcription start site were extacted for each gene 
using BEDtools, followed by analysis with PlantCARE [86]. To investigate the variation 
in spatiotemporal expression of duplicated genes, the ‘Scipy’ module in Python was 
employed to compute the Pearson’s correlation coefficient (R) between pairs of dupli-
cated genes across different tissues. For a more in-depth exploration of regulatory diver-
gence in duplicated genes, the Divergence score (DS) index was introduced, defined by 
the formula reported in 1− Number of shared genes between the two TFs targets

Total number of genes in the two TFs  [52].
Additionally, 100 gene pairs were randomly generated in TFs, from which the DS 

values were calculated, the DS value perform normal distribution based on MASS and 
lattice R packages. The 95th percentile of the DS-value distribution was selected as the 
threshold for statistically significant regulatory differentiation among duplicated gene 
pairs, with DS values indicating conserved (> 0.863), divergent (< 0.515), or intermediate 
levels of genetic differentiation (0.515 to 0.863) between duplicated genes.

Inference of an integrated transcription‑regulatory network and tissue‑dynamic networks

The integrated transcription regulatory network combines TF–target genes identified 
through tsCUT&Tag and published Kn1 ChIP and gene pairs identified, and co-expres-
sion and co-translation gene pairs from omics databases [17, 41]. Regulatory weight 
is obtained by normalizing the signal value on Min–Max Scaling. Conformance to a 
power-law distribution in the network was verified using Python.

To predict the dynamic binding sites of each TF in different tissues, we used PyTorch 
to construct a simple Multi-layer Perceptron (MLP) model to perform supervised learn-
ing on the tsCUT&Tag and ATAC-seq data. We trimmed the peaks of tsCUT&Tag 
and ATAC-seq to 100-bp upstream and downstream of the peak summit. The training 

http://systemsbiology.cau.edu.cn/agriGOv2/
http://systemsbiology.cau.edu.cn/agriGOv2/
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data were generated by overlapping peak sequences between tsCUT&Tag and ATAC-
seq. Peaks in the yellow leaves’ open chromatin were labeled as 1, and open-chromatin 
sequences without TF binding were labeled as 0, allowing the model to learn the features 
of sequence binding. These labeled sequences were then randomly divided into training 
and test sets. The trained model was then used to predict TF binding sites by analyzing 
the ATAC-seq peaks from the SAM.

To construct tissue-specific dynamic regulatory networks, expression levels were 
integrated from various tissue samples. For the SAM, expression levels were integrated 
from the 10 SAM domains, as well as the SAMs of V1- and V3-stage seedlings. Using a 
machine-learning model to predict each TF binding site in SAM, we required that the 
predicted target genes also show an overall expression level above the threshold TPM > 1. 
Additionally, these genes must overlap with the GRN generated by GENIE3 using gene-
expression and translation levels as previously described [42, 73]. The regulatory weight 
is the sum of the weights identified by tsCUT&Tag and the weights predicted by the 
transcriptome and translatome GRNs.

Transient luciferase‑reporter assays

Transient-expression assays were conducted using maize leaf protoplasts [87]. The pro-
moters of Hb20, Vt2, and Gn1 were cloned upstream of firefly luciferase (LUC) via the 
KpnI and PstI sites in pGreenII 0800-LUC through homologous recombination. The full-
length coding sequences of Knox6, Hb20, and WOX13A were cloned into the pGreenII 
PM999 vector using a homologous combination. Plasmids were mixed in appropri-
ate combinations and transformed into protoplasts. After 14  h of incubation in dark-
ness, protoplasts were collected and processed using a Dual-Luciferase Reporter Gene 
Assay Kit (DL101, Vazyme) following the manufacturer’s recommended protocol. LUC 
and REN activity were measured using a microplate reader. “Treatment” refers to the 
co-transformation of the pM999 vector containing the TF effector and the p0800 vec-
tor containing the 2-kb promoter region of the target gene. “Control” refers to the co-
transformation of the empty pM999 vector with the p0800 vector containing the 2-kb 
promoter.
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Additional file 1: Supplementary Figures S1–S15: Figure S1. Heatmap representation of the expression levels of 
known SAM functional genes in the SAM, differentiated tissues and other mature tissues. Figure S2. Alignment of 
TF V3 and V5 protein sequences for the 27 SAM TFs examined in this study."Query" represents the V5 version, and 
"Sbjct" represents the V3 version. Figure S3. Scatter plots of 27 TFome tsCUT&Tag data from SAM-related home-
obox genes. Pearson correlations were calculated in deepTools. Figure S4. Gene structures and phylogenetic tree 
based on amino-acid sequence for SAM-related homeobox proteins. Blue represents the ZF-HD subfamily, green 
represents the KNOX subfamily, pink represents the WOX subfamily. Figure S5. Distribution of bound peaks (A), 
target-gene number (B) and FRiP (C) for 27 TFs examined in this study. Figure S6. Top motifs identified for upstream 
and downstream 50 bp of each TF peaks by MEME-ChIP software. Figure S7. Characteristics of bound TFs per 
potential target gene. (A) Histogram showing the percentage of bound TFs per potential target gene. (B) Overlap for 
between-subfamily and within-subfamily TFs’ target genes. P value was calculated by KS test. Figure S8. Organization 
of hub genes and hot regions. Characteristics of bound TFs per potential target gene. (A) Bound TFs per potential 
target gene. (A-B) Bound TFs per potential target gene (A) and per peak region (B). (C) Number of overlapping genes 
between hub genes and genes regulated by hot regions. (D, E) Functional enrichment of target genes regulated by 
only 1 TF (D) and hub genes (E). Figure S9. Colocalization of binding sites for KNOX, ZFHD and WOX subfamily TFs. (A) 
Distribution of genome-wide peak regions. (B) TF co-binding matrix based on common potential-peak regions and 
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average-linkage hierarchical clustering based on Jaccard Index. Figure S10. Identification of duplication pairs in 27 
SAMrelated homeobox genes. Percentage of duplicate genes at different evolutionary groups of plant taxa (A) and 
in different subfamilies (B). Figure S11. Distribution of regulatory divergence score (DS). Figure S12. The duplication of 
KN1 andLg3. (A–C) cis-elements in promoter regions (A), Gene structure (B) and expression levels of KN1 and Lg3 (C). 
Figure S13. Features of the integrated network. (A, B) Distribution of node in-degree values (A) fit a power-law (red 
line, B). (C, D) Overlapping genes between high-occupied genes identified by tsCUT&Tag and nodes of the top-10% 
indegree in network (C), and their functional annotation (D). Figure S14. Summary of ATAC-seq and RNA-seq datasets 
and gene pairs characteristic of the network. (A) Number of expressed genes identified by RNA-seq in six different 
tissues. (B) Percentage of expressed target genes in a specific tissue. (C) Number of peaks identified by ATAC-seq in 
six different tissues. (D) Overlap of tsCUT&Tag target genes with ATAC-seq data. (E, F) Number and rate of overlap-
ping tsCUT&Tag target genes with transcriptome GRN (E) and translational GRN (F). Figure S15. Overlapping genes 
between homeobox network and known SAM functional TFs’ targets. (A) Overlapping genes between homeobox 
merge network and FEA4 target genes by ChIP-seq of ∼2-5mm ear. (B) Overlapping genes between homeobox SAM 
dynamic network and FEA4 target genes by ChIP-seq of ∼2-5mm ear. (C) Overlapping genes between homeobox 
merge network and differentially expressed genes between grx triple mutant and wild type. (D) Overlapping genes 
between homeobox merge network and differentially expressed genes between ub2/3 double mutant and wild 
type.

Additional file 2: Table S1. Description of well-known SAM functional genes. 

Additional file 3: Table S2. Sources of co-expression and co-translation for nine well-known SAM functional genes. 

Additional file 4: Table S3. Information on TFomes of KNOX, ZF-HD and WOX subfamily. 

Additional file 5: Table S4. tsCUT&Tag quality index, NSC and RSC values. 

Additional file 6: Table S5. Summary of peaks and target genes for SAM functional genes as defined by tsCUT&Tag. 

Additional file 7: Table S6. Enriched GO terms among target genes of 27 SAM-related homeobox TFs. 

Additional file 8: Table S7. List of hub genes, hot regions and low-complexity genes. 

Additional file 9: Table S8. Summary of duplications in SAM-related homeobox genes. 

Additional file 10: Table S9. List of top-10% of nodes in the integrated network. 

Additional file 11: Table S10. Gene-expression data in different tissues and stages. 

Additional file 12: Table S11. Accuracy of the MLP model for 27 TFs. 

Additional file 13: Table S12. Predicted binding sites of 27 TFs in the SAM. 

Additional file 14: Table S13. Sources of SAM dynamic network. 

Additional file 15: Table S14. Sources of well-known functional genes and SAM-related TF genes associated with 
plant height. 

Additional file 16: Table S15. DEGs between wild-type KN5885 and the wox13a mutant. 

Additional file 17: Table S16. The NCBI accession numbers for cited samples. 

Additional file 18: Review history. 

Acknowledgements
We thank the high-performance computing platform at the National Key Laboratory of Crop Genetic Improvement in 
Huazhong Agricultural University. We really appreciate Professor Gary J. Muehlbauer from University of Minnesota for the 
discussion and supervision at the early stage of this project. We also thank Dr. Weifu Li and Mr. Hao Wu from the college 
of Informatics of Huazhong Agricultural University for the code debugging of machine learning.

Peer review information
Wenjing She was the primary editor of this article and managed its editorial process and peer review in collaboration 
with the rest of the editorial team.

Review history
The review history is available as Additional file 18.

Authors’ contributions
L.L. and S.X. designed and supervised the study. Z.L., L.W., and X.M. performed the experiments with assistance from S.Z., 
S. Z., H.H., X.S., and N.W. Z.L. performed the bioinformatic analyses. J.X. and T.Z. provided ideas on the design and useful 
discussion on the study. Z.L. and L.L. prepared the manuscript. F.Y. helped provide mutant materials.

Funding
This research was supported by the National Key Research and Development Program of China (2023YFF1000100, 
2023ZD04076), the National Natural Science Foundation of China (32321005, 32261143463), and the Outstanding Youth 
Team Cultivation Project of Center Universities (2662023PY007).

Availability of data and materials
 The sequencing data generated in this paper and BAM files are available at the Genome Sequence Archive (GSA) at the 
Big Data Center (National Genomics Data Center, NGDC) [88]. The data and machine learning models in this study were 
deposited under MIT license in GitHub (https://​github.​com/​LuoZi​ya/​ML_​in_​regul​atome_​of_​HB_​TFs/) [89] and in Zenodo 

https://github.com/LuoZiya/ML_in_regulatome_of_HB_TFs/


Page 21 of 24Luo et al. Genome Biology          (2024) 25:245 	

(https://​zenodo.​org/​recor​ds/​13479​358) [90]. The peak and open-chromatin-region files and the integrated regulome 
files have been deposited online at http://​zeasy​stems​bio.​hzau.​edu.​cn/​datas​et.​html. The published Ribo-seq and RNA-seq 
datasets of samples are available at Sequence Read Archive (SRA) at the National Center for Biotechnology Information 
(NCBI), the detailed accession numbers for each sample are in Additional file 17: Table S16 [41].

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 
Wuhan 430070, China. 2 The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui 
Agricultural University, Hefei 230036, China. 3 The Key Laboratory of Biology and Genetics Improvement of Maize in Arid 
Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712199, China. 4 Jiangsu 
Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy 
of Agricultural Sciences, Nanjing 210014, China. 5 Hubei Hongshan Laboratory, Wuhan 430070, China. 6 Shenzhen Insti-
tute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China. 7 Shenzhen Branch, Guangdong 
Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural 
Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. 

Received: 30 January 2024   Accepted: 10 September 2024

References
	1.	 Laux T, Mayer KFX, Berger J, Jurgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in 

Arabidopsis. Development. 1996;122:87–96.
	2.	 Pautler M, Tanaka W, Hirano HY, Jackson D. Grass meristems I: shoot apical meristem maintenance, axillary meristem 

determinacy and the floral transition. Plant Cell Physiol. 2013;54:302–12.
	3.	 Long JA, Moan EI, Medford JI, Barton MK. A member of the KNOTTED class of homeodomain proteins encoded by 

the STM gene of Arabidopsis. Nature. 1996;379:66–9.
	4.	 Smith LG, Greene B, Veit B, Hake S. A dominant mutation in the maize homeobox gene, knotted-1, causes its ectopic 

expression in leaf-cells with altered fates. Development. 1992;116:21–000.
	5.	 Becraft PW, Freeling M. Genetic-analysis of rough-sheath1 developmental mutants of maize. Genetics. 

1994;136:295–311.
	6.	 Conklin PA, Johnston R, Conlon BR, Shimizu R, Scanlon MJ. Plant homeodomain proteins provide a mechanism for 

how leaves grow wide. Development. 2020;147(20):dev193623.
	7.	 Muehlbauer GJ, Fowler JE, Girard L, Tyers R, Harper L, Freeling M. Ectopic expression of the maize homeobox gene 

liguleless3 alters cell fates in the leaf. Plant Physiol. 1999;119:651–62.
	8.	 Mukherjee K, Brocchieri L, Burglin TR. A comprehensive classification and evolutionary analysis of plant homeobox 

genes. Mol Biol Evol. 2009;26:2775–94.
	9.	 Shani E, Yanai O, Ori N. The role of hormones in shoot apical meristem function. Curr Opin Plant Biol. 2006;9:484–9.
	10.	 Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M. KNOX action in Arabidopsis is 

mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol. 2005;15:1560–5.
	11.	 Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M. KNOX homeodomain protein directly suppresses 

the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 2001;15:581–90.
	12.	 Sharif R, Raza A, Chen P, Li Y, El-Ballat EM, Rauf A, Hano C, El-Esawi MA. HD-ZIP Gene family: potential roles in improv-

ing plant growth and regulating stress-responsive mechanisms in plants. Genes (Basel). 2021;12(8):1256.
	13.	 Elhiti M, Stasolla C. Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signal Behav. 

2009;4:86–8.
	14.	 Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T. The stem cell population of Arabidopsis shoot meris-

tems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 2000;100:635–44.
	15.	 Wu X, Dabi T, Weigel D. Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and main-

tenance. Curr Biol. 2005;15:436–40.
	16.	 Ueda M, Zhang Z, Laux T. Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polar-

ity to embryo development. Dev Cell. 2011;20:264–70.
	17.	 Bolduc N, Yilmaz A, Mejia-Guerra MK, Morohashi K, O’Connor D, Grotewold E, Hake S. Unraveling the KNOTTED1 

regulatory network in maize meristems. Genes Dev. 2012;26:1685–90.
	18.	 Vollbrecht E, Veit B, Sinha N, Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene 

family. Nature. 1991;350:241–3.
	19.	 Nardmann J, Ji J, Werr W, Scanlon MJ. The maize duplicate genes narrow sheath1 and narrow sheath2 encode a con-

served homeobox gene function in a lateral domain of shoot apical meristems. Development. 2004;131:2827–39.
	20.	 Foster T, Yamaguchi J, Wong BC, Veit B, Hake S. Gnarley1 is a dominant mutation in the knox4 homeobox gene 

affecting cell shape and identity. Plant Cell. 1999;11:1239–52.

https://zenodo.org/records/13479358
http://zeasystemsbio.hzau.edu.cn/dataset.html


Page 22 of 24Luo et al. Genome Biology          (2024) 25:245 

	21.	 Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 
2007;316:1497–502.

	22.	 Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA. Circuitry and dynamics of 
human transcription factor regulatory networks. Cell. 2012;150:1274–86.

	23.	 Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, et al. 
A genomic regulatory network for development. Science. 2002;295:1669–78.

	24.	 Kim J, Chu J, Shen X, Wang J, Orkin SH. An extended transcriptional network for pluripotency of embryonic stem 
cells. Cell. 2008;132:1049–61.

	25.	 Franco-Zorrilla JM, Lopez-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R. DNA-binding specificities of plant tran-
scription factors and their potential to define target genes. Proc Natl Acad Sci U S A. 2014;111:2367–72.

	26.	 Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, Schmierer B, Jolma A, Kivioja T, Taipale M, Taipale J. Tran-
scription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell. 
2013;154:801–13.

	27.	 Tu X, Mejia-Guerra MK, Valdes Franco JA, Tzeng D, Chu PY, Shen W, Wei Y, Dai X, Li P, Buckler ES, Zhong S. Recon-
structing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nat Commun. 
2020;11:5089.

	28.	 Wu L, Luo Z, Shi Y, Jiang Y, Li R, Miao X, Yang F, Li Q, Zhao H, Xue J, et al. A cost-effective tsCUT&Tag method for 
profiling transcription factor binding landscape. J Integr Plant Biol. 2022;64:2033–8.

	29.	 Shepherd JCW, Mcginnis W, Carrasco AE, Derobertis EM, Gehring WJ. Fly and frog homoeo domains show 
homologies with yeast mating type regulatory proteins. Nature. 1984;310:70–1.

	30.	 Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W. thick tassel dwarf1 
encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Devel-
opment. 2005;132:1235–45.

	31.	 Bommert P, Je BI, Goldshmidt A, Jackson D. The maize Galpha gene COMPACT PLANT2 functions in CLAVATA 
signalling to control shoot meristem size. Nature. 2013;502:555–8.

	32.	 Wu Q, Xu F, Liu L, Char SN, Ding Y, Je BI, Schmelz E, Yang B, Jackson D. The maize heterotrimeric G protein 
beta subunit controls shoot meristem development and immune responses. Proc Natl Acad Sci U S A. 
2020;117:1799–805.

	33.	 Wang F, Yu Z, Zhang M, Wang M, Lu X, Liu X, Li Y, Zhang X, Tan BC, Li C, Ding Z. ZmTE1 promotes plant height 
by regulating intercalary meristem formation and internode cell elongation in maize. Plant Biotechnol J. 
2022;20:526–37.

	34.	 Guo M, Rupe MA, Dieter JA, Zou J, Spielbauer D, Duncan KE, Howard RJ, Hou Z, Simmons CR. Cell Number Regu-
lator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell. 
2010;22:1057–73.

	35.	 Chuck GS, Brown PJ, Meeley R, Hake S. Maize SBP-box transcription factors unbranched2 and unbranched3 
affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci U S A. 
2014;111:18775–80.

	36.	 Moon J, Candela H, Hake S. The Liguleless narrow mutation affects proximal-distal signaling and leaf growth. 
Development. 2013;140:405–12.

	37.	 Brooks L 3rd, Strable J, Zhang X, Ohtsu K, Zhou R, Sarkar A, Hargreaves S, Elshire RJ, Eudy D, Pawlowska T, et al. 
Microdissection of shoot meristem functional domains. PLoS Genet. 2009;5:e1000476.

	38.	 Yang RS, Xu F, Wang YM, Zhong WS, Dong L, Shi YN, Tang TJ, Sheng HJ, Jackson D, Yang F. Glutaredoxins regu-
late maize inflorescence meristem development via redox control of TGA transcriptional activity. Nat Plants. 
2021;7:1589–601.

	39.	 Liu X, Galli M, Camehl I, Gallavotti A. RAMOSA1 ENHANCER LOCUS2-mediated transcriptional repression regu-
lates vegetative and reproductive architecture. Plant Physiol. 2019;179:348–63.

	40.	 Becraft PW, Stinard PS, McCarty DR. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differen-
tiation. Science. 1996;273:1406–9.

	41.	 Han LQ, Zhong WS, Qian J, Jin ML, Tian P, Zhu WC, Zhang HW, Sun YH, Feng JW, Liu XG, et al. A multi-omics 
integrative network map of maize. Nat Genet. 2023;55:144.

	42.	 Burdo B, Gray J, Goetting-Minesky MP, Wittler B, Hunt M, Li T, Velliquette D, Thomas J, Gentzel I, Brito MD, et al. 
The Maize TFome - development of a transcription factor open reading frame collection for functional genom-
ics. Plant J. 2014;80:356–66.

	43.	 Lambert SA, Jolma A, Campitelli LF, Das PK, Yin YM, Albu M, Chen XT, Taipale J, Hughes TR, Weirauch MT. The 
Human Transcription Factors. Cell. 2018;172:650–65.

	44.	 O’Malley RC, Huang SSC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR. Cistrome and 
epicistrome features shape the regulatory DNA landscape (vol 165, pg 1280, 2016). Cell. 2016;166:1598–1598.

	45.	 Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JR, Guenther MG, Kumar RM, Murray HL, Jenner RG, 
et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.

	46.	 Heyndrickx KS, Van de Velde J, Wang CM, Weigei D, Vandepoele K. A functional and evolutionary perspective on 
transcription factor binding in arabidopsis thaliana. Plant Cell. 2014;26:3894–910.

	47.	 Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 
2004;5:101-U115.

	48.	 Marbach D, Roy S, Ay F, Meyer PE, Candeias R, Kahveci T, Bristow CA, Kellis M. Predictive regulatory models in 
Drosophila melanogaster by integrative inference of transcriptional networks. Genome Res. 2012;22:1334–49.

	49.	 Li W, Ge FH, Qiang ZQ, Zhu L, Zhang SS, Chen LM, Wang XQ, Li JS, Fu Y. Maize ZmRPH1 encodes a microtubule-
associated protein that controls plant and ear height. Plant Biotechnol J. 2020;18:1345–7.

	50.	 Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, seg-
mental, or by transposition. Annu Rev Plant Biol. 2009;60:433–53.

	51.	 Qiao X, Li QH, Yin H, Qi KJ, Li LT, Wang RZ, Zhang SL, Paterson AH. Gene duplication and evolution in recurring 
polyploidization-diploidization cycles in plants. Genome Biol. 2019;20(1):38.



Page 23 of 24Luo et al. Genome Biology          (2024) 25:245 	

	52.	 De Smet R, Sabaghian E, Li Z, Saeys Y, Van de Peer Y. Coordinated functional divergence of genes after genome 
duplication in arabidopsis thaliana. Plant Cell. 2017;29:2786–800.

	53.	 Zhu WC, Miao XX, Qian J, Chen SJ, Jin QX, Li MZ, Han LQ, Zhong WS, Xie D, Shang XY, Li L. A translatome-
transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize. 
Genome Biol. 2023;24(1):60.

	54.	 Tu XY, Mejia-Guerra MK, Franco JAV, Tzeng D, Chu PY, Shen W, Wei YY, Dai XR, Li PH, Buckler ES, Zhong SL. Recon-
structing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nat Commun. 
2020;11(1):5089.

	55.	 Wang YH, Li JY. Molecular basis of plant architecture. Annu Rev Plant Biol. 2008;59:253–79.
	56.	 Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, 

McSteen P. vanishing tassel2 Encodes a grass-specific tryptophan aminotransferase required for vegetative and 
reproductive development in maize. Plant Cell. 2011;23:550–66.

	57.	 Wang B, Smith SM, Li JY. Genetic Regulation of Shoot Architecture. Annu Rev Plant Biol. 2018;69(69):437–68.
	58.	 Sanchez P, Nehlin L, Greb T. From thin to thick: major transitions during stem development. Trends Plant Sci. 

2012;17:113–21.
	59.	 Pautler M, Eveland AL, LaRue T, Yang F, Weeks R, Lunde C, Il Je B, Meeley R, Komatsu M, Vollbrecht E, et al. 

FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. Plant Cell. 
2015;27:104–20.

	60.	 Kong D, Li C, Xue W, Wei H, Ding H, Hu G, Zhang X, Zhang G, Zou T, Xian Y, et al. UB2/UB3/TSH4-anchored tran-
scriptional networks regulate early maize inflorescence development in response to simulated shade. Plant Cell. 
2023;35:717–37.

	61.	 Suter DM. Transcription factors and DNA play hide and seek. Trends Cell Biol. 2020;30:491–500.
	62.	 Trewavas A. A brief history of systems biology. “Every object that biology studies is a system of systems.” Francois 

Jacob (1974). Plant Cell. 2006;18:2420–30.
	63.	 Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, 

et al. Transcriptional regulatory code of a eukaryotic genome. Nature. 2004;431:99–104.
	64.	 Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon 

I, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002;298:799–804.
	65.	 Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C, Mu XJ, Khurana E, Rozowsky J, Alexander R, 

et al. Architecture of the human regulatory network derived from ENCODE data. Nature. 2012;489:91–100.
	66.	 Kaya-Okur HS, Wu SJ, Codomo CA, Pledgers ES, Bryson TD, Henikoff JG, Ahmad K, Henikoff S. CUT&Tag for effi-

cient epigenomic profiling of small samples and single cells. Nat Commun. 2019;10(1):1930.
	67.	 Sun YH, Dong L, Zhang Y, Lin D, Xu WZ, Ke CX, Han LQ, Deng LL, Li GL, Jackson D, et al. 3D genome architecture 

coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biol. 
2020;21(1):143.

	68.	 Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensi-
tive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 
2013;10:1213.

	69.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357-U354.
	70.	 Jiao YP, Peluso P, Shi JH, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei XH, Chin CS, et al. Improved 

maize reference genome with single-molecule technologies. Nature. 2017;546:524.
	71.	 Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou SJ, Liu JN, Ricci WA, Guo TT, Olson A, Qiu 

YJ, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science. 
2021;373:655-+.

	72.	 Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 
2010;26:841–2.

	73.	 Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, 
Li H. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008.

	74.	 Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Liu XS. 
Model-based Analysis of ChIP-Seq (MACS). Genome Biology. 2008;9(9):R137.

	75.	 Yu GC, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and 
visualization. Bioinformatics. 2015;31:2382–3.

	76.	 Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cay-
ting P, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 
2012;22:1813–31.

	77.	 Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, Manke T. deepTools2: a next 
generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–5.

	78.	 Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011;27:1696–7.
	79.	 Shalgi R, Lieber D, Oren M, Pilpel Y. Global and local architecture of the mammalian microRNA-transcription fac-

tor regulatory network. PLoS Comput Biol. 2007;3:1291–304.
	80.	 Oka R, Zicola J, Weber B, Anderson SN, Hodgman C, Gent JI, Wesselink JJ, Springer NM, Hoefsloot HCJ, Turck F, 

Stam M. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in 
maize. Genome Biol. 2017;18:137.

	81.	 Zhou P, Hirsch CN, Briggs SP, Springer NM. Dynamic patterns of gene expression additivity and regulatory varia-
tion throughout maize development. Mol Plant. 2019;12:410–25.

	82.	 Knauer S, Javelle M, Li L, Li XR, Ma XL, Wimalanathan K, Kumari S, Johnston R, Leiboff S, Meeley R, et al. A 
high-resolution gene expression atlas links dedicated meristem genes to key architectural traits. Genome Res. 
2019;29:1962–73.

	83.	 Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference 
genome. Bmc Bioinformatics. 2011;12:323.



Page 24 of 24Luo et al. Genome Biology          (2024) 25:245 

	84.	 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with 
DESeq2. Genome Biol. 2014;15(12):550.

	85.	 Tian T, Liu Y, Yan HY, You Q, Yi X, Du Z, Xu WY, Su Z. agriGO v2.0: a GO analysis toolkit for the agricultural com-
munity, 2017 update. Nucleic Acids Res. 2017;2017(45):W122–9.

	86.	 Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of 
plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic 
Acids Res. 2002;30:325–7.

	87.	 Song SS, Huang H, Gao H, Wang JJ, Wu DW, Liu XL, Yang SH, Zhai QZ, Li CY, Qi TC, Xie DX. Interaction between 
MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in 
Arabidopsis. Plant Cell. 2014;26:263–79.

	88.	 Luo Z, Wu LM, Miao XX, Zhang S, Wei NN, Zhao S, Shang XY, Hu HY, Xue J, Zhang TF, et al. A dynamic regulome of 
shoot-apical-meristem-related homeobox transcription factors modulates plant architecture in maize. Genome 
Sequence Archive. 2024.https://​ngdc.​cncb.​ac.​cn/​search/​all?q=​CRA01​2938.

	89.	 Luo Z, Wu LM, Miao XX, Zhang S, Wei NN, Zhao S, Shang XY, Hu HY, Xue J, Zhang TF, et al. A dynamic regulome 
of shoot-apical-meristem-related homeobox transcription factors modulates plant architecture in maize. Github. 
2024.https://​github.​com/​LuoZi​ya/​ML_​in_​regul​atome_​of_​HB_​TFs.

	90.	 Luo Z, Wu LM, Miao XX, Zhang S, Wei NN, Zhao S, Shang XY, Hu HY, Xue J, Zhang TF, et al. A dynamic regulome of 
shoot-apical-meristem-related homeobox transcription factors modulates plant architecture in maize. Zenodo. 
2024.https://​zenodo.​org/​recor​ds/​13479​358.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://ngdc.cncb.ac.cn/search/all?q=CRA012938
https://github.com/LuoZiya/ML_in_regulatome_of_HB_TFs
https://zenodo.org/records/13479358

	A dynamic regulome of shoot-apical-meristem-related homeobox transcription factors modulates plant architecture in maize
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	SAM-related homeobox genes are enriched in KNOX, WOX, and ZF-HD subfamilies
	Genome-wide binding sites of maize SAM-related TFs
	Target hubs and HOT regions are enriched for regulatory genes
	KNOX, WOX, and ZF-HD subfamilies partially overlap in binding-site specificity
	Functional differentiation of SAM-related TFs
	Tissue- or stage-dynamic networks of SAM-related TFs
	Networks of SAM-related TFs associated with plant height
	Loss of ZmWOX13A function contributes to plant-height variation in maize

	Discussion
	Conclusions
	Methods
	Plant materials and vector construction
	Protoplast isolation, transformation, and tsCUT&Tag assay
	ATAC-seq
	Analysis of TF peaks and open chromatin
	Identification of hub genes and hot regions
	RNA-seq and differential expression analysis
	TF co-regulation
	Evaluation of gene divergence
	Inference of an integrated transcription-regulatory network and tissue-dynamic networks
	Transient luciferase-reporter assays

	Acknowledgements
	References


