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Abstract 

Background: Respiratory diseases impose an immense health burden worldwide. Epide-
miological studies have revealed extensive disparities in the incidence and severity of res-
piratory tract infections between men and women. It has been hypothesized that there 
might also be a nasal microbiome axis contributing to the observed sex disparities.

Results: Here, we study the nasal microbiome of healthy young adults in the largest 
cohort to date with 1593 individuals, using shotgun metagenomic sequencing. We 
compile the most comprehensive reference catalog for the nasal bacterial community 
containing 4197 metagenome-assembled genomes and integrate the mycobiome, 
to provide a valuable resource and a more holistic perspective for the understud-
ied human nasal microbiome. We systematically evaluate sex differences and reveal 
extensive sex-specific features in both taxonomic and functional levels in the nasal 
microbiome. Through network analyses, we capture markedly higher ecological stabil-
ity and antagonistic potentials in the female nasal microbiome compared to the male’s. 
The analysis of the keystone bacteria reveals that the sex-dependent evolutionary 
characteristics might have contributed to these differences.

Conclusions: In summary, we construct the most comprehensive catalog of metage-
nome-assembled-genomes for the nasal bacterial community to provide a valuable 
resource for the understudied human nasal microbiome. On top of that, comparative 
analysis in relative abundance and microbial co-occurrence networks identify exten-
sive sex differences in the respiratory tract community, which may help to further our 
understanding of the observed sex disparities in the respiratory diseases.

Keywords: Nasal microbiome, Metagenome-assembled genomes, Sex differences, 
Respiratory health, Network analysis, Keystone, Ecological stability, Genetic 
evolutionary forces, Biosynthetic gene cluster

†Yanmei Ju, Zhe Zhang, 
Mingliang Liu, and Shutian Lin 
contributed equally to this work.

*Correspondence:   
jiahuijue@ipm-gba.org.cn; 
tao.zhang@genomics.cn; 
guoruijin@genomics.cn

1 BGI Research, 
Shenzhen 518083, China
9 School of Life Sciences, Fudan 
University, Shanghai 200433, 
China
11 BGI Research, Wuhan 430074, 
China
Full list of author information is 
available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-024-03389-2&domain=pdf
http://orcid.org/0000-0002-1600-3164


Page 2 of 24Ju et al. Genome Biology          (2024) 25:257 

Background
Respiratory diseases impose an immense health burden worldwide, affecting billions of 
people’s lives and accounting for over 10% of all disability-adjusted life-years (DALY) 
as of 2019 according to the Global Burden of Diseases (GBD) study [1–4], let alone the 
catastrophic impact of the COVID-19 pandemic. Sex is a significant factor in many dis-
eases. Epidemiological studies have revealed extensive disparities in the incidence and 
severity of respiratory tract infections (RTIs) between males and females. Males are 
generally more commonly and severely affected by most RTIs than females across all 
age groups [4–6]. A greater mortality rate for males was also observed in COVID-19 
[7–9]. Sex-specific differences in immunity mediated by sex chromosome complement, 
genes, and sex hormones can play important roles in the observed disparity [6–8]. Nev-
ertheless, the mechanism remains unclear. The respiratory tract microbiome has been 
implicated in different respiratory diseases [10–17]. It is recently hypothesized that there 
might also be a nasal microbiome axis contributing to the observed sex disparities [18].

The nasal bacterial community is characterized by a high prevalence of Corynebacte-
rium spp., Cutibacterium  spp., and Staphylococcus spp., with most of the components 
belonging to phyla Actinobacteria, Firmicutes, and Proteobacteria [19, 20]. In addition to 
bacterial colonizers, the nasal cavity also harbors a mycobiota [21–23], as well as the pres-
ence of viruses. Nevertheless, the nasal microbiome studies are hitherto limited to small 
sample sizes or conservative gene-based sequencing (16S rRNA, 18S rRNA, ITS) [20, 22–
28]. Sex differences in the nasal microbiome have never been systematically evaluated. 
This is not surprising considering that even in the most researched gut microbiome, sex 
differences only came to light very recently through large-scale population-level studies 
[29–31]. It is increasingly recognized that the nasal microbiome might function as a gate-
keeper in respiratory health [32, 33]. The nasal cavity is featured by limited nutrients and 
adhesion surfaces [34] and also represents a major reservoir for opportunistic pathogens, 
such as Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae 
[35]. The microbes in this niche are hence in constant competition, and sometimes form 
cooperative relations, to gain self-fitness [36–40]. Extensive antimicrobial substance pro-
ductions have been identified in nasal microbes, which can be potential mediators of the 
interactions [38–44]. The competitive (antagonistic) and cooperative (synergistic) inter-
actions influence both the initial colonization of pathogens and the thereafter dynamics. 
Network-based approaches have been shown helpful in deciphering complex interactions 
and are increasingly applied in the microbial field. Understanding the nature of microbial 
co-occurrence and correlation patterns within and across domains may provide insights 
into the ecological systems as well as related human diseases. Through network-based 
analyses, researchers studying bronchiectasis exacerbations found that patients with dif-
ferent exacerbation risks featured distinct microbial interaction networks [45]. Instead of 
the implicated pathobiont Pseudomonas alone, it is the interaction network that is asso-
ciated with the exacerbation risk. While cross-domain interactions are rarely explored, 
Tipton et al. recently showed that compared to single-domain networks, bacteria-fungi 
combined networks had higher overall connectivity and increased attack robustness [46]. 
More importantly, network analyses can help elucidate and prioritize the keystones of a 
community, which may not be the species dominant in abundance, and sometimes can 
even be unknown as “microbial dark matter” [47, 48].
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In this work, we study the nasal microbiome of healthy young adults in a so far largest 
cohort with 1593 individuals based on deep shotgun metagenomic sequencing. De novo 
assembly is performed to catalog the nasal bacterial colonizers/residents, which has also 
identified and therefore accounted for uncharacterized components of the community. 
We then characterized the composition of the nasal bacterial and fungal community in 
this cohort. Unsupervised clustering of the weighted similarity matrix integrating the 
bacterial and fungal community reveals clearly separable patterns between the two 
sexes, implying a distinct structure of the nasal microbiome between males and females, 
which is further confirmed by PERMANOVA and random forest analysis. Following this 
link, we systematically evaluate sex differences for the first time and reveal extensive sex-
specific features in both compositional and ecological aspects in the nasal microbiome. 
Through network analyses, we capture markedly higher stability and antagonistic poten-
tials in the nasal microbiome of females than that of males, in the shaping of which, 
sex-dependent evolutionary characteristics might have played a role as revealed by the 
keystone bacteria of the communities.

Results
Characterizing the nasal bacteriome and mycobiome

To characterize the nasal microbiome of healthy young adults, we performed deep shot-
gun metagenomic sequencing on anterior nares samples of 1593 individuals from the 
4D-SZ cohort [49–53]. The workflow for this study is shown in Additional file 2: Fig. S1. 
The study cohort included 439 males, 807 females, and 347 individuals with sex informa-
tion missing (Additional file 1: Table S1a). The average age was 29.9 (± 5.13) years old 
(males: 30.4 (± 5.25); female: 29.6 (± 5.03)), and body mass index (BMI) was in the range 
of 21.9 (± 3.36) (males: 23.3 (± 3.26); females: 21.1 (± 3.15)) (Additional file 1: Table S1b, 
Table S5a). In total, 128.21 terabases raw data were generated with an average of 80.48 
gigabases for each sample (Additional file 1: Table S2). A single-sample assembly, and 
single-sample binning strategy (see the “ Methods” section) was employed to reconstruct 
genomes from the ultra-deeply sequenced metagenomic data. A total of 4197 MAGs 
were assembled at a threshold for quality control of > 50% completeness and < 10% con-
tamination. To compile a non-redundant MAGs catalog, we performed de-replication 
with 99% of the average nucleotide identity (ANI). In the end, a catalog of 974 non-
redundant MAGs for human nasal-associated bacteria was retained, which included 
718 high-quality (completeness > 90% and contamination < 5%) and 256 medium-quality 
(completeness > 50% and contamination < 10%) ones (Fig. 1a; Additional file 2: Fig. S2). 
16S rRNA genes had been detected in about 45% of the 974 MAGs (Fig. 1a). To explore 
the taxonomic coverage of this catalog, we classified the MAGs according to 95% aver-
age nucleotide identity. Overall, we obtained 232 species from 13 known phyla, with 150 
annotated to known genomes in the GTDB database, and the other 82 as newly identi-
fied (unknown) (Fig. 1b; Additional file 1: Table S3a). The unknown species spanned over 
the 12 phyla, with the largest number from Bacteroidota. For four phyla, including Fuso-
bacteriota, Eremiobacterota, Deinococcota, and Bdellovibrionota, only unknown species 
were discovered. This suggests that the habitat of the nasal cavity featured drastically 
distinct characteristics from other habitats where the species of these phyla are often 
identified, e.g. Fusobacterium nucleatum of phylum Fusobacteriota is often detected in 



Page 4 of 24Ju et al. Genome Biology          (2024) 25:257 

oral and fecal samples. Additionally, we identified six novel genera from phylum Proteo-
bacteria, Bacteroidota, and Firmicutes_A, and one novel family from phylum Eremio-
bacterota, which cannot be assigned to any known taxa in a finer level at the respective 
phylogenetic distance cut-offs (Additional file  1: Table  S3a). Notably, our data also 
improved the genome completeness of a singleton taxon, namely QFNR01 sp003248485 
(90.42% completeness, compared with 75.15% completeness in GTDB; Additional file 1: 
Table S3a). Overall, the majority of the MAGs in the catalog belonged to Actinobacte-
riota, Proteobacteria, and Firmicutes, which is typical for the human nasal microbiome 
[19, 20, 35, 54].

Next, we explored the functional potential encoded in the nasal-associated non-
redundant MAGs catalog. Core functional pathways reconstructed with KEGG mod-
ules showed that species from different phyla all characterized functions for degrading 

Fig. 1 Overall representation of the microbes in anterior nares of healthy young adults. a Phylogeny of 974 
non-redundant bacterial MAGs (metagenome-assembled genomes) detected in anterior nares. It constituted 
five layers representing respectively: 1 for phylum, 2 for MAGs quality, 3 for if 16s rRNA detected, 4 for if 
classified in the species level, and 5 for if isolated as depicted in the GTDB database. b Proportion of unknown 
and known bacterial species in each phylum with the absolute number indicated in the brackets respectively. 
c Number of fungal species in each phylum
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the three major nutrient sources including (poly-)saccharides, proteins, and lipids 
(Additional file 2: Fig. S3). Proteobacteria species displayed more diverse pathways for 
drug efflux transporter/pump and drug resistance. Two-component systems (TCSs), as 
a major mechanism for bacteria to sense and respond to environmental stresses [55], 
showed high heterogeneity among different phyla. The MtrAB TCS commonly found in 
Actinobacteria [56], was identified in most MAGs of this phyla with near-complete cov-
erage. The VicRK TCS, a conserved two-component transcriptional regulatory system in 
several streptococcal species of the human microbiota [57], was also detected in many 
Staphylococcus spp. from the same Firmicutes phylum.

Natural products of human microbiota are increasingly recognized as important medi-
ators for a variety of microbe-host and microbe-microbe interactions, which in turn can 
be explored for potential pharmaceutical applications [42, 58, 59]. As an example, a nasal 
isolate of Staphylococcus lugdunensis has recently been shown to produce a novel anti-
biotic, lugdunin, a non-ribosomally synthesized bioactive natural product, which is bac-
tericidal against major human pathogens and prohibits the colonization of S. aureus in 
the nasal cavity [40]. We therefore screened for the presence of secondary metabolites 
biosynthetic gene clusters (BGCs) encoded within the 974 non-redundant MAGs using 
antiSMASH [60] (Additional file 1: Table S3b). In total, we detected 2921 BGCs, which 
were primarily inferred as synthesized terpenes, nonribosomal peptides (NRPs), types 
I polyketide synthases (PKSs), siderophores and other unspecified ribosomally synthe-
sized and post-translationally modified peptide products (RiPPs). Notably, 514 of them 
were screened from MAGs newly identified from the nasal microbiome in this cohort 
(Additional file 2: Fig. S4a). In addition, 1975 (67.2%) of the detected gene clusters were 
novel clusters, most of which were from Actinobacteriota, Firmicutes, and Proteobacte-
ria (Additional file 2: Fig. S4b). These data, in particular the high number and proportion 
of novel clusters, suggest that the nasal microbiota may serve as a rich reservoir for new 
antibiotics or other pharmaceuticals.

To profile the nasal microbiome composition, we mapped the metagenome data to the 
constructed non-redundant nasal bacterial MAGs catalog and a manually curated data-
base of fungi genomes, and then filtered out species with low prevalence and low rela-
tive abundance to generate the bacterial and fungal profiles (see the “ Methods” section). 
In total, 122 bacteria and 131 fungal species with high confidence were retained. The 
nasal bacteriome composition was highly variable among the young adults in the cohort 
that the relative abundance of genus Corynebacterium, which characterized the most 
abundant genus across the cohort (mean relative abundance 55.2%) and within 94.9% of 
the individuals, varied from 0.39 to 85.3% (Fig. 2a). The top 10 species accounted for an 
accumulative mean relative abundance of 74.7% (Additional file 1: Table S4a), suggesting 
that the nasal bacterial community was dominated by a few taxa (Fig.  2a). Consistent 
with former studies, the most abundant species were mainly from the genera Corynebac-
terium, Staphylococcus, Moraxella, Cutibacterium, Dolosigranulum, and Lawsonella 
[33, 35, 54]. In patients with nasal polyps, however, Corynebacterium, Staphylococ-
cus, Moraxella, and Dolosigranulum were found to be significantly reduced compared 
to controls [12]. The fungal species in this cohort were mostly from phyla Ascomycota 
and Basidiomycota (Fig. 1c). Compared to the bacterial community, the mycobiome was 
more evenly distributed, taking 35 species to account for 74.8% of the overall fungal 
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mycobiome composition (Additional file 1: Table S4c). Aspergillus and an unclassified 
Malasseziaceae genus made the two pillars of the fungal community in the nasal cavity 
of this cohort (Fig. 2b; Additional file 1: Table S4d). In a recent study in chronic obstruc-
tive pulmonary disease (COPD) patients, Malassezia was found to be the most abundant 
genus in the nasal mycobiome, but Aspergillus ranked much lower [23].

Unsupervised clustering helps uncover sex differences in the nasal microbiome 

composition

To gain a holistic perspective of the microbial structure, we integrated the Bray–Curtis 
dissimilarity matrices of the bacterial and fungal community with a weighted similar-
ity network fusion (WSNF) approach [45] (see the “ Methods” section). Unsupervised 
clustering of the resultant similarity matrix classified the cohort into three clusters, 
with clusters 2 and 3 comprising samples almost exclusively from each single sex, and 
cluster 1 featuring two separable patterns in the similarity matrix corresponding to the 
two sexes (Additional file 2: Fig. S5a; see the “ Methods” section). Furthermore, multi-
variate permutational multivariate analysis of variance (PERMANOVA) between cluster 
and age, sex, or BMI showed that the variance explained by the cluster had a substantial 
decrease when adjusted by sex and only a minimal decrease when adjusted by age or 
BMI (Additional file 2: Fig. S5b). We also observed a distinct difference between males 
and females in WSNF similarity (Fig. 3a). This gives a strong indication that the young 
adult males and females in this cohort probably characterized distinctive structures in 
their nasal microbiome.

Fig. 2 Relative abundance of top 10 abundant fungal and bacterial taxa in genus level. Bar chart showing 
the individual relative abundance and the mean relative abundance of top 10 abundant bacterial (a) and 
fungal (b) taxa in genus level of the nasal microbiome
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Following these links that unsupervised clustering and PERMANOVA uncovered, 
we next systematically evaluated the sex differences in the nasal microbiome composi-
tion. Considering the discrepancies in age and BMI between males and females might 
potentially confound the observed variance (Additional file  1: Table  S5a), multivariate 
PERMANOVA analysis was applied and confirmed that sex was a significant covariant 
for the bacteria-fungi integrated microbiome while age and BMI were not. For single-
domain PERMANOVA analyses, sex accounted for higher variance in the mycobiome 
than in the bacteriome (Additional file  1: Table  S5b). To assess the discriminatory 
potential of sex in the nasal microbiome, random forest analysis was carried out and 
showed that, the nasal microbiome achieved an AUC of 0.9779 in differentiating males 
and females (0.9686 for bacteria and 0.9846 for fungi) (Additional file 2: Fig. S6b). In the 
bacteria-fungi merged profile, we observed a significantly higher alpha diversity includ-
ing the Shannon index, Simpson and Pielou indices in males than in females (Fig. 3b). 
And such a significant difference was also detected in the bacteria and fungi single 
domain communities except for  Shannon index (Additional file  2: Fig. S6a). For indi-
vidual microbial taxon, we performed linear discriminative analysis effect size (LEfSe) 

Fig. 3 Unsupervised clustering and sex differences in the nasal microbiome composition. a Heatmap 
illustrating WSNF similarity scores stratified by unsupervised clustering, with sex information indicated by 
the bar on the top. WSNF similarity represents the fused similarity score. R.2 and P value were calculated 
by PERMANOVA with WSNF similarity matrices b Box plot showing male and female nasal microbial alpha 
diversity indices including Shannon Simpson and Pielou calculated with merged profile. P values were 
obtained from two-sided Wilcoxon rank-sum tests. c The comparison of LDA effect size (LEfSe) between 
males (green) and females (brown) illustrating discriminative species. Only the top 30 discriminative species 
by LDA score are shown, which are significantly different (BH-adjusted P value < 0.05 and LDA score > 2.5). d 
The comparison of LDA effect size between males and females illustrating discriminative pathway. Only the 
top 30 discriminative pathways by LDA score are shown. (BH-adjusted P value < 0.05 and LDA score > 2.5)
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and identified considerable significant associations between the relative abundances and 
sex. Specifically, at the species level 34 bacteria and 57 fungi, and at the genus level 23 
bacteria and 45 fungi, were significantly different (BH-adjusted P value < 0.05 and LDA 
score > 2.5) in abundance between males and females (Fig. 3c; Additional file 1: Table S6). 
Interestingly, the taxa number enriched in females almost doubled that in males. Nota-
bly, Corynebacterium accolens and Dolosigranulum pigrum, as the most abundant spe-
cies among others in this cohort, were significantly more abundant in females. These 
two species have been shown to inhibit the growth of S. aureus, a commonly known 
opportunistic pathogen in the nasal cavity [23]. Additionally, Lactobacillus spp., typically 
found in the female vagina, has been recently reported to have a niche in the human 
nose and may exert a beneficial effect [34, 61]. In our cohort, however, we did not detect 
a female-biased colonization of Lactobacillus spp. in the nasal cavity. Additionally, the 
most abundant fungal species in this cohort, i.e., Aspergillus flavus, was also significantly 
enriched in females. Consistent with the observations on the taxonomic level, extensive 
differences were identified in both overall functional capacity and specific pathways of 
the nasal microbiome (Additional file 1: Table S5c, Table S6e). For instance, folate trans-
formations, biosynthesis for pyrimidine, coenzyme A, UDP-N-acetyl-D-glucosamine, 
GDP-mannose, and pyrimidine deoxyribonucleosides salvage were significantly more 
abundant in males, whereas the pathways for biosynthesis of proline, L-serine, glycine, 
and L-arginine were enriched in females (Fig. 3d).

Additionally, since we have applied two different assemblers in generating the bacte-
rial MAGs catalog based on which the bacterial profile was derived, we further carried 
out analyses to assess the influence of the assembler especially on sex differences. The 
results confirmed that the assembler does have a significant effect on the bacterial com-
position (Additional file  1: Table  S7a). Nevertheless, after adjusting for assembler, sex 
remained as a significant covariate for the nasal bacterial community (Additional file 1: 
Table S7b). More importantly, stratified analyses showed that sex differences were con-
sistently observed within the two assembler-divided subgroups, on both the community 
level and specific individual taxa level (Additional file 1: Table S7d). This underscores the 
significance and robustness of the observed sex differences.

Network analyses capture markedly higher ecological stability and antagonistic potentials 

in the nasal microbiome of females than that of males

Having uncovered extensive sex differences in the microbial composition, next, we aimed 
to determine if the nasal microbiome featured distinct characteristics in ecological rela-
tionships between males and females. To characterize the microbial interactions within 
each sex, we employed an integrated approach combining COAT (composition-adjusted 
thresholding) [62], HUGE (High-dimensional Undirected Graph Estimation) [63], MI 
(mutual information), and Bray–Curtis dissimilarity to construct the co-occurrence net-
works (Fig. 4a; see the “ Methods” section). The inferred interactions between microbes, 
as nodes in the graphs, were represented by signed edges (P value < 0.01) in the network, 
with positive for cooperative/synergistic relation and negative for competitive/antago-
nistic relation. The total number of interactions (edges) was very close between the two 
sexes with a marginally higher number of negative interactions in females. Splitting the 
entire network into three sub-networks, i.e., within the bacteria domain, within the fungi 
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domain, and cross bacteria-fungi domain, revealed that the cross-domain sub-network 
accounted for over half of the negative interactions (Fig. 4b; Additional file 1: Table S8).

The functioning of complex networks largely relies on their robustness [64], a better 
understanding of which can provide valuable insights into RTI susceptibility and pathol-
ogies. We thus adopted a sensitive and reliable measure, namely natural connectivity 
[65–67], to quantify the stability of the inferred networks. To simulate the influence of 
microbes’ loss on the network, we performed random attacks and assessed the stability 
of the remaining network [68] (see the “  Methods” section). Intriguingly, the network 
robustness was much higher for females than for males (Fig. 4c). While the human nasal 
microbiome is increasingly regarded as a gatekeeper of respiratory health, opportunistic 
pathogens do often present even in healthy individuals. Thus, the negative/antagonistic 
interactions are of particular interest. When only considering the negative interactions, 
we observed that much higher robustness for females still held (Fig. 4d). Significant sep-
arations of the natural connectivity plot were observed between the networks of males 
and females, for both the entire network and the negative network (P value < 2.2e − 16; 

Fig. 4 Network characterization of the nasal microbiome for males and females. a Nasal microbial interaction 
network of males and females. Node size represents each taxon’s integrated value of influence (IVI). Red and 
blue lines indicate positive and negative interactions respectively. The top 3 bacteria and fungi by relative 
abundance are annotated with blue and red fonts respectively. b Summary table of network characteristics 
of males and females. c–d Attack robustness of the entire network of total interaction (c) and negative 
interaction (d) for males (green) and females (brown) as measured by natural connectivity. Line and box 
reflect the median and IQRs. A statistical measure of P value is described in the methods section
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Fig.  4c and d). Higher overall natural connectivity for females largely remained until 
over half of the species were removed, further confirming that females characterized a 
more stable network with more intensive interactions and higher antagonistic potentials 
which may provide stronger resistance against opportunistic pathogens. Nevertheless, 
among the three sub-networks, only the fungal domain had the same direction as the 
entire network in terms of higher robustness in females than in males, and the bacterial 
domain and bacteria-fungi sub-networks were more robust in males (P value < 2.2e − 16; 
Additional file 2: Fig. S7). Interestingly, a recent study also suggested that fungi played a 
stabilizing role in the lung and skin microbial ecosystems [46].

Sex‑dependent genetic evolutionary forces in the shaping of keystones in the nasal 

microbial community

Network analysis can be a powerful tool for inferring keystone taxa of the microbial 
communities [47, 48, 64, 69]. To this end, we adopted a novel influential node detection 
method, integrated value of influence (IVI), which captures all topological dimensions of 
the networks, to assess the importance of individual taxon in the ecosystem [70]. Nota-
bly, the IVIs of most taxa derived from the entire networks of males and females were 
considerably different (Additional file 1: Table S9), indicating different levels of impor-
tance of the respective taxa potentially eliciting in the microbial community of each 
sex. Moreover, IVI only weakly correlated with relative abundance (Additional file  2: 
Fig. S8), suggesting that the most abundant taxa may not necessarily exert the strong-
est influences from an ecological perspective [47, 48]. Keystone microbes represent 
the ones contributing the most to the robustness of the community. With a permuta-
tional approach (see the “ Methods” section) we derived the keystone sets for males and 
females, which included 13 and 10 taxa respectively (Fig. 5a). Intriguingly, the keystone 
sets for males and females both contained taxa from bacterial and fungal domains, but 
with completely different specific components and remarkably different IVIs between 
the two sexes for each keystone.

Evolution is important for ecological dynamics in bacterial communities. To illumi-
nate the genetic evolutionary characteristics of the keystones for each sex, we utilized 
the bacterial MAGs and evaluated the selection of environmental pressures for the key-
stone bacteria by estimating the pN/pS ratio within each genome for each sample [71, 
72]. The results showed that the pN/pS ratios varied among different species, but were 
mostly below one for both males and females (Fig. 5b). This suggested that the evolu-
tion of the keystone bacteria was largely predominated by long-term purifying selection. 
On the other hand, the pN/pS ratios differed significantly between males and females in 
some of the keystone bacteria, including male-specific keystone Staphylococcus warneri 
and female-specific keystone Anaerococcus provencensis, Stenotrophomonas geniculata, 
and Finegoldia s1 (Fig. 5b). This can potentially be in relation to sex-specific evolution-
ary constraints confronted by the microbes in the nasal cavity of males and females, such 
as different levels of immunoinflammatory characteristics.

On the gene level, however, we observed considerable deviations in pN/pS ratios of 
the same keystone taxa between males and females, indicating sex-dependent selective 
pressures and genetic adaptations (Fig.  5c, Additional file  2: Fig. S9; Additional file  1: 
Table S10). For instance, the nasal cavity is noted for limited resources available, such as 



Page 11 of 24Ju et al. Genome Biology          (2024) 25:257  

iron limitation [16, 34, 73]. Notably, the 974 nasal bacterial MAGs encoded remarkably 
more siderophores (Additional file 2: Fig. S4a), one of the main mechanisms for bacterial 
iron sequestering, compared to that detected in the large collection of human gut bacte-
rial MAGs derived from over 10,000 samples [74]. Although Neisseria sicca, a common 
nasopharyngeal commensal, does not encode siderophores [75], we found the female 
keystone N. sicca_D underwent positive adaptation in genes encoding TonB-dependant 
siderophore receptors (mean pN/pS ratio of 1.168) in females, with which the bacteria 
can exploit siderophores produced by other members of the community for iron seques-
tering. In contrast, in males, it was subjected to purifying selection in these genes with a 
mean pN/pS ratio of 0.195. In a male keystone bacterium, Staphylococcus haemolyticus, 

Fig. 5 Characteristics of the keystone taxa identified in male and female nasal microbial interaction 
networks. a The integrated value of influence (IVI) of the keystone taxa of males (left) and females (right). 
Green and brown bars represent the IVI of the respective taxa in the male and female networks respectively. 
b The pN/pS ratio of keystone bacteria for individuals shown by heatmap and boxplot. Green and brown 
represent male and female respectively (vertical bar: keystone belongs to male or female network; horizontal 
bar: male and female individuals; boxplot: pN/pS ratios for male and female individuals). c The pN/pS ratio 
for 3 bacterial keystones in gene levels of male (y-axis) and female (x-axis) participants with COG category. 
The stars represent the genes that have been described in detail in the main text. One-letter abbreviations 
for the functional categories: C, energy production and conversion; E, amino acid metabolism and transport; 
J, translation, including ribosome structure and biogenesis; K, transcription; M, cell wall structure and 
biogenesis and outer membrane; P, inorganic ion transport and metabolism
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we also observed that genes encoding IucA/IucC family siderophore biosynthesis pro-
tein showed relaxed purifying selection in males (mean pN/pS ratio of 0.496) but tight 
purified selection in females (mean pN/pS ratio of 0.116). Gene yfmC in S. haemolyti-
cus, which encodes Fe(3+)-citrate-binding protein involved in iron transport, was purged 
in males (mean pN/pS ration of 0) whereas showed tight purified selection (mean pN/
pS ratio of 0.259) in females. Antibiotics represent another major category of stresses 
for bacteria, for which resistance evolves over time. As a global emerging multidrug-
resistant organism, Stenotrophomonas maltophilia has been most commonly associ-
ated with respiratory infections in humans [76] and isolated predominantly in elderly 
males of hospitalized lower RTI patients [77]. Like the other MacA-MacB-TolC tripartite 
efflux pumps, S. maltophilia MacB has been previously revealed to drive resistance to a 
variety of antibiotics, such as macrolides, aminoglycosides, and polymyxins, in concert 
with MacA adaptor protein and TolC outer membrane exit duct [78–80]. Interestingly, 
we found in S. maltophilia_L the gene coding for MacB exhibited strong positive selec-
tion in males, but tight negative selection in females (mean pN/pS ratio: 2.73 vs. 0.08). 
Together, the keystone bacteria exhibited highly sex-specific genetic evolutionary char-
acteristics in niche-specific or sex-biased stress-related functional units, which were in 
close relation to their role in the respective network of each sex. This suggests that the 
genetic evolutionary forces might have played a role in the shaping of the keystones of 
the nasal microbial community of each sex. The effect might even be mutual, such that 
interactions of the keystones spurred evolution which in turn reinforced their role as 
keystone, or the other way around.

Discussion
With advances in sequencing technologies, microbial research is no more restricted to 
cultivation. Great efforts have since been made to characterize the human microbiome. 
However, most of the studies rely on 16S rDNA amplicon-based or gene-centric micro-
bial community characterization, which is heavily skewed by microbes that are easily 
cultivatable or the most researched habitats’ residents, such as the human gut micro-
biome [81–86]. Recently, genome-resolved metagenomics through de novo assembly 
has transformed our understanding of the microbiome composition, which can mean-
while provide valuable knowledge of individual species for deciphering their biologi-
cal roles. The human microbiome has a strong niche specialization both within and 
among individuals [19]. Large reference genome catalogs have been constructed for the 
human gut and oral microbiome and massively expanded the known species repertoire 
of the respective habitats [52, 74, 87–89]. Here in this work, we leveraged ultra-deeply 
sequenced metagenome data from a large cohort of healthy young adults and con-
structed a non-redundant nasal-associated bacterial MAGs catalog among which about 
1/3 species were newly identified. This underscores the uniqueness of the nasal micro-
biome from other often studied human microbiomes and the power of metagenomic 
sequencing data. It represents the first endeavor in cataloging the human nasal microbial 
reference genome and makes a great contribution to the global effort for characterizing 
the human microbiome. The catalog provides a valuable resource for profiling the nasal 
microbiome and developing new antibiotics or other pharmaceuticals in future studies. 
Meanwhile, it makes it possible for uncovering potentially important unknown taxa in 
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this ecosystem. Further, we characterized nasal microbial composition in the healthy 
young adults in this so far largest cohort and found that the most abundant bacteria in 
this cohort largely agreed with former reports in the bacteriome [33, 35, 54]. As for the 
even less studied mycobiome, it was more evenly distributed compared with the bac-
terial community, and Aspergillus and an unclassified Malasseziaceae genus made the 
most abundant fungi in this cohort. The human microbiome has been implicated in a 
wide array of diseases, including the nasal microbiome, for which the nasal bacteriome 
and mycobiome featured some differences in conditions such as polyps and COPD, 
respectively [12, 23]. Additionally, airway microbiome exhibits seasonal variation which 
was found to be associated with childhood asthma exacerbations [90]. In this cohort, 
however, most of the samples were collected in summer and we didn’t observe such a 
phenomenon (Additional file 1: Table S5d).

Respiratory health is of vital importance for human beings. The COVID-19 pan-
demic has made it unprecedentedly clear. Sex biases have been widely noted in different 
types of respiratory diseases, including COVID-19. Recently it has been argued that the 
nasal microbiome might also play a role in the observed disparities between males and 
females, but unfortunately lacked support and evidence [18]. Previously, Liu et al. identi-
fied seven community state types (CSTs) of the nasal bacterial community in a cohort 
of 86 twin pairs above 50 years old, but found no significant difference in the CST dis-
tribution between the two sexes despite of higher microbial loads in the nasal cavity of 
males [20]. In this work, unsupervised clustering of the nasal microbiota revealed clearly 
separable patterns between healthy young males and females. This led us to further 
evaluate the sex differences systematically in this community and uncovered extensive 
sex-specific features. Interestingly, the gut microbiome also demonstrated sex-specific 
aging trajectories, where the sex differences were especially evident between premeno-
pausal female adults (approximately below ~ 50 years old) and age-matched male adults, 
and gradually diminished after 50 years of age [30]. The disparity regarding sex differ-
ences between this study and Liu et  al.’s study may be explained by the population’s 
demographic characteristics, especially the age. On the species level, we found females 
exhibited higher abundances of numerous taxa, including Staphylococcus aureus, a well-
known opportunistic pathogen found in the respiratory tract, and Corynebacterium 
accolens and Dolosigranulum pigrum which can inhibit Staphylococcus aureus [25, 32, 
33, 38, 39, 91]. The nasal microbiome we identified in this cohort shares similarities with 
the skin microbiome in their major components [92, 93]. In a study investigating the 
skin microbiome shifts in healthy children transitioning through puberty, the research-
ers found that the microbial changes in both bacterial and fungal communities appear to 
be sex-specific [94]. On the functional level, biosynthesis of proline, glycine, and arginine 
was significantly lower in males than in females. Smoking has previously been linked to 
the decrease of these in the lower respiratory tract microbiome [95]. Additionally, gly-
cine is known to decrease the activation of inflammatory cells to avoid the development 
of chronic inflammation and was shown to improve the status of cystic fibrosis patients 
in a pilot randomized trial [96, 97]. The pathways enriched in males are primarily linked 
to the synthesis of purine and pyrimidine, suggesting higher DNA replication activities 
[98], which may be in connection with the reported higher microbial load in males [20].
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The interaction networks exhibited distinctive characteristics between males and 
females from an ecological perspective. Females featured higher robustness and stronger 
antagonistic interaction potentials than males. Interestingly, Coyte et al. also concluded 
that competitive, rather than cooperative, interactions promote the stability of the 
microbioal communities based on ecological theory deduction [99]. The connection of 
such characteristics with lower susceptibility and severity of RTIs in females compared 
to males warrants further investigation. There are growing interests in exploring bac-
terial-fungal interactions, often with several isolates in consideration [100, 101]. While 
bacterial interaction networks are widely studied and cross-domain interactions are 
rarely explored, our work integrated the bacteriome and mycobiome and gained a more 
holistic perspective of the community. Our results suggested that the mycobiome might 
play an important stabilizing role, in an echo of a former study [46]. Further, through 
network analysis, we identified sex-specific keystone microbes, which also included 
formerly unknown taxa, demonstrating the power and necessity of cataloging the com-
munity through de novo assembly. Different from comparative analysis in relative abun-
dance, keystone taxa were determined based on their ecological importance through 
network analysis. The sex-dependent evolutionary characteristics of the keystone bac-
teria strongly correlated with their role played in the microbial community of each sex, 
i.e., as a keystone for one sex but not for the other, suggesting a role of the evolutionary 
forces in the shaping of the keystones, which may have further contributed to the for-
mation of the communities. For instance, the nasopharyngeal commensal N. sicca_D, 
acts as the most influential keystone in females while undergoing positive genetic adap-
tation in response to niche-specific stress conditions with respect to limited iron, which 
might have contributed to the formation of the more stable nasal microbial communi-
ties against infections. Additionally, Pierce et al. found in their study that fungal species 
of different environments, including cheese rind, soil, and skin, consistently modulated 
the availability of iron to bacterial species, alleviating the requirement of E.coli for its 
own siderophore [100]. In our data, the mycobiome appeared to have a higher power 
than the bacteriome in differentiating the males and females in both composition and 
networks. It would be interesting in the future to investigate if there is any connection 
between this observation and fungal modulation of nutrients availability to bacterial 
species in the high-stress, low-resource environment of the nasal cavity. In another case, 
S.maltophilia_L, a male-prone respiratory infection associated with multidrug-resistant 
organisms [76, 77], acts as the most influential keystone in males and exhibits strong 
positive selection for antibiotic resistance-relevant efflux pumps, which may further pre-
dispose males to higher susceptibility to infections.

Our study features several limitations. The findings are limited to mathematical mod-
eling and inference, and experimental validation is desired in the future. While MEG-
AHIT and metaSPAdes both are well-established assemblers and their performances 
regarding assembly were benchmarked [102], we found that they can additionally affect 
the compositional profile when derived from mapping to the MAGs they generated. 
Nevertheless, indirect adjustment and direct stratified analyses confirmed significant sex 
differences in the nasal microbiota largely consistent with the original results. Besides, 
interactions between viruses and bacteria widely exist, such as the synergism between 
influenza virus and S. pneumoniae [103–105]. Though females are less contracted with 
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most types of RTIs, they are indeed more vulnerable to certain respiratory viral path-
ogens, such as influenza [106]. While we are in short of reliably profiled virome data, 
antagonistic potentials against influenza as well as other specific pathogens require fur-
ther investigation.

Conclusion
In conclusion, we leveraged in this work the most advanced techniques in the microbi-
ome research field and applied deep shotgun whole metagenome sequencing, de novo 
assembly, and network analyses to explore the understudied human nasal microbiome 
in the largest cohort as of today. Based on that, we constructed a non-redundant nasal 
bacterial MAGs catalog and revealed extensive sex differences in the nasal microbiome 
of healthy young adults. The results provide valuable insights into the observed discrep-
ancies between males and females in respiratory tract diseases and will help further our 
understanding of the microbial roles in pathology and etiology.

Methods
Collection of the nasal microbiome samples

Extensive metadata and different biological samples were collected during physical 
examination in the 4D-SZ cohort as previously reported [52]. By means of a health ques-
tionnaire, no complex disease in personal medical history was found in this young adults 
cohort. In this study, we collected anterior nares swabs from 1593 individuals of this 
cohort in 2018 in the city of Shenzhen, with an average age of 29.9 (± 5.13) years old, and 
sex information obtained for 439 males and 807 females. Demographic characteristics of 
the participants were provided in Additional file 1: Table S1, and the missing values were 
shown as NA. The participants without sex information were not included in the analy-
sis of sex differences. The study was approved by the Institutional Review Boards (IRB) 
at BGI-Shenzhen, and all participants provided written informed consent at enrollment.

The anterior nares samples were self-collected by the volunteers following three steps. 
First, the sterile swab was moistened with sterile water before use. Then the pre-mois-
tened swab rotated three times around the inside of each nostril with approximately 
constant pressure. Last, dropping the swab into the 2 ml BGI stabilizing reagent [107] 
for the preservation of metagenome at room temperature and then stored at –80 ℃ for 
long-term storage.

DNA extraction, sequencing, and quality control

DNA extraction of the stored samples was performed using the MagPure Stool DNA 
KF Kit B (MD5115, Magen) [108]. Metagenomic sequencing was performed on the 
DNBSEQ platform (BGI, Shenzhen, China) [22, 109] with 150 bp of paired-end reads, 
which generated 854.7 billion pairs of raw reads (on average 536.5 million paired reads 
per sample, 159.6 million pairs of standard deviation). The metapi pipeline (https:// 
github. com/ ohmeta/ metapi) was used to process the sequencing data. Quality control 
was first performed with strict standards for filtering and trimming the reads (average 
Phred quality score ≥ 20 and length ≥ 30) using fastp v0.20.1 [110, 111]. Human reads 
were then removed using Bowtie2 2.4.2 [112] (human genome GRCh38). In total, 4.2 

https://github.com/ohmeta/metapi
https://github.com/ohmeta/metapi
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terabases of high-quality paired-end reads were retained with an average 96.35% host 
ratio (Additional file 1: Table S2).

Recovery of the bacterial community

A single sample assembly and single sample binning strategy were employed to recon-
struct bacterial genomes from the preprocessed data using the metapi pipeline. Spe-
cifically, the high-quality reads of each sample were individually assembled by applying 
MEGAHIT v1.2.9 [113] or SPAdes v3.15.2 [114] (–meta). BWA-MEM v0.7.17 [115] 
with default parameters was then used to map reads back to the contigs, and the con-
tig depth was calculated by jgi_summarize_bam_contig_depths [116]. Metagenomic 
binning was performed with DAS Tool 1.1.2 [117], combining CONCOCT v1.1.0 [118], 
MaxBin v2.2.7 [119], and MetaBAT2 v 2.15 [116] for each sample individually. CheckM 
v1.1.3 [120] was used to assess the quality of the MAGs. Bins with ≥ 80% completeness 
and ≤ 10% contamination were retained for further analysis [121]. All of the MAGs 
were then together dereplicated by dRep v3.0.1 (-pa 0.9 -sa 0.99 -nc 0.30 -cm larger -p 
25) [122], in which the primary cluster using MASH with 90% ANI and the secondary 
cluster using ANImf with 99% ANI, resulting in 974 non-redundant MAGs. The 16S 
rRNA sequences in the MAGs were searched by Barrnap v0.9 (–reject 0.01 –evalue 
1e-3, https:// github. com/ tseem ann/ barrn ap), and tRNA sequences in the MAGs were 
searched by tRNAscan-SE 2.0.7 [123] with default parameters. Taxonomic classification 
of the 974 non-redundant MAGs was assigned using GTDB-Tk v1.5.1 [124] to classify 
workflow with external Genome Taxonomy Database release 95. The phylogenetic tree 
of the 974 MAGs was built using GTDB-Tk v1.5.1. Genome-wide functional annotation 
was performed using EggNOG mapper v2.1.3 [125] based on EggNOG v5.0 database 
[126]. The bacterial biome profile was then generated using CoverM 0.6.1 with genome 
mode (–min-covered-fraction 0) (https:// github. com/ wwood/ CoverM) based on the 
non-redundant nasal bacterial MAGs catalog. Then we filtered the bacteria species with 
relative abundance greater than 1e-4 and a prevalence greater than 10% among the 1593 
individuals. Finally, 122 bacteria were retained.

Characterization of fungal community composition

High-quality cleaned reads were mapped to a manually curated database using Kraken2 
with default parameters to generate the fungal biome profile. This database contained 
39,559 species in total, including human genome GRCh38, GTDB r95, fungi, and pro-
tists from NCBI. We filtered the fungi species with relative abundance greater than 1e-3 
and a prevalence greater than 10% among the 1593 individuals. Finally, 131 fungi were 
retained.

Unsupervised clustering

Similarity network fusion (SNF) [127] can construct the fused sample similarity matrix 
from multiple types of data to represent the characteristics of the samples. The weighted 
similarity network fusion (WSNF) analysis [45] can integrate multi-biome data and clus-
ter samples into distinct groups using each biome’s taxonomic richness as the SNF’s 
weight. A Bray–Curtis similarity matrix of the samples was first created for each biome 
data (vegan 2.5–7 package). The WSNF pipeline was then used to integrate the similarity 

https://github.com/tseemann/barrnap
https://github.com/wwood/CoverM
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matrices of different into a single similarity network. The respective weights of each 
biome were assigned based on the richness of the biome. The optimal number of clusters 
was determined using the eigengap method and the value of K nearest neighbors was set 
based on the optimal silhouette width. Three clusters were derived with WSNF from the 
filtered dataset. Other parameters are set as default.

Co‑occurrence analysis of microbial interaction

To mitigate the influence of spurious and artifactual correlation, a modified co-occur-
rence analysis based on ensemble methods was implemented [128] which developed an 
ensemble approach that can assess nonparametrically for statistical significance while 
mitigating the compositionality bias by bootstrap and renormalization. Based on the 
original co-occurrence analysis, Aogáin et al. constructed a microbial network using this 
ensemble method with some modifications [45]. In this study, we made a further modi-
fication of this co-occurrence analysis by replacing some methods in the ensemble con-
sidering adjusting compositionality bias and relaxing the normality assumption. First, 
we implemented COAT (composition-adjusted thresholding) [62] instead of Spearman 
and Person correlation with default parameters except soft which was set to 0.2. Then 
we replaced HUGE (High-dimensional Undirected Graph Estimation) [63] with GBLM 
(generalized boosted linear models) [128] with default parameters except for nlambda 
which was set to 100. Last, the sign of the correlation depends on COAT and HUGE. 
The ensemble contained MI (mutual information), Bray–Curtis dissimilarity, COAT, and 
HUGE. The final interaction score aggregated the normalized absolute edge scores, and 
the sign was assigned based on COAT and HUGE. The final P value was merged using 
the weighted Simes test. This analysis was performed on the merged profile which was 
obtained by integrating and renormalizing the bacteria and fungi profile after filtering. 
The final edge of network was filtered by merged P value(P value < 0.01).

With the modified ensemble method, we conducted a co-occurrence analysis on the 
filtered nasal microbiome dataset (as described in the “ Unsupervised clustering” sec-
tion) for males and females. Filtering out of the low abundance and low prevalence taxa 
of the microbiome data helped to avoid artificial interactions resulting from random 
noises though at the expense of sensitivity loss for weak signals. Following the co-occur-
rence analysis, the nasal microbial interaction networks were established with a thresh-
old of P value lower than 1e − 3 for males and females.

Stability of microbial co‑occurrence network

Natural connectivity is a robustness measure of complex networks [129]. Higher natural 
connectivity indicates higher network stability. In this study, we performed a random 
attack by removing randomly selected nodes for 1000 times and assessed normalized 
natural connectivity for each remaining network (R package pulsar). The number of 
nodes removed was sequentially increased from 1 to all the nodes. The P value of robust-
ness between male and female networks was calculated following two steps. First, for 
each attacked network, compare the 1000 natural connectivity between the two sexes 
with the Wilcoxon rank-sum test. Second, a merged P value was measured using the 
weighted Simes test, with the number of remaining nodes as the weight.
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Selection of keystone taxa in the co‑occurrence networks

We selected keystones based on the IVI (Integrated Value of Influence) [70] by influen-
tial v2.2.6 R package, which is a novel influential node detection method. It integrates 
the most important and commonly used network centrality measures in an unbiased 
way which can capture all topological dimensions of the network and improves the per-
formance of current tools and accurately detects influential nodes. To determine the 
keystones of each network, we utilized a permutational approach by comparing each 
robustness attack along the IVI decreasing axis with random attacks (as control). The 
keystone set was then decided based on a P value < 0.001 calculated from the 1000 per-
mutations. Through analysis, we got 13 and 10 key players of male and female networks, 
respectively.

pN/pS ratios

SNVs of nonsynonymous and synonymous variants at the gene and genome levels were 
identified for the keystone taxa using inStrain v1.5.4 [130]. The pN/pS ratio was calcu-
lated using the formula ((nonsynonymous SNVs/nonsynonymous sites)/(synonymous 
SNVs/synonymous sites)).

BGCs prediction

BGCs (biosynthetic gene clusters) type and location of non-redundant MAGs were pre-
dicted using AntiSMASH 6.0.0 [60] (–cb-knownclusters). Novel BGCs were defined 
which did not match the Minimum Information about a Biosynthetic Gene cluster 
(MIBiG) database.

Statistical analysis and data visualization

Linear discriminant analysis effect size

For discriminant analysis of the microbiome between males and females, the LEfSe was 
implemented using the webtool available at http:// hutte nhower. sph. harva rd. edu/ galaxy/. 
LEfSe uses the Kruskal–Wallis test to identify taxa as well as KEGG pathways whose 
relative abundances are significantly different between males and females. And then 
LDA is applied to taxa that meet the significance threshold (0.05) to estimate their effect 
size. We filtered bacteria and fungi with a prevalence greater than 10%; P value results 
obtained from the Kruskal–Wallis test were adjusted with the Benjamini–Hochberg 
method; taxa were considered significantly differentially abundant between males and 
females at BH-adjusted P value < 0.05 and LDA score > 2.5

PERMANOVA analysis

Univariate ADONIS (permutational multivariate analysis of variance using distance 
matrices) testing between the observed clusters was performed using R package ‘vegan’ 
v2.5–7 with 4999 permutations based on the WSNF similarity matrix. The effect of 
covariant metadata on the microbiome composition was calculated with multivariate 
ADONIS, which was performed on the microbial dissimilarity matrices, including Bray–
Curtis, Jaccard, Euclidean, and Jensen-Shannon divergence distance matrix calculated 
using relative abundances of microbial species and KEGG pathway, and assess the mar-
ginal effects of the terms for each phenotype with 4999 permutations. We also applied 

http://huttenhower.sph.harvard.edu/galaxy/
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the multivariate ADONIS test to assess which factor had the greatest impact in decreas-
ing the variance explained by the clusters by the changed in the R2 in three taxa profiles 
based on the Bray–Curtis distance matrix. P value results within groups were using the 
Benjamini–Hochberg correction to control multiple testing. Results were considered 
significant if the BH-adjusted P value < 0.05.

Anosim (Analysis of similarities)

To analyze whether three seasonal groups are significantly different for nasal microbiota, 
for which the sample size is rather unbalanced, anosim analysis was performed using 
the “anosim” function within R package “vegan” v2.5–7 including bacteria, fungi, and 
merged profile based on the Bray–Curtis distance matrix.

Random forest analysis

To explore the discriminatory potential of sex factors in the nasal microbiome, random 
forest analysis was performed on bacteria, fungi, and merged species profiles, using 
the R package “RandomForest” v4.7–1.1. Function “createFolds” in R package “caret” 
v6.0–94 was used to perform 10 repeats of tenfold cross-validation for each data set. 
All microbial features in each profile were included in the input. ROC analysis was per-
formed using the “pROC” package v1.18.0.

Diversity analysis

The nasal microbiome α-diversity (within-sample diversity) was calculated using the 
Shannon index, Simpson index, and Pielou index at the species level (R package “vegan”). 
The differences between males and females were assessed with the Wilcoxon rank-sum 
test.

Correlation of IVI and relative abundance

The correlation between IVI and relative abundance of the keystone taxa was measured 
by Spearman’s correlation.

Visualization

The co-occurrence network was visualized using Cytoscape 3.9.0. The heatmap of the 
similarity score was drawn by ComplexHeatmap (2.10.0). The boxplot was drawn by 
ggpubr (2.10.0).
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