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Abstract 

Clustering is widely used for single-cell analysis, but current methods are limited 
in accuracy, robustness, ease of use, and interpretability. To address these limitations, 
we developed an ensemble clustering method that outperforms other methods 
at hard clustering without the need for hyperparameter tuning. It also performs soft 
clustering to characterize continuum-like regions and quantify clustering uncer-
tainty, demonstrated here by mapping the connectivity and intermediate transitions 
between MNIST handwritten digits and between hypothalamic tanycyte subpopula-
tions. This hyperparameter-randomized ensemble approach improves the accuracy, 
robustness, ease of use, and interpretability of single-cell clustering, and may prove 
useful in other fields as well.
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Background
Clustering is widely used for exploratory data analysis across diverse fields, where it is 
applied to identify dataset grouping structures in an unsupervised manner. In particular, 
clustering has become a workhorse tool for single-cell analysis, enabling the identifica-
tion and characterization of cell populations that share similar molecular profiles within 
heterogeneous biological samples [1]. The output of clustering analysis is often used 
for direct comparison of biological samples, to identify changes in the abundance or 
molecular state of specific cell populations. Furthermore, clustering output is frequently 
carried forward into additional downstream analyses such as cell type classification or 
trajectory analysis [2–4]. Therefore, the accuracy and reproducibility of clustering parti-
tions is important for the quality of single-cell analysis. This importance has motivated 
the development of hundreds [5] of clustering methods with a variety of algorithmic 
strategies, but there are still important shortcomings in all of these methods which 
reduce their effectiveness.
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An ideal clustering method for single-cell analysis would satisfy the following 
requirements:

1) Operate without the need for human input such as hyperparameter tuning. The vast 
majority of existing methods require selection and optimization of hyperparameters, 
which can significantly impact clustering quality [6–9]. Manual hyperparameter tun-
ing is time-consuming and relies subjectively on human intuition about which group-
ings appear correct [10]. Automated methods have been proposed to overcome this 
limitation, but many are computationally inefficient, and all are biased by the criteria 
used for optimization [9, 11–13].

2) Perform well across diverse single-cell datasets from different tissues and across mul-
tiple measurement modalities such as single-cell/single-nucleus RNA sequencing 
(scRNA-seq and snRNA-seq), single-cell assay for transposase-accessible chromatin 
sequencing (scATAC-seq), flow cytometry, mass cytometry, and multiplexed imag-
ing analysis such as high-content fluorescence imaging, imaging mass cytometry 
(IMC), multiplexed ion beam imaging (MIBI), and multiplexed error-robust fluores-
cence in  situ hybridization (MERSCOPE). Generalizability is a concern in existing 
methods; many clustering methods perform well on gold-standard single-cell data-
sets, but do not generalize well to datasets from other tissue types or from other sin-
gle-cell analysis modalities which may have different or more complex distributions 
or structural properties [7–10, 14].

3) Produce stable and consistent partitions that are robust to random sampling and 
minor perturbations. Existing methods do not reliably produce robust partitions 
when applied to complex, high-dimensional single-cell datasets. Meaningfully differ-
ent results can be produced with different hyperparameter combinations [8], slight 
perturbations of a dataset [10, 14], or even when an identical dataset and hyperpa-
rameters are run multiple times due to randomization steps in most clustering algo-
rithms (Additional File 1: Fig. S1a, b).

4) Capture and describe the wide variety of discrete and continuous grouping struc-
tures present in single-cell datasets [15, 16]. Most existing methods implement hard 
clustering, which assumes a data structure with discrete, well-separated groups, but 
is unable to characterize overlap or continuity between groups. Alternative compu-
tational methods for trajectory inference can better capture specific types of con-
tinuum-like processes such as cell differentiation in single-cell datasets, but these 
methods make a different set of assumptions about data structure that can be equally 
restrictive.

5) Quantify uncertainty at the levels of individual data points and clusters. There are 
many scenarios where clustering can provide useful information, but a single optimal 
solution to the clustering task either does not exist or cannot be determined [17]. 
In many cases, there is additionally no known ground truth that could define what 
a correct solution might look like. Therefore, measures of uncertainty are crucial to 
assess the reliability and aid interpretability of clustering results before using them as 
inputs for downstream analytical methods or for purposes such as hypothesis devel-
opment or orthogonal validation of results.
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6) Scale to analyze large single-cell datasets with millions of cells. While many of the 
most commonly used methods are scalable, several that have been developed to 
address these key challenges for clustering have done so at the expense of scalability. 
Methods that improve on these other challenges can only be realistically impactful 
if they can produce results for the large dataset sizes that are becoming increasingly 
commonplace.

Recently developed clustering methods have made progress towards some of these 
goals. Ensemble and consensus methods represent a promising approach to improve 
clustering robustness by combining information from multiple diverse partitions 
[18–25]. Fuzzy and soft clustering methods allow data points to belong to multiple 
clusters, and can therefore be used to provide a more complete description of both 
continuous and discrete data structures [26, 27]. There are several methods that 
provide measures of stability or uncertainty at the cluster level [9, 11, 24, 28], but 
cell-level measures of uncertainty are rarely provided in single-cell methods [29, 30]. 
Additionally, deep learning methods have shown promise in generating informative 
lower-dimensional representations of diverse types of high-dimensional biological 
data [31]. However, none of these approaches have been able to incorporate all of the 
six key features described above.

To address this need for a single method that performs robustly across diverse data-
sets with no hyperparameter tuning and transparently communicates uncertainty, 
we developed a clustering algorithm that applies EnSemble Clustering with Hyper-
parameter Randomization (ESCHR). This algorithm requires no human input due to 
hyperparameter randomization, which explores a wide range of data subspaces that 
contribute to the final consensus clustering step. Our implementation of ESCHR in 
Python (https:// github. com/ zunde rlab/ eschr) [32] can be used as a self-contained 
framework for clustering, or it can be integrated into commonly used single-cell anal-
ysis pipelines such as the scverse ecosystem [33]. To evaluate this new method, we 
performed extensive benchmarking tests, which demonstrated that ESCHR outper-
forms both general clustering methods and clustering methods specifically developed 
for single-cell analysis [24, 25, 34–41] in terms of accuracy on synthetic datasets with 
a known “ground truth” and in terms of robustness on real single-cell datasets encom-
passing diverse tissues (bone marrow, pancreas, developing and adult brain), organ-
isms (mouse, human), cell numbers (from hundreds to millions), and measurement 
techniques (single-cell RNA sequencing, mass cytometry, flow cytometry).

After benchmarking for accuracy and robustness, we applied ESCHR clustering 
to two complex real-world datasets—first to the MNIST dataset [42], a commonly 
used example for machine learning image analysis, and then in the single cell context 
to investigate the relationships between tanycyte populations in the hypothalamus, 
which have been previously shown to display spatial and molecular-level continu-
ity between subtypes [43–47]. In both of these exploratory analyses, the soft clus-
ter assignments and uncertainty scoring from ESCHR were used to identify regions 
of low confidence cluster assignments corresponding to transitional overlap between 
clusters and map the key feature transitions that define these regions.

https://github.com/zunderlab/eschr
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Results
Overview of ESCHR clustering

To develop a robust and scalable clustering method for the analysis of single-cell data-
sets, we employed an ensemble and consensus approach, which has been shown 
to improve robustness across many domains of machine learning [21, 48–54]. This 
approach consists of two main steps: (1) generate a set of base partitions, referred to 
as the ensemble, and (2) use this ensemble to generate a final consensus partition. The 
graph-based Leiden community detection method [55] was selected as a base algorithm 
to generate the clustering ensemble, because it is widely used for single-cell analysis, and 
is efficiently implemented to be scalable for large datasets [3].

A key element of successful consensus approaches is generating sufficient diversity in 
the ensemble [21, 49, 50, 56]. To generate this diversity, ESCHR randomizes four hyper-
parameters for each base partition: subsampling percentage, number of nearest neigh-
bors, distance metric, and Leiden resolution. Within a given base partition, ESCHR first 
selects a subsampling percentage by random sampling from a Gaussian distribution with 
μ scaled to dataset size (within 30–90%) and then extracts the specified subset of data 
from the full dataset. Next, ESCHR randomly selects values for the number of nearest 
neighbors (15–150) and the distance metric (euclidean or cosine) and uses these to build 
a k-nearest neighbors (kNN) graph for the extracted subset of data. Finally, ESCHR per-
forms Leiden community detection on this kNN graph using a randomly selected value 
for the required resolution-determining hyperparameter (0.25–1.75). The ranges for 
randomization of these hyperparameters were optimized empirically (Additional File 1: 
Fig. S2a–f and Methods). This subsampling and randomization scheme is used to pro-
duce diversity among each of the different base partitions (Fig. 1a). This diversity pro-
vides many different views of the dataset, and the full ensemble of these views provides 
a more comprehensive picture of the dataset grouping structure (Additional File 1: Fig. 
S3), which is less likely to be influenced by the stochastic variations present in any single 
view, including the full unsampled dataset. In addition to generating ensemble diversity, 
this hyperparameter randomization approach is what enables ESCHR to operate with-
out the need for hyperparameter tuning at this first stage of the algorithm.

After generating a diverse ensemble of base partitions, ESCHR applies a bipartite 
graph clustering approach to obtain the final consensus partition. First, the base parti-
tions are assembled into a bipartite graph, where cells are represented by one set of ver-
tices, base clusters are represented as a second set of vertices, and each cell is connected 
by an edge to each of the base clusters it was assigned to throughout the ensemble 
(Fig. 1b). Next, ESCHR applies bipartite community detection to obtain the final con-
sensus partition (Fig. 1b) [57]. Bipartite community detection is applied here instead of 
more common consensus approaches that suffer from information loss [58]. To remain 
hyperparameter-free without the need for human intervention in this consensus stage 
of the algorithm, ESCHR performs internal hyperparameter selection to determine the 
optimal resolution for the final consensus clustering step by selecting the medoid from a 
range of resolutions (Additional File 1: Fig. S4). After obtaining the final consensus parti-
tion, ESCHR converts the ensemble bipartite graph to a final weighted bipartite graph 
by collapsing all base partition cluster nodes assigned to the same consensus cluster 
into a single node. Cells are then connected to these consensus cluster nodes by edges 
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with weights representing the number of times each cell was assigned to any of the base 
partition clusters that were collapsed into a given consensus cluster (Fig. 1b). These raw 
membership values are then normalized to obtain proportional soft cluster member-
ships, and hard cluster labels are assigned as the consensus cluster in which a cell has the 
highest proportional membership (Fig. 1c).

While many analysis strategies for single-cell datasets require hard clustering labels, 
these by definition cannot convey whether a cell is at the borderline between multiple 
clusters or located firmly in the center of a single cluster. Hard clusters also do not pro-
vide any insight into potential continuity between clusters. Using the soft cluster mem-
berships derived from the weighted consensus bipartite graph, ESCHR provides several 
additional outputs beyond hard cluster assignments that enable a more comprehensive 
characterization of the grouping structures within a dataset. Firstly, soft cluster mem-
berships can be directly visualized in heatmap form to identify areas of cluster overlap 
at the single-cell level (Fig. 1c). Importantly, these soft membership heatmap visualiza-
tions can serve as complements or even alternatives to the widely used but also widely 

Fig. 1 ESCHR framework overview. a Starting from a preprocessed input dataset, ESCHR performs ensemble 
clustering using randomized hyperparameters to obtain a set of base partitions. This set of base partitions is 
represented using a bipartite graph where one type of node consists of all data points and one type of node 
consists of all clusters from all base partitions and edges exist between data points and each base cluster 
they were assigned to throughout the ensemble. b Leiden bipartite clustering is performed on the ensemble 
bipartite graph. Base clusters are collapsed into their assigned consensus clusters obtained through the 
bipartite clustering and edge weights are summed such that each data point now has a weighted edge to 
each consensus cluster representing the number of base clusters it had been assigned to that were then 
collapsed into that consensus cluster. c Soft cluster memberships are obtained by scaling edge weights 
between 0 and 1, and can then be visualized directly in heatmap form and used to generate hard cluster 
assignments, per-data point uncertainty scores, and cluster connectivity maps
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misinterpreted [59] stochastic embedding methods (i.e. UMAP [60], t-SNE [61]) for 
visualizing the complex relational structures within single-cell datasets. ESCHR also 
produces an Uncertainty Score for every object, derived from its soft cluster member-
ship, which quantifies regions of higher and lower certainty in hard cluster assignment 
(Fig. 1c). Finally, ESCHR produces a cluster-level map of the continuity structure within 
a dataset by using the soft cluster memberships to calculate a corrected-for-chance 
measure of the connectivity between each pair of hard clusters (Fig. 1c and Methods).

ESCHR soft clustering and uncertainty scores capture diverse structural characteristics 

and quantify uncertainty in cluster assignments

We first sought to examine how ESCHR uncertainty scores and soft clustering could 
enable effective and informative analysis for datasets containing complex combinations 
of continuity and discreteness, and how these results compared to a wide range of alter-
native clustering methods used for single-cell analysis or general purpose clustering 
(Additional File 2: Table  S1 and Methods). For this analysis, we generated a synthetic 
scRNA-seq dataset containing 1000 cells and 1000 features using the DynToy package 
[62]. This dataset is generated by sampling “cells” from a complex trajectory model, with 
library size and transcript distributions per cell modeled on a real scRNA-seq dataset. 
Specifically, “cells” are sampled from prototypical “cell states”, where each cell has a vary-
ing probability of belonging to multiple neighboring states, and the ground truth hard 
cluster labels are assigned as the state in which the cell has the highest percent mem-
bership. This process generates a dataset which is similar to real single-cell data but 
provides known ground truth grouping structure and known ground truth continuity 
structure (Fig. 2a–b, Additional File 1: Fig. S7a), which is not generally available for real 
datasets (Additional File 1: Supplementary Note 1).

We first compared the ESCHR hard clustering results (Fig. 2c, Additional File 1: Fig. 
S7b) and uncertainty scores (Fig. 2d) with the true hard cluster labels and the true mem-
bership percentage for those labels. While ESCHR successfully captures all of the ground 
truth cell states, it also adds two additional clusters (ESCHR clusters 9 and 6) between 
true clusters M2 and M3 and between M1 and M7. However, the ground truth member-
ship percentages show that these regions are highly transitional, with low percentages 
for the maximum membership (Fig. 2b). ESCHR uncertainty scores correspond closely 
to this observed ground truth continuity in Fig. 2b, indicating that the uncertainty scores 
can identify regions of uncertainty in cluster assignment due to ground truth continuity 
and cluster overlap. In addition to quantifying this level of uncertainty per “cell,” ESCHR 
also provides information at the cluster level about which clusters overlap, and to what 
extent, through direct visualization of the soft cluster memberships. This reveals an 
overlap structure that corresponds to the ground truth patterns of transitional member-
ship between groups, such as between ESCHR clusters 7, 9, and 1 (corresponding to true 
labels M2 and M3) and ESCHR clusters 1, 8, and 2 (corresponding to true labels M3, 
M6, and M5) (Fig. 2e).

We next evaluated the results from multiple different clustering methods and found 
that there was wide disagreement between the results of these different methods (Fig. 2f, 
Additional File 1: Fig. S7c). Seurat, Scanpy, and Phenograph, which are all based on 
either Leiden or Louvain as their base clustering method, all identify approximately 
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the same clusters as ESCHR, but importantly each of these methods has selected dif-
ferent boundaries between these clusters. While the results from the remaining meth-
ods exhibit more diversity, it is notable that none have placed cluster boundaries within 
the regions of ground truth high single state membership but rather have over-clustered 
transitional regions or under-clustered by grouping multiple true clusters together. The 
regions of disagreement between the different clustering methods highlight areas that 
are challenging for and perhaps not well suited to the discreteness assumptions of tra-
ditional hard clustering. High ESCHR uncertainty scores and overlapping soft cluster 
memberships correspond to regions of disagreement between other clustering methods, 

Fig. 2 Visualization of ESCHR clustering and uncertainty scores compared to other clustering methods. 
UMAP visualizations of a ground truth cluster labels, b ground truth cell state membership, c ESCHR hard 
clusters, and d ESCHR uncertainty scores. e Heatmap visualization of ESCHR soft cluster memberships. f 
UMAP visualizations of cluster assignments from selected comparison methods. Points are colored by cluster 
ID. g Box and whisker plot comparing uncertainty scores of data points from ESCHR hard clustering that 
were accurately assigned versus not accurately assigned. The box shows the quartiles of the dataset, whiskers 
extend to 1.5*IQR, plotted points are outliers. Two-sided Mann–Whitney U test was used for statistical 
analysis. N = 126,545, 750,955 for inaccurate and accurate groups respectively. h Comparison of ESCHR 
uncertainty scores versus method agreement per each individual data point. Primary box and whisker plot 
x-axis is binned ESCHR uncertainty scores and y-axis is the average method agreement across all pairs of 
methods; inset scatterplot shows raw data (i.e., not binned) with a red line of best fit and Pearson correlation 
statistic
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providing further evidence that these metrics can help identify regions that are challeng-
ing for traditional clustering methods due to continuous data structures such as overlap 
between ground truth clusters.

To assess whether ESCHR uncertainty scores were similarly informative across diverse 
datasets, we generated an additional 4 simulated datasets using DynToy and 16 addi-
tional structurally diverse synthetic datasets which consist of randomly generated Gauss-
ian distributions varying in number of objects (5000 or 10,000), number of features (20, 
40, 50, 60), number of clusters (3, 8, 15, 20), cluster sizes, cluster standard deviations, 
cluster overlap, and feature anisotropy (Additional File 1: Figs. S5–S6, Additional File 2: 
Tables S2–S3). To quantitatively evaluate the utility of ESCHR uncertainty scores across 
our full set of 21 structurally diverse synthetic datasets with ground truth cluster labels, 
we first compared ESCHR uncertainty scores to the accuracy of assignment compared 
to ground truth labels per data point across all datasets, and found that ESCHR uncer-
tainty scores were significantly higher in inaccurately assigned cells (Fig. 2g). We then 
quantified the level of agreement between clustering assignments from all the different 
clustering algorithms we tested (in Fig. 2f ) and used this as an alternative external indi-
cator for per data point uncertainty and difficulty of clustering (Methods). This analysis 
revealed that higher ESCHR uncertainty scores were significantly negatively correlated 
with method agreement (Fig. 2h). Taken together, these comparisons demonstrate that 
ESCHR uncertainty scores identify meaningful uncertainty and that when used in com-
bination with the soft clustering results, they enable more in-depth interpretation of 
dataset structure than other methods which produce only hard cluster assignments. Fur-
thermore, ESCHR is able to provide these high-quality insights for datasets with diverse 
structural characteristics without the need for human intervention such as hyperparam-
eter tuning.

ESCHR outperforms other methods across measures of accuracy and robustness

To systematically evaluate the performance of ESCHR vs. other clustering methods 
on real datasets as well as synthetic ones, we performed systematic benchmarking of 
ESCHR against other clustering algorithms (Additional File 2: Table  S1) using a col-
lection of 45 published real datasets in addition to the 21 synthetic datasets described 
above. This collection of 45 published datasets vary widely in size (300–2,000,000 cells), 
source tissue (e.g. blood, bone marrow, brain), measurement type (sc/nRNA-seq, mass 
cytometry, flow cytometry, non-single-cell datasets), and data structure (varying degrees 
of discreteness and continuity) (Additional File 2: Table S4). For our evaluation criteria, 
we selected two extrinsic evaluation metrics, Adjusted Rand Index (ARI) and Adjusted 
Mutual Information (AMI), to assess two aspects of the clustering results: (1) accuracy 
and (2) robustness. Extrinsic evaluation metrics measure the distance of a clustering 
result to some external set of labels, and our two selected metrics ARI and AMI rep-
resent different approaches to this problem, with divergent biases. ARI tends to yield 
higher scores in cases of similarly sized clusters and similar numbers of clusters within 
and between the partitions being compared, while AMI is biased towards purity and 
yields higher scores when there are shared pure clusters between the two partitions 
(Methods) [63]. Using ARI and AMI together should therefore provide a more complete 
comparison of clustering performance [12, 13].
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When we applied these extrinsic metrics ARI and AMI to assess clustering accuracy 
for our collection of synthetic datasets, ESCHR outperformed all other clustering algo-
rithms across both metrics, and this superior performance was statistically significant 
for all cases (Fig. 3a, Additional File 1: Table S5, Additional File 1: Fig. S8b–c). We also 
applied ARI and AMI to benchmark clustering accuracy in non-synthetic real datasets, 
although it is important to note that a priori known class labels do not generally exist 
for real-world single-cell datasets, and the various proxies accepted as ground truth 
labels should be interpreted with skepticism (discussed further in Additional File 1: 
Supplementary Note 1). Keeping these caveats in mind, ESCHR still clustered real data-
sets more accurately by ARI and AMI than all methods, significantly so in all compari-
sons except for scCAN and Agglomerative clustering by ARI and only scCAN by AMI 
(Fig. 3b, Additional File 1: Table S6, Additional File 1: Fig. S8b–c). Many of the ground 
truth labels that are widely accepted for real single-cell datasets are based on a hierarchi-
cal framework of clustering or manual labeling, which could explain why agglomerative 
clustering performs better relative to the other methods for this particular comparison.

After benchmarking for accuracy, we next used ARI and AMI to evaluate clustering 
robustness, by comparing results from repeated runs with different random subsamples 
of a given dataset (Methods). Due to its ensemble and consensus clustering approach, 
we expected ESCHR to perform well in these tests of robustness, and indeed it demon-
strated superior performance to all other clustering algorithms on both synthetic and 
real data across both ARI and AMI metrics (Fig.  3d–e, Additional File 1: Fig. S8d–e). 
These results were significant for all comparisons except against scCAN on the real data-
sets by ARI (Additional File 1: Tables S5–S6). To gain insight into the generalizability of 
ESCHR versus the other methods for specific dataset types, we calculated the mean rank 
of each clustering algorithm across all metrics for major subcategories of our collection 
of datasets: cluster number for synthetic datasets (for which we have reliable ground 
truth cluster numbers), data modality for real datasets, and sample number across all 
datasets. Different clustering algorithms perform better or worse for different subsets, 

(See figure on next page.)
Fig. 3 Systematic analysis of ESCHR clustering performance compared to competing methods on 
synthetic and real datasets. a–d Box and whisker plots comparing accuracy (a and b) and robustness (c 
and d) of results from ESCHR and all comparison methods across all synthetic (a and c) and real (b and 
d) benchmark datasets as measured by ARI (left) and AMI (right). Boxes show the quartiles of the dataset, 
and whiskers extend to 1.5*IQR. Data points used in the creation of box and whisker plots and shown in 
overlaid scatterplots are the means across 5 replicates for each dataset. Two-sided Wilcoxon signed-rank test 
with Bonferroni correction was used for statistical analysis comparing ESCHR to each method. N = 21 for 
comparisons using synthetic datasets and N = 45 for comparisons using real datasets. e Mean rank across 
all metrics shown in box-and-whisker plots for different cluster numbers of the synthetic datasets. Error 
bars show 1 standard deviation. f Mean rank across all metrics shown in box-and-whisker plots for different 
modalities of the real datasets. Points represent means across all replicates of all datasets in a given category 
and error bars show 1 standard deviation. g Mean rank across all metrics shown in box-and-whisker plots for 
different sample number bins for all real and synthetic datasets. Points represent means across all replicates 
of all datasets in a given category and error bars show 1 standard deviation. h Box plots of difference from the 
true cluster number for each synthetic dataset for each method. Values below zero reflect calculated cluster 
numbers being lower than true cluster numbers and higher than zero indicates more clusters than the true 
cluster number. SINCERA is shown separately due to the scale of values being 2 orders of magnitude different 
from all other methods. i Scalability comparison between ESCHR and other methods on synthetic datasets 
with an increasing number of data points. X-axis is log scaled but labels show the unscaled values for easier 
interpretation. Each dot represents 5 replicates and error bars show 1 standard deviation
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but ESCHR is consistently ranked first or tied for first across these subcategories of both 
synthetic (Fig. 3e, g) and real datasets (Fig. 3f, g), indicating that its performance is more 
generalizable to diverse datasets than the other tested clustering algorithms.

We next evaluated the scalability of each method over a range of dataset sizes. While 
ESCHR generally takes the longest, this does not present a practical limitation for typical 
usage, as it is able to successfully complete analyses on millions of data points and the 
runtime scales linearly (Fig. 3g). This analysis also revealed that several of the alternative 
clustering algorithms we tested could not successfully run to completion for larger data-
sets. The dataset size limit for ESCHR is effectively the size limit of its underlying base 

Fig. 3 (See legend on previous page.)



Page 11 of 27Goggin and Zunder  Genome Biology          (2024) 25:242  

clustering method, the Leiden algorithm implemented in Python [55]. While it is true 
that our method does have longer runtimes than some of the commonly used methods 
we compare to here, we believe it is worth the wait due to the demonstrated superior 
accuracy and robustness of our results, and perhaps even more importantly due to the 
additional insights afforded by the uncertainty scores and soft cluster membership infor-
mation highlighted in Fig.  2. Additionally, the manual guess-and-check hyperparame-
ter tuning that is required to achieve desired results with other methods can be very 
time-consuming (not to mention highly subjective), and so it is possible that in practical 
usage ESCHR could potentially end up providing useful results more quickly than other 
methods. When taken together, these quantitative evaluations demonstrate that ESCHR 
performs favorably compared to the other methods tested here and achieves our desired 
goals of providing accurate and robust results, being generalizable to a broad range of 
diverse datasets, and being scalable to large datasets.

ESCHR soft clustering and uncertainty scores provide increased interpretability 

in exploratory data analysis of the MNIST dataset

To illustrate how ESCHR can identify regions of continuity and provide insight into clus-
ter overlap and dataset structure, we selected the MNIST dataset for further analysis. 
This dataset, consisting of 70,000 handwritten digits with ground truth labels, is often 
used for machine learning demonstrations because the images can be visualized for intu-
itive interpretation [42]. Other clustering algorithms set to default hyperparameters do 
not recapitulate the ground truth labels with high accuracy (Additional File 1: Fig. S9a), 
explained in part by the real variation that exists within the ground truth sets. For exam-
ple, there are two common variations of the handwritten digit 1, and most of the cluster-
ing algorithms capture this difference. Of all the clustering algorithms tested, ESCHR 
clusters the MNIST dataset with the highest robustness and accuracy (Additional File 
1: Fig. S9b), but it consistently splits the 1 and 9 digits into separate subsets (Fig. 4a–b), 
and in some cases, it splits the digit 4 as well (Additional File 1: Fig. S9a). ESCHR usu-
ally produces highly consistent results from run to run thanks to its consensus clustering 
step, but this inconsistency around the digits 4 and 9 is suggestive of a high degree of 
continuity within and between these two classes (Additional File 1: Fig. S9c), which is 
highlighted by elevated ESCHR uncertainty scores in this region (Fig. 4c). The soft clus-
ter membership heatmap also draws attention to the visual similarities between digits 3, 
5, and 8, as well as the two types of handwritten 1 digits (Fig. 4d). These subset-level dif-
ferences and connections between related digits motivated further investigation of the 
ESCHR outputs for the MNIST dataset.

To further investigate the continuity and overlap structure that was indicated by the 
uncertainty scores and soft cluster membership heatmap, cluster connectivity mapping 
was applied to identify significant overlap beyond what would be expected by random 
chance for the ESCHR clusters (Fig.  4e) (Methods). This revealed significant overlap 
between clusters “3”– “5”– “8,” “1a”– “1b,” and “4”– “9a”– “9b.” To explore the nature 
of the continuity structure underlying the significantly overlapping clusters “1a” and 
“1b,” we devised a simple rank ordering scheme based on the soft membership values 
for the datapoints in these two clusters and then used this ordering score to examine 
both the continuous progression of soft membership values across the rank-ordered 
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Fig. 4 ESCHR-guided exploration of the benchmarking dataset MNIST. a UMAP visualization with points 
colored by true class labels. b UMAP visualization with points colored by ESCHR hard cluster labels. c 
UMAP visualization with points colored by ESCHR uncertainty score. d Heatmap visualization of ESCHR 
soft cluster memberships. e Nodes represent ESCHR hard clusters and are located on the centroid of the 
UMAP coordinates for all data points assigned to that hard cluster. Node size is scaled to the number of data 
points in a given cluster. Edges exist between nodes that were determined to have significant connectivity 
by ESCHR cluster connectivity analysis, and edge thickness is scaled to the connectivity score. f Stacked 
bar plot showing the soft membership of datapoints in clusters 1b and 1a, ordered by increasing ESCHR 
soft cluster membership (SCM) rank ordering score (middle); kernel density estimation across the ordering 
score (bottom); dashed lines indicate boundaries between ordering score density peaks to separate “core” 
and “transitional” datapoints (middle and bottom); smaller images show individual representative images 
and larger images show summed pixel intensities for all datapoints contained within each dashed partition 
(top). g Visualization of data points from ESCHR clusters 4, 9a, and 9b projected onto the first two principal 
components resulting from PCA performed on the soft membership matrix of these three clusters. The 
primary scatterplot shows points colored by their ESCHR hard cluster assignment, and the inset scatterplot 
shows points colored by the ESCHR uncertainty score. Images are real examples from the MNIST dataset. h 
Scatterplot points in the first two rows of plots show the pixel locations of the 30 features with the largest 
positive (first row, red) and 30 largest negative (second row, blue) Pearson correlation to each of the PCs. 
Example digit images are underlaid in light gray to aid interpretation. The final row contains heatmaps with 
each pixel colored according to its Pearson correlation with PC1 (left) or PC2 (right), with bright red indicating 
a large positive correlation and dark blue indicating a large negative correlation
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datapoints and their density along this ordering score (Methods). This revealed that each 
cluster had a high-density peak of “core” datapoints with a secondary smaller “transi-
tional” peak (Fig. 4f, bottom). Individual representative MNIST digit images (Fig. 4f, top 
row) and summed pixel intensities (Fig. 4f, second row) from the images within each of 
these regions indicate that the core “1b” images are heavily slanted whereas the core “1a” 
images are vertically straight, with the images from the lower density transitional peaks 
falling in between these extremes. The two high-density peaks consisting of images with 
distinctly different styles of 1  s explain why ESCHR and many of the other clustering 
methods tested identified two clusters corresponding to this single digit (Additional File 
1: Fig. S9a), while the high degree of pixel overlap between the two styles and the pres-
ence of images with intermediate slantedness explain the high degree of continuity and 
significant overlap detected by ESCHR.

We next examined the more complex relationship between subsets of the digits 4 and 
9. Cluster connectivity mapping indicated that there was significant overlap among all 
three of the ESCHR clusters “4,” “9a,” and “9b” (Fig. 4e). Additionally in the soft mem-
bership heatmap, there appear to be some cells that are overlapping all three clusters, 
and some cells from clusters “9a” and “9b” that overlap separately with cluster “4” and 
not with each other (Fig.  4d). Unlike the simpler relationship between ESCHR clus-
ters “1a” and “1b,” which could be analyzed by linear one-dimensional reduction, the 
more complex relationship around digits 4 and 9 could not be adequately captured or 
described along a single dimension, so principal components analysis (PCA) was applied 
to the ESCHR soft cluster memberships corresponding to these three clusters in order 
to reduce these relationships into two dimensions (Methods). Representative images 
selected from throughout the resulting PC space reveal that the between-cluster con-
tinuity is indeed reflecting the existence of a continuous progression through different 
conformations of the two digits 4 and 9 (Fig. 4f ). Specifically, we can see that there is a 
continuous progression through the 9’s based on how slanted they are, with two areas of 
higher density at either extreme. This explains why a clustering algorithm would be likely 
to split this into two clusters, albeit with a high amount of uncertainty about precisely 
where to make the split. The images also illustrate how the more slanted closed 4’s form 
a continuous transition primarily with cluster 9a and the more vertically oriented closed 
4’s form a continuous transition primarily with cluster 9b. This approach also allows us 
to identify features that are most correlated with the top two principal components. The 
top PC-correlated features lend further insight by identifying the specific pixels that are 
primarily capturing these changes in slantedness and upper loop closure (Fig. 4g). These 
analyses illustrate how structures within the MNIST dataset are not ideally suited for 
hard clustering assignment, but also how ESCHR is able to identify these structures and 
provide deeper insights than could be obtained by other hard clustering methods, or 
even beyond what is available from the ground truth class assignments.

ESCHR captures cell types and continuity in static adult tissue

To illustrate how ESCHR can provide additional interpretability and insight for single-
cell datasets, we selected an integrated scRNA-seq dataset of hypothalamic tanycytes 
[46] for further analysis. Tanycytes are elongated ependymoglial cells that form the 
ventricular layer of the third ventricle and median eminence and have historically been 
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classified into four subtypes (α1, α2, β1, β2) based on the hypothalamic nuclei where 
they project to, their spatial localization along the third ventricle, and their morpho-
logical, structural, genetic, and functional properties (Fig. 5a) [64]. More recent studies 
have suggested that many of these properties may exhibit substantial continuity between 
and within each of these subtypes [43–47, 65]. However, individual tanycyte scRNA-seq 
studies and an integrated analysis of these datasets all reported discrete groupings of 
tanycytes defined by hard clustering approaches [44, 46, 66–68], with no insight into 
the robustness of these assignments and whether there is overlap or continuity between 
them.

Initial ESCHR analysis produced hard clustering outputs that match canonical tany-
cyte subtypes by their RNA expression profiles (Fig. 5b–d) [46]. Subtypes β1 (expressing 
Fizb, Penk, Rlbp1, and Ptn) and α2 (expressing Vcan, Nr2e1, Fabp5, and Slc7a11) are 
represented by multiple hard clusters, while the subtypes β2 (expressing Scn7a, Cal25a1, 
Meat, and Lrrtm3) and α1 (expressing Mafb, Necab2, Agt, Slc17a8, and Lyz2) each cor-
respond to a single hard cluster, indicating that there is more transcriptional diversity 
within the β1 and α2 populations. On top of this, however, ESCHR uncertainty scores 
identify substantial heterogeneity within each hard cluster, including the β2 and α1 clus-
ters (Fig. 5c), and the soft cluster memberships reveal additional levels of overlap and 
continuity between these canonical tanycyte subtypes (Fig. 5e). ESCHR cluster connec-
tivity mapping (Methods) revealed significant overlap between the β1 clusters (2, 3, and 
5) and each of the other three canonical subtypes (Fig. 5f ). This result was somewhat 
unexpected, because transcriptional continuity was previously thought to exist only 
between spatially neighboring tanycyte subtypes [45, 65]. A more recent study provided 
evidence that β1 tanycytes exhibit some transcriptional continuity with both α1 and α2 
tanycytes, but also indicated that β2 tanycytes were non-overlapping and transcription-
ally distinct [43]. Our analysis with ESCHR soft clustering memberships and cluster 
connectivity provide additional corroboratory evidence for the transcriptional continu-
ity between β1 and α1/α2 tanycytes, but also reveal a previously uncharacterized rela-
tionship of transcriptional continuity between β1 and β2 tanycytes.

To further investigate this previously uncharacterized transcriptional overlap between 
β1 and β2 tanycytes, specifically between ESCHR clusters 1 and 2, we selected the subset 
of cells comprising the transitional zone between clusters and rank-ordered these based 
on whether their soft cluster membership was closer to β1 (ESCHR cluster 1) or β2 
(ESCHR cluster 2) (Fig. 5g and Methods). Using this rank ordering scheme, we identified 
genes with expression patterns that correlate with progression through the transition 
zone from β2 to β1 tanycytes, either decreasing across the transition like Igfbp5 (Fig. 5h, 
k), peaking during the transition like Tgfb2 (Fig. 5i, l), or increasing across the transition 
like Crym (Fig. 5j, m). We next sought to determine whether these gene expression pat-
terns in the transitional zone between ESCHR clusters were also observed in the spatial 
distribution of β2 and β1 tanycytes along the median eminence and third ventricle where 
these subtypes are thought to reside (Fig. 5n). To investigate this possibility, we exam-
ined the in situ hybridization (ISH) database from the Allen Mouse Brain Atlas (ABA; 
http:// mouse. brain- map. org) [69] and observed that the overlapping expression for these 
three genes did in fact manifest as progressive spatial overlap spanning the anatomi-
cal regions canonically associated with β2 and β1 populations (Fig. 5o–q). Altogether, 

http://mouse.brain-map.org
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Fig. 5 ESCHR identifies continuity between and within canonical cell subtypes in static adult tissue. a 
Schematic illustration of canonical tanycyte subtypes in their anatomical context surrounding the third 
ventricle. b UMAP visualization with points colored by ESCHR hard cluster labels. c UMAP visualization with 
points colored by ESCHR uncertainty score. d Heatmap dotplot showing expression of marker genes for 
the canonical tanycyte subtypes across the ESCHR hard clusters. e Heatmap visualization of ESCHR soft 
cluster memberships. f Nodes represent ESCHR hard clusters and are located on the centroid of the UMAP 
coordinates for all data points assigned to that hard cluster. Node size is scaled to the number of data points 
in a given cluster. Edges exist between nodes that were determined to have significant connectivity by 
ESCHR cluster connectivity analysis, and edge thickness is scaled to the connectivity score. Node colors map 
to their ESCHR hard cluster colors from panel b (left) and to the color from panel a of the canonical subtype 
to which they primarily belong (right). g UMAP visualization with the subset of points that were included in 
the ordering analysis colored by ESCHR soft cluster membership (SCM) rank ordering score, and all others 
colored gray. h–j UMAP visualizations where points included in the ordering analysis are colored by their 
expression level and all others are colored gray. k–m Scatterplots showing normalized mRNA abundance on 
the y-axis and SCM rank order on the x-axis. Expression is bounded between the 2nd and 98th percentiles. 
Lines show Gaussian-smoothed B-splines fit to the data. n Schematic illustration of the anatomical region 
being shown in o–q. o–q In situ hybridization (ISH) of coronal brain sections, using probes specific for Igfbp5, 
Tgfb2, and Crym (Allen Mouse Brain Atlas). Red arrowheads indicate the areas of expression in the region of 
interest
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this analysis of tanycyte subtypes demonstrates the utility of ESCHR for (1) identifying 
robust and biologically meaningful hard cluster assignments, (2) providing insight into 
the overlap and continuity between cell type clusters, and (3) providing a springboard 
for further analysis of expression level transitions via soft cluster membership ordering.

Discussion and conclusions
Clustering is a fundamental tool for single-cell analysis, used to identify groupings of 
cell types or cell states that serve as the basis for direct comparisons between biologi-
cal samples or between specific cell types within a biological sample, as well as numer-
ous further downstream applications. However, it has proven challenging to generate 
appropriate and consistent cell groupings when using previously available clustering 
methods on single-cell datasets, due to (1) continuity and overlap between cell types, (2) 
randomness and stochasticity built into the clustering algorithms, and (3) non-general-
izable hyperparameter settings that were optimized for a specific dataset or data type. To 
overcome these limitations we developed ESCHR, a user-friendly method for ensemble 
clustering that captures both discrete and continuous structures within a dataset and 
transparently communicates the level of uncertainty in cluster assignment. Using a large 
collection of datasets representing a variety of measurement techniques, tissues of ori-
gin, species of origin, and dataset sizes, we benchmarked ESCHR’s performance against 
several other clustering algorithms, demonstrating that ESCHR consistently provides 
the highest robustness and accuracy for clustering across all categories of this diverse 
dataset collection.

One of the key design features of ESCHR is our approach using hyperparameter ran-
domization during the ensemble generation step. While this was a deliberate design 
choice to generate diversity among the base clusterings to enhance the robustness and 
generalizability of clustering, an additional benefit is that it removes the need to manu-
ally test and select an optimized set of hyperparameters for each dataset. This design 
also affords several avenues for potential future improvements to the ESCHR algorithm, 
such as expanding the number of hyperparameters randomized in order to gener-
ate an even more diverse clustering ensemble. For example, we currently use k-nearest 
neighbor (kNN) graphs for the base Leiden clustering steps, but mutual nearest neigh-
bor (mNN) or shared nearest neighbor (sNN) have shown good performance in other 
frameworks [3, 41, 70], and may improve ESCHR performance if incorporated as an 
additional hyperparameter to vary. ESCHR may also benefit from expanding the set of 
distance metrics utilized. We currently restrict our analysis to euclidean and cosine dis-
tances due to their efficient implementations within our chosen fast approximate nearest 
neighbor (ANN) package [71]. However, recent research has demonstrated the efficacy 
of a broader range of distance metrics for capturing diverse data structural properties 
[72]. While not all of these metrics may be applicable in an ANN context, several may 
hold the potential for enhancing the quality of our clustering outcomes. Additionally, the 
current version of ESCHR uses only Leiden community detection for clustering in the 
ensemble stage, but additional base clustering methods could be explored and poten-
tially incorporated in future versions. Finally, our empirical identification of optimal 
ranges for ESCHR’s numeric hyperparameters was somewhat limited by the time and 
memory required for running these experiments with many, sometimes large, datasets 
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and very wide search spaces. It is therefore possible that there may be more optimal 
default ranges or more sophisticated regimes for hyperparameter randomization and 
selection that could improve ESCHR’s performance.

Another key design feature of ESCHR is our soft clustering approach for generating 
the final consensus results. Single-cell data is inherently complex and heterogeneous, 
and clustering methods often make assumptions about the structure of the data that may 
not hold in practice. For example, hard clustering methods assume discrete groups of 
single cells, which rarely exist in biological data [15]. Many clustering algorithms make 
further assumptions about the shapes and other properties of these discrete groups. In 
the opposite direction, toward continuity rather than discreteness, numerous methods 
have been developed for trajectory inference in single-cell datasets [4], but these meth-
ods also make assumptions about dataset structure, for example, many force a branched 
tree structure. ESCHR’s soft cluster outputs enable unified mapping of both discrete and 
continuous grouping structures, without the need for assumptions about the shape and 
properties of the dataset. To illustrate this concept, we used ESCHR to identify tany-
cyte subtypes and reveal the transitional continuity between them (Fig. 5a–q, Additional 
File 1: Fig. S10), which is notable because assumptions about lineage relationships or 
dynamic developmental processes in this static adult tissue would be inappropriate and 
could lead to inaccuracies and distortion. Instead, ESCHR can identify and characterize 
discrete and continuous patterns simultaneously, even in the same dataset, without rely-
ing on assumptions about data shape and properties.

One of ESCHR’s most useful outputs is the per-cell uncertainty score, which enables 
users to estimate clustering uncertainty and interpret hard clustering results more effec-
tively. The Impossibility Theorem for clustering states that it is impossible for any clus-
tering method to satisfy the three proposed axioms of good clustering, and therefore all 
clustering algorithms must make trade-offs among the desirable features, and no clus-
tering result can be perfect [17]. Because of this, it is critical to evaluate the guaranteed 
uncertainty in a clustering result before using it for direct comparisons, downstream 
analyses, or hypothesis generation. ESCHR uncertainty scores, which are derived from 
the degree of cluster overlap for each datapoint as indicated by their soft cluster assign-
ments, provide a useful proxy for this uncertainty and difficulty in cluster assignment. 
These scores can be visualized alongside hard cluster assignments to facilitate a more 
discerning interpretation of clustering results. We have validated the utility of these 
uncertainty scores by demonstrating that (1) they identify areas of ground truth continu-
ity due to cells transitioning between cell states in simulated scRNA-seq data (Fig. 2b, 
d), (2) they are significantly higher for inaccurately assigned data points (Fig. 2g), and (3) 
they are significantly negatively correlated with the level of agreement between cluster-
ing algorithms (Fig. 2h). Altogether, these findings demonstrate that ESCHR uncertainty 
scores provide meaningful insights into clustering uncertainty.

To make the advantages of ESCHR clustering easily accessible to the research com-
munity, we have made ESCHR available as a Python module on GitHub (https:// github. 
com/ zunde rlab/ eschr), packaged as an extensible software framework that is compat-
ible with the scverse suite of single-cell analysis tools [33]. We have provided tutorials 
for how to incorporate it into existing single-cell analysis workflows as well as for how 
to use it as a standalone analysis framework. In conclusion, our results demonstrate 

https://github.com/zunderlab/eschr
https://github.com/zunderlab/eschr
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that ESCHR is a useful method for single-cell analysis, offering robust and reproducible 
clustering results with the added benefits of per-cell uncertainty scores and soft cluster-
ing outputs for improved interpretability. By emphasizing ease of adoption, clustering 
robustness and accuracy, generalizability across a wide variety of datasets, and improved 
interpretability through soft clustering outputs and the quantification of uncertainty, we 
aim to support the responsible and informed use of clustering results in the single-cell 
research community.

Methods
ESCHR Framework

ESCHR takes as input a matrix, M, with n instances (e.g., cells) as rows and d features 
(e.g., genes/proteins) as columns. It does not perform internal normalization or correc-
tion, so input data are expected to have already been preprocessed appropriately. ESCHR 
can be thought of in three primary steps: base clustering to generate the ensemble, con-
sensus determination, and output/visualization.

Consistent with other published manuscripts in this domain, we will use the following 
notation. Let X = {x1, x2, ..., xn} denote a set of objects to be clustered, where each xi is a 
tuple of some d-dimensional feature space for alli = 1...n . Let Xs = {x1, x2, ..., xr} denote 
a random subset of X where all of x1, ..., xr are between 1 andn . P = {P1,P2, ...,Pm} is a set 
of partitions, where each Pi = Ci

1,C
i
2, ...,C

i
qi

 is a partition of an independent instanti-

ation of Xs and contains qi clusters. Ci
j  is the j th cluster of the i th partition, for all 

i = 1...m . t =
∑m

i=1qi is the total number of clusters from all ensemble members. Where 
PX is the set of all possible partitions with the set of objects X and P ⊂ PX , the goal of 
clustering ensemble methods is to find a consensus partition P∗ǫPX which best repre-
sents the properties of each partition inP . Additionally, the more general terminology of 
“instance” and “feature” will generally be used rather than domain-specific terms such as 
cells and genes/proteins.

Hyperparameter‑randomized ensemble clustering

The ESCHR ensemble is generated with Leiden community detection as the base clus-
tering algorithm [55]. Leiden is applied using Reichardt and Bornholdt’s Potts model 
with a configuration null model [73]. Diversity is generated among ensemble members 
through a combination of data subsampling and Leiden hyperparameter randomization. 
The subsampling percentage varies for each ensemble member and is selected from a 
Gaussian distribution with the mean μ scaled to dataset size within the range 30 to 90. 
After subsampling a random subset Xs from X , principal components analysis (PCA) is 
applied to generate the most informative features for this data subspace. A default value 
of 30 or one less than the number of features if the number of features is less than 30 is 
used for the number of PCs. In the subsequent clustering step, three numerical hyperpa-
rameters are randomized for each ensemble member: (1) k , the number of neighbors for 
building a k-nearest neighbors (kNN) graph; (2) the choice of distance metric for build-
ing the kNN graph; and (3) r , a resolution parameter for the modularity optimization 
function used in Leiden community detection. The numerical hyperparameters k and r 
are randomly selected from within empirically established ranges (Additional File 1: Fig. 
S2). The distance metric is selected between either euclidean or cosine, because these 
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choices are efficiently implemented for fast calculation of approximate nearest neigh-
bors (ANN) in our chosen implementation, nmslib [71]. Since each ensemble member 
is independent, we implemented parallelization via multiprocessing for this stage of the 
algorithm. Ensemble size is set at a default of 150 based on experiments demonstrating 
that this was sufficient to reach convergence to a stable solution (Additional File 1: Fig. 
S2).

Bipartite graph clustering and consensus determination

Bipartite graph clustering was used to obtain consensus clusters from the ESCHR 
ensemble. This approach was selected because methods that compute consensus using 
unipartite projection graphs of either instance or cluster pairwise relations suffer from 
information loss [58]. For these calculations, the biadjacency matrix is defined as: 

B =

[

0 AT

A 0

]

 where A is an n× t connectivity matrix whose rows correspond to 

instances {1... n} and columns correspond to the ensemble clusters {1... t}. Ai,j is an indi-
cator that takes value 1 if instance i belongs to the j th cluster and 0 otherwise. Using 
this, we then create a bipartite graphG = (V ,W ) . The weights matrix W = B, 
andV = V1 ∪ V2 , where V1 contains n vertices each representing an instance of the data 
setX ; V2 contains t vertices each representing a cluster of the ensemble (see Fig.  1a 
“Ensemble bipartite graph”). Given our bipartite graph G, we can define a community 
structure on G as a partition P1 =

{

C1,C2, ...,Ck1

}

 containing pairwise disjoint subsets 
of V1 and P2 =

{

D1,D2, ...,Dk2

}

 containing pairwise disjoint subsets ofV2 , such that all V1 
nodes in a specific Ci are more connected to a particular subset of V2 than the rest of the 
nodes in V1 are, and likewise (but opposite) for a given Dj ofV2 . Optimal P1 and P2 are 
computed with the Leiden algorithm for bipartite community detection with the Con-
stant Potts Model quality function [57, 74]. This approach was designed to overcome the 
resolution limit of previous bipartite community detection approaches [75, 76]. There is 
one hyperparameter for this approach, the resolutionγ , which indirectly influences the 
number of clusters for P1 and P2 by modulating the density of connections within and 
between communities [74]. To avoid the need for external hyperparameter tuning, we 
implemented an internal hyperparameter selection strategy at this stage. First, ESCHR 
generates a set of potential consensus labelings across an internally-specified range of γ 
values. Since ARI can be used as a similarity measure between two different clustering 
results, ESCHR then calculates the pairwise ARI between each of the final consensus 
labelings generated using each different γ value. Finally, ESCHR selects the result that 
has the highest sum of similarity to all other results from the set of potential consensus 
labelings (the medoid) to return as the final consensus result. In experiments to validate 
this approach, we found that the number of and the memberships in the final consensus 
hard clusters is robust to the setting of this resolution parameter, indicating that more 
extensive optimization is not required (Additional File 1: Fig. S4d–e). To obtain the final 
consensus result, we collapse the base ensemble clusters contained in V2 into the P2 
meta-cluster to which they were assigned. This results in each vertex of V1 having a 
weighted edge to each meta-cluster equal to the sum of its edges with constituent base 
clusters ofV2 . The resulting weighted bipartite graph G∗ therefore represents the final 
consensus clusteringP∗ , with n vertices representing the instances, q∗ vertices 
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representing the final consensus clusters, and weighted edges representing the member-
ship of instance i in each of the q∗ clusters ofP∗.

Hard and soft clustering outputs

Let �ǫRn× q∗ be a nonnegative matrix where each row,�i := (�i1, ...,�ik2) , contains 
nonnegative numbers that sum to less than or equal to one, representing the member-
ship of instance i in each of the q∗ clusters ofP∗ . �ij is calculated by dividing the weight 
of the edge between instance i and consensus cluster Dj by the sum of all edge weights 
for instancei . We refer to this matrix as the soft membership matrix and to each row as 
the association vector v for each instance. To determine hard clustering assignments, 
each instance is assigned to the meta-cluster with the highest entry in its association 
vectorv , with ties broken randomly. A “core” cell of a given cluster j will have �ij = 1 and 
zeros elsewhere, while a “transitional” instance may have up to q∗ non-zero membership 
values. To describe the degree to which a given instance is “core” versus” transitional,” we 
define an “uncertainty score,”� , for each instance as the highest membership value in its 
association vector ( � = max(v) ). We can additionally calculate the mean of all instance 
memberships in a given cluster to yield a measure of each cluster’s discreteness, which 
we call the “cluster stability score”s = 1

n�iǫnθi,j.

Cluster connectivity mapping

To map the connectivity structure of clusters, we first calculate the sum-of-squares-and-
cross-products matrix (SSCP) of the soft membership matrix � , which is calculated as 
S = �′� and then consider Si,j to be an uncorrected measure for connectivity between 
consensus clusters i and j . To correct for connectivity that may result from random 
chance, we first estimate a null distribution of connectivity scores accounting for the fol-
lowing attributes of � : (1) the association vector v for a given instance are proportions 
and can sum to no more than 1 (with cells summing to less than one being potentially 
outliers) and (2) the distribution of values is not uniformly distributed and will be differ-
ently skewed for different datasets depending on overall levels of continuity or discrete-
ness. In practice, we achieve this by independently shuffling the association vector, v , for 
each instance to generate a random sample. We then calculate the SSCP for 500 itera-
tions of this randomization procedure. Using this empirical null distribution, we then 
calculate a p-value for each observed edge and prune edges that do not meet a default 
alpha value cutoff of 0.05. Thus the final corrected connectivity is defined as the ratio of 
the cross-product of instance memberships between a given two clusters normalized to 
the cross-product of instance memberships expected under constrained randomization.

Exploring soft cluster continuity for the MNIST dataset

To visualize the transition between clusters 1a and 1b (Fig.  4f ) that was identified 
by connectivity mapping of ESCHR clustering results, we devised a simple approach 
for creating a one-dimensional ordering of the instances in a transitional zone based 
on their membership in the connected clusters of interest. Specifically, the order-
ing score,δi , of cell i having mj membership in the cluster at position j along the 
cluster path of interest was calculated as: δi = �N

j=1mj · j , where N  is the number of 
clusters in the path. To obtain the relevant cells of interest for ordering, we used the 
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following criteria: cells were included if they had (1) > 90% membership in either one 
of the 2 clusters of interest or (2) > 5% membership in both clusters and a combined 
membership of > 80% in the 2 clusters. We then visualized the progression of cluster 
memberships using a stacked bar plot of rank-ordered data points. The ordered data 
points were then partitioned into “core” datapoints and “transitional” datapoints 
for each cluster based on bimodality observed in the ordering scores for the cells 
assigned to each hard cluster.

While a linear ordering approach could in principle be used to create an order-
ing across a path of more than two connected clusters, it would likely only be effec-
tive in cases where connectivity mapping identifies a linear path of successively 
connected clusters. In cases such as the example in Fig. 4 where connectivity map-
ping identified a ring of 3 connected clusters (9a, 9b, 4), this approach will generally 
not work as well since a group of more than two clusters with nonlinear connectiv-
ity may exhibit more complex continuity structures than could be captured with a 
simple linear ordering. We therefore devised another method for distilling the core 
continuity structure for cases of greater than two clusters and nonlinear connectiv-
ity paths. We first performed principal components analysis (PCA) on the columns 
of the soft membership matrix � that correspond to the hard clusters selected for 
analysis, thereby capturing the primary axes of variation contained within these soft 
memberships. We then projected the data onto the first two PCs and used this to 
gain insight into the continuity structure by (1) visualizing the data points belonging 
to the relevant hard clusters projected into the space of these first two PCs and (2) 
identifying and exploring the features most highly correlated with these PCs.

Exploring soft cluster continuity for the Tany‑Seq dataset

To visualize transitional zones between connected clusters in the Tany-Seq dataset 
[46], we applied the same one-dimensional linear ordering approach that was used 
to examine clusters 1a and 1b of the MNIST dataset in Fig.  4f. To identify marker 
features associated with the one-dimensional soft cluster transition paths, we calcu-
lated the Pearson correlation between each feature and the vector of cluster mem-
berships for each cluster in the path. Features were then selected based on their 
correlation with each of the clusters individually and based on the sum of their cor-
relations across the clusters. The three genes in Fig.  5h–j were selected from the 
top ten features identified through each of these methods based on their expression 
patterns and the availability of in  situ hybridization images of sufficient quality in 
the Allen Mouse Brain Atlas [69]. To handle outliers for the expression heatmap 
UMAP plots and the expression scatterplots in Fig.  5h–j, values were thresholded 
to fall between the 2nd percentile and 98th percentile. The curves overlaid on the 
expression scatter plots in these panels were generated by first fitting B-splines with 
degree 3 (cubic) to the points included in the scatterplot. To generate a smoothed 
curve, a Gaussian kernel with a sigma of 10 was applied to the results of the spline 
function evaluated at 100 evenly spaced points within the range of the number of 
points included in the scatter plot. This is approximately equivalent to the behavior 
for large data sizes of the “geom_smooth” function from the R package ggplot [77].



Page 22 of 27Goggin and Zunder  Genome Biology          (2024) 25:242 

Clustering evaluation metrics

Extrinsic evaluation metrics measure the distance of a clustering result to some external 
set of labels. When these labels are ground truth class labels, we can consider these to be 
measures of accuracy. However, they can also be used in other contexts such as with an 
“external” set of clustering labels. There are numerous metrics that can be used to meas-
ure this distance between a given set of predicted cluster labels and a ground truth or 
other set of external labels. Each of these metrics introduces some type of bias in evalu-
ating the accuracy and robustness of clustering results, as discussed further below. To 
diversify these biases, we selected 2 metrics from different categories: Adjusted Rand 
Index (ARI) from the category of methods that employ peer-to-peer correlation and 
Adjusted Mutual Information (AMI) from the information theoretic measures [63]. We 
use both ARI and AMI to evaluate accuracy and robustness in our systematic bench-
marking in Fig. 3 and in Supplementary Figures S2 and S7 (Fig. 3; Additional File 1: Figs. 
S2 and S7).

The ARI is the corrected-for-chance version of the Rand index, which measures the 
agreement between two sets of partition labels U and V  [78]. The ARI is defined as:

where a is the number of pairs of two objects in the same group in both U and V  ; b is 
the number of pairs of two objects in different groups in both U and V  ; c is the number 
of pairs of two objects in the same group in U but in different groups in V  ; and d is the 
number of pairs of two objects in different groups in U but in the same group in V  . Ran-
dom clusterings have an expected score of zero and identical partitions have a score of 1. 
ARI is biased towards solutions containing (1) balanced clusters (i.e., similar size clusters 
within each partition) and (2) similar cluster numbers and sizes between the two parti-
tions [13]. ARI was calculated using the implementation in sklearn (v 1.0.1).

AMI is the corrected-for-chance version of Mutual Information, which quantifies the 
amount of information that can be obtained about one random variable (in this applica-
tion, a list of cluster labels) by observing the other random variable (another list of clus-
ter labels) [79]. Let C = {C1,C2, ...,Ctc} and G =

{

G1,G2, ...,Gtg

}

 be the predicted and 
ground truth labels on a dataset with n cells. AMI is then defined as:

Here, I(C ,G) represents the mutual information between C and G and is defined as:

H(C) And H(G) are the entropies: H(C) = −
∑tc

p=1

∣

∣Cp

∣

∣log
|Cp|
n  and 

H(G) = −
∑tg

p=1

∣

∣Gp

∣

∣log
|Gp|
n  . E{I(C ,G)} is the expected mutual information between 

two random clusters. Random clusterings have an expected score of zero and identical 
partitions have a score of 1. AMI is biased towards solutions containing pure clusters, 
with a “pure cluster” being defined as a cluster in one set of labels that contains instances 
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from only one cluster of the other set of labels to which it is being compared [13]. AMI 
was calculated using the implementation in sklearn (v 1.0.1).

Systematic benchmarking

For benchmarking ESCHR, we selected the following clustering algorithms for com-
parison: (1&2) K-means and agglomerative hierarchical clustering (from scikit-learn ver-
sion 1.0.1) [80], (3) SC3 (version 1.10.1 from Bioconductor) [24], (4) SC3s (version 0.1.1 
through Scanpy) [25], (5) Seurat (version 4.1.1 from CRAN) [40], (6) SINCERA (version 
1.0 from https:// github. com/ xu- lab/ SINCE RA) [39], (7) Scanpy (version 1.8.2 from Ana-
conda) [35], (8) Phenograph (version 1.5.7) [41], (9) scCAN (version 1.0 from https:// 
github. com/ bangt ran365/ scCAN) [38], and (10) scAIDE (version 1.0 https:// github. 
com/ tingl abs/ scAIDE) [37].

Clustering algorithms were excluded from our benchmarking comparison if they did 
not meet the following selection criteria: (1) software freely available; (2) code publicly 
available; (3) can run on multiple data modalities (e.g. not scRNA-seq-specific); (4) no 
unresolved errors during install or implementation; (5) does not require additional user 
input during the algorithm (other than prior information); and (6) able to complete anal-
ysis of datasets with ≥ 100,000 data points and 2000 features.

For the included methods, we followed the instructions and tutorials provided by the 
authors of each software package. For the K-means, SC3s, and Agglomerative methods, 
which require pre-specification of cluster number, we calculated distortion scores over 
a range of cluster numbers for K-means clustering and used the elbow method to select 
the optimal cluster number for use across all three methods. Default values were used 
for all other hyperparameters for each tool, as is common practice for most realistic use 
cases [6, 81]. ESCHR was also run with all default settings, which is the intended usage. 
For all benchmarking analyses, the memory was set to 100 GB of RAM on the University 
of Virginia (UVA) Rivanna High Performance Computing (HPC) cluster.

No random seeds were intentionally fixed, but from inspecting the respective code-
bases, we believe it is likely that there remained internally fixed random seeds for some 
functions within some of the tested methods. Many common methods have internally 
fixed random seeds and/or default hyperparameters with fixed random seeds. This prac-
tice may mask a lack of robustness of these methods, and should only legitimately serve 
to replicate exact analyses when that is desired by the end user.

To assess the accuracy of methods in clustering our synthetic and image datasets, 
which have ground truth labels, we used the two extrinsic evaluation metrics defined 
above (ARI, AMI). For these purposes, each of the five independent runs of a given 
method was scored against the ground truth labels. Since it is nearly universal in papers 
describing new single-cell analysis methods, we also applied this analysis to evaluate 
the accuracy of each of the methods for our collection of “real” datasets using available 
published labels. However, we stress that we do not think this is a reliable or effective 
measure for evaluating clustering methods, as we detail further in Supplementary Note 
1 (Additional File 1: Supplementary Note 1).

We also used the extrinsic metrics ARI and AMI to evaluate the stability and repro-
ducibility of hard clustering results. In line with standard practice for benchmarking sta-
bility/robustness [82], we performed repeated runs with 5 random subsamples (90%) of 

https://github.com/xu-lab/SINCERA
https://github.com/bangtran365/scCAN
https://github.com/bangtran365/scCAN
https://github.com/tinglabs/scAIDE
https://github.com/tinglabs/scAIDE
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each dataset for every method. This simulates slight differences in data collection and/or 
preprocessing, and if the clustering is capturing a true underlying structure rather than 
overfitting to noise it should be detected regardless of the exact set of cells that are sam-
pled for the analysis. We then calculated pairwise scores for each metric between each of 
the 5 independent runs of a respective method and then took the mean across replicate 
pairs to obtain the final score per dataset-method.

To calculate both the method and replicate “agreement scores” for comparison with 
ESCHR uncertainty scores (Fig. 2j), we first constructed contingency matrices between 
all pairs of replicates and methods and mapped the cluster labels from the result with 
more clusters to the result with fewer clusters. Using the shared labels between a given 
pair of clustering results we could then calculate per-instance agreement (binary) within 
the pair of results. The final per-instance score was calculated as the mean agreement 
across all possible combinations.

Statistical analyses

Statistical comparisons were performed using the “scipy.stats” and “statannotations” 
Python packages [83, 84]. The two-sided Wilcoxon signed-rank test with Bonferroni cor-
rection was used to compare the performance of ESCHR versus each alternative method 
in the systematic benchmarking panels shown in Fig.  3. Comparisons were calculated 
using dataset means across replicates for all tested datasets. N = 21 for comparisons 
using synthetic datasets and N = 45 for comparisons using real datasets. The two-sided 
Mann–Whitney-Wilcoxon was used for comparing uncertainty scores between accu-
rately and inaccurately assigned cells in Fig.  2g, with N = 126,545 and N = 750,955 for 
inaccurate and accurate groups respectively. The resulting p-value was below the thresh-
old of calculation in a standard Python computing environment and was reported as 
zero, so we have reported this as p < 0.00001 in the figure.
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