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Background
The advancement of high-throughput single-cell RNA sequencing (scRNA-seq) tech-
nologies provides valuable insights into the diversity of cellular states and unravels their 
dynamic connections [1]. Systematically executing multiple single-cell data analysis 
tasks, such as functional gene modules detection, representative features selection, cell 
clustering, and cell–cell communication (CCC) inference, enhances the comprehensive 
characterization of gene expression patterns and cellular dynamic processes.

Genes and other biological molecules frequently demonstrate intricate interactions 
and modular organization, crucial for understanding cellular mechanisms, unraveling 
cellular functions, and exploring the complexities of heterogeneity. Various initiatives 
have been undertaken to identify the functionality and structure of gene modules, with 

Abstract 

Advances in single-cell transcriptomics provide an unprecedented opportunity 
to explore complex biological processes. However, computational methods for analyz-
ing single-cell transcriptomics still have room for improvement especially in dimen-
sion reduction, cell clustering, and cell–cell communication inference. Herein, we 
propose a versatile method, named DcjComm, for comprehensive analysis of single-
cell transcriptomics. DcjComm detects functional modules to explore expression 
patterns and performs dimension reduction and clustering to discover cellular identi-
ties by the non-negative matrix factorization-based joint learning model. DcjComm 
then infers cell–cell communication by integrating ligand-receptor pairs, transcription 
factors, and target genes. DcjComm demonstrates superior performance compared 
to state-of-the-art methods.
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network topology-based methods widely adopted for module detection, effectively iden-
tifying these modules as highly connected subgraphs within larger biological networks. 
Among them, WGCNA [2] utilizes the overlapping topological structures of networks 
and hierarchical clustering methods to detect gene functional modules. Qcut [3] is 
a partition-based module recognition method, which is most likely to detect modules 
automatically from the network with thousands of nodes in a relatively short time. What 
is more, as a network density-based module detection method, MCODE [4] is used to 
perform network node weighting, module prediction, and module optimization process-
ing. In addition, expression-based methods are another commonly used approach for 
module detection, as they capture genes that exhibit similar expression patterns across 
multiple samples. For example, Hwang et al. [5] proposed the commonly unsupervised 
clustering method, namely MCL, to detect gene functional modules by simulating the 
process of randomly walking in the gene co-expression network. Chen et al. introduced 
the non-negative matrix factorization (NMF) to identify local patterns of gene expres-
sion data [6]. By adopting a perspective centered on molecular modules rather than 
solely focusing on individual molecules, we can achieve a deeper understanding of the 
behaviors exhibited by complex biological systems.

Cellular processes are fundamental mechanisms that sustain normal life functions. 
Multicellular organisms consist of various cell types with distinct functions, facilitating 
our understanding of tissue structure and function. Various computational methods have 
been developed to identify these cell types from scRNA-seq data. For instance, Stein-
ley et al. [7] introduced the Kmeans clustering method to assign each cell to different 
clusters by iteratively identifying cluster centers and selecting the nearest cluster. Becht 
et al. [8] proposed the uniform manifold approximation and projection (Umap) method 
to achieve a meaningful organization of cell clusters, preserving both local and global 
data structures effectively. The hierarchical clustering method is also used to identify 
cell types based on single-cell data. For instance, Jiang et al. [9] proposed the cell–pair 
differentiability correlation (Corr) method to measure the similarity and adopt hierar-
chical clustering of cells by their neighborhood information. Later, CIDR [10] and SC3 
[11] further improved the hierarchical clustering method of scRNA-seq data to produce 
robust results, which overcome the limitations of individual cells. In addition, learning 
similarity metrics from single-cell data and clustering based on these similarities is also a 
common method in single-cell clustering. SIMLR [12] learns a cell–cell similarity metric 
that optimally captures the data structure by integrating multiple kernels. Furthermore, 
the integration of dimension reduction methods with techniques for measuring cell-to-
cell similarity has been widely adopted to effectively capture intercellular relationships. 
As one of the widely employed computational approaches for dimension reduction, the 
principal component analysis (PCA) [13] method identifies the genes with the high-
est variance by projecting the high-dimensional data into a low-dimensional space. 
For example, Stuart et al. [14] first utilize PCA to map single-cell gene expression data 
into a lower-dimensional space and then combine a smart local moving algorithm or 
spectral clustering with the cell-to-cell similarity matrix learning measure to identify 
cell subpopulations. However, scRNA-seq data typically exhibit characteristics such as 
high dimensionality, sparsity, and significant noise. This poses challenges in computing 
similarity between cells, as some genes may be expressed at low levels or even absent 
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in many cells, yet these genes may be crucial for distinguishing cell types. Moreover, in 
high-dimensional spaces, traditional distance metrics for calculating cell-to-cell similar-
ity may become less accurate, thereby impacting the accuracy and reliability of cluster-
ing results [15]. In addition, deep learning methods such as scCAEs [16] and scGNN 
[17] have been successfully applied to explore the clusters on single-cell data. These algo-
rithms directly utilize gene expression profiles to identify cell types, which are sensitive 
to the noise of data and ignore latent features in scRNA-seq data. Non-negative matrix 
factorization (NMF) aims to cluster cells by representative cells in a well-separated 
latent space, successfully applied to cell clustering in scRNA-seq data to enhance perfor-
mance and accelerate convergence. DRjCC [15] and SSNMDI [18] further joint dimen-
sion reduction and NMF for cell clustering of scRNA-seq data. The advantage of DRjCC 
and SSNMDI is that the dimensionality reduction process generates features under the 
guidance of individual cell clustering, while individual cell clustering selects appropri-
ate features. Compared to other methods, NMF-based methods have the advantage of 
learning interpretable individual parts and detecting context-dependent patterns of gene 
expression [19], which is one of the motivations of this study.

In multicellular organisms, cellular communication facilitates the coordination of 
multiple cells, enabling the formation of tissues, organs, and the fulfillment of diverse 
biological functions. Unveiling the CCC network through quantifying ligand-receptor 
(L-R) pairs in single-cell transcriptomics represents an extraordinary opportunity. 
For instance, Efremova et al. [20] developed the CellPhoneDB method to quantify the 
contextual communications of different cell types and further reveal their physiologi-
cal processes according to the collected novel repository including ligands, receptors, 
and their interactions. Jin et  al. [21] developed the CellChat tool to infer and ana-
lyze cellular signaling networks of ligand-receptor (L-R) pairs from scRNA-seq data. 
Anthony et  al. [22] presented the CellTalker method to predict putative cell extrin-
sic interactions by quantifying ligand and receptor expression. While previous stud-
ies have inferred CCCs by considering the intercellular signaling specificity of L-R 
pairs, the transmission and amplification of intracellular signals through receptor-
transcription factor (R-TF) and transcription factor-target genes (TF-TG) also sig-
nificantly contribute to intracellular communication. Addressing this issue, several 
methods have explored intracellular signaling pathways. For example, Browaeys et al. 
[23] proposed the NicheNet method to infer active ligands and their gene regula-
tory effects between interacting cells. Zhang et  al. [24] developed CellCall to infer 
intercellular and intracellular communication pathways by using the information on 
L-R pairs, transcription factor activity, and their target genes. Baruzzo et al. [25] pre-
sented scSeqComm, a computational method to infer the ongoing intercellular and 
intracellular signaling from scRNA-seq data. Cheng et  al. [26] proposed scMLnet, 
a scRNA-seq data-based multilayer network method to identify functional inter-
cellular communications and intracellular gene regulatory networks. In addition, 
spatially resolved transcriptomics has provided profound insights in biology and bio-
medicine, greatly enhancing the accuracy and reliability of inferring spatial proximal 
CCCs [27, 28, 29, 30]. There are currently several tools available that are specifically 
designed for inferring CCCs from spatial transcriptomics data, including COMMOT 
[31], Scriabin [32], Giotto [33], NICHES [34], and SpaTalk [35].



Page 4 of 36Ding et al. Genome Biology          (2024) 25:241 

Here, we develop a computational method called DcjComm to coherently perform 
multiple scRNA-seq data analysis tasks such as functional gene module detection, 
representative features selection, cell clustering, and CCC inference. First, DcjComm 
detects the functional gene modules and selects representative features according to 
the decomposed projected matrix generated by the NMF-based joint learning model. 
Meanwhile, DcjComm utilizes non-negative matrix factorization of the joint learning 
model to discover cellular subpopulations. Then, DcjComm uses the inference statis-
tical model to infer CCCs by integrating intercellular and related intracellular signals. 
To comprehensively capture these signals, DcjComm constructs a comprehensive and 
dependable database that gathers L-R, R-TF, and TF-TG interactions based on Reactome 
and KEGG pathways. DcjComm also provides a rich suite of visualization outputs (Cir-
cos plot, heatmap plot, Sankey plot, bubble plot, ridge plot, etc.) to intuitively show the 
analysis results of CCCs. Furthermore, we evaluate the performance of DcjComm on 
several publicly available scRNA-seq datasets and compare it with other state-of-the-art 
methods. The outstanding performance of DcjComm indicates that it is a powerful tool 
for performing multiple scRNA-seq data analysis tasks coherently, including functional 
gene module selection, representative feature selection, cell clustering, and inference of 
CCC networks.

Results
Overview of DcjComm

DcjComm enables the coherent execution of multiple single-cell analysis tasks to sys-
tematically reveal gene expression behaviors and cellular transcriptional states. Dcj-
Comm comprises two main components: (i) the NMF-based joint learning model and 
(ii) the CCCs inference statistical model. In the first component, DcjComm takes the 
gene expression matrix as input (Fig. 1A) and then performs functional gene modules 
detection, representative features selection, and cell type identification (Fig.  1B). Dcj-
Comm utilizes the matrix U obtained by the process of projection matrix decomposition 
to detect functional gene modules and select representative features and further quanti-
fies the importance of selected modules based on the factor matrix S (Fig. 1D). Simulta-
neously, DcjComm applies non-negative matrix factorization to the coefficient matrix 
V to obtain the basis matrix B , which is subsequently used for cell clustering analysis. 
The Umap method is used for visualization to enhance the clarity of clustering results 
(Fig. 1C).

For the second component, the biological model of CCCs can be described as follows: 
intercellular signals are transmitted from ligands to receptors and then the signals are 
transduced to the downstream TFs through a specific signaling pathway, consequently 
triggering the transcriptional response of the target genes (Fig. 1E). Based on this bio-
logical model and the results of cell clustering, we construct a statistical model for deci-
phering the CCCs by quantifying intercellular and intracellular communication through 
the integration of paired L-R and TF activity (Fig. 1F). The expression matrix of ligands 
and receptors are respectively defined as the mean expression values of send cells and 
receive cells. The intercellular signaling is further defined as a two-dimensional vector 
represented by the L-R pair. Furthermore, intracellular signaling is defined as the activity 
of downstream TFs, which is computed through the Fisher test. Finally, the CCC score 
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can be expressed as the product of the intercellular communication score and the intra-
cellular communication score. DcjComm also provides a rich suite of visualization tools 
to intuitively demonstrate the prediction results of CCCs (Fig. 1G).

DcjComm performs functional gene module detection, dimension reduction, and cell 

clustering

Convergence and complexity analysis of DcjComm

The optimization of the NMF-based joint learning model comprises five sub-problems 
and introduces the extra variable E when solving sub-problem V . The complexities of the 
five sub-problems are induced as follows. In the process of dimension reduction, three 
variables are involved: U , S , and V . According to reference [36], the computational cost 

Fig. 1  Overview of DcjComm. A DcjComm takes a single-cell gene expression matrix as input and then 
processes it through a preprocessing step to obtain the preprocessed matrix. B The NMF-based joint learning 
model. DcjComm performs dimension reduction by projected matrix decomposition and cell clustering 
by non-negative matrix factorization. C Visualization of cell clustering results using the Umap method. D 
Selection and analysis of functional gene modules. It mainly contains the identification of functional gene 
modules and evaluation of their quality. E The biological model of CCCs. The prior knowledge includes links 
between ligands, receptors, signaling pathways, transcription factors, and target genes. F The inference 
statistical model of CCCs. DcjComm models the probability of communication between cells and identifies 
significant communications. G The visualization methods for the results of CCCs inference. It mainly includes 
circle plot, heatmap, and ridge plot
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of updating U is O(tk1mn) . And the computational cost of updating S is also O(tk1mn) . 
Then, the complexity of updating V is mainly focused on performing the process of 
singular value decomposition (SVD), which requires O(m3) [37]. Among them, t is the 
number of iterations, k1 is the feature number after dimension reduction, m represents 
the number of genes, and n represents the number of cells in the input data. Similarly, 
the computational cost of updating B and F are O(tk1k2n) and O(tk1k2n) [36], where k2 is 
the number of clusters. Then, the overall complexity of the DcjComm model is approxi-
mately O(tk1mn+ tk1k2n+ tm3) . Due to the k1, k2 ≪ n , the complexity is basically 
O(m3) (The detailed parameter selection process is presented in the Additional file  1: 
Supplementary Note S1, and Additional file 1: Fig. S1, Fig. S2). For cell clustering, the 
running time and memory consumption of DcjComm and other comparison methods 
on fifteen single-cell datasets are respectively shown in Additional file 2: Table S1 and 
Table S2. Considering that deep learning methods typically require multiple rounds of 
pre-training and training, while hierarchical clustering methods often involve exten-
sive computation of cell-to-cell similarities, these approaches can be time-consuming. 
Therefore, we only compared the runtime of DcjComm with eight other methods. Spe-
cifically, for the smaller cell dataset containing 366 cells (Wang), the runtime is approxi-
mately 1.8  s, with a memory requirement of 2514  MB; whereas for the larger dataset 
with 14,437 cells (Chen), the runtime is approximately 64.4 s, with a memory require-
ment of 3002 MB. For cell–cell communications inference, as shown in Additional file 2: 
Table S3, for the Wang dataset with 366 cells, cell–cell communications inference takes 
approximately 5 min, and for the Guerrero dataset with 12,951 cells, it takes approxi-
mately 10 min.

We first adopt the relative error to demonstrate the convergence of DcjComm. Specifi-
cally, relative errors of DcjComm on the above fifteen datasets as the number of itera-
tions increases from 1 to 100 are shown in Additional file1: Fig. S3A. It can be observed 
that as the number of iterations increases, the error value gradually decreases. This indi-
cates that DcjComm converges on all datasets and can quickly converge within 100 iter-
ations. Then, the non-smoothness of the objective function, and the update process of 
DcjComm involves seven variables ( U , S , V , E , T , B , F ). Generally, the seven variables are 
iteratively updated until the convergence condition of DcjComm is satisfied, which guar-
antees the convergence of the DcjComm method. Firstly, for variables V , E , and T , we 
adopt the ADMM algorithm to search for their optimal solutions. Previous studies have 
demonstrated that the iterative functions of V , E , and T are convergent [38]. Secondly, 
the convergence of variables U and S has been demonstrated in [36]. Moreover, the con-
vergence of variables B and F has also been demonstrated by [15]. Additionally, we have 
included a comprehensive proof of DcjComm’s convergence in Additional file  1: Sup-
plementary Note S2. Hence, we can conclude that the DcjComm method is convergent.

DcjComm identifies functional gene modules

To comparatively study the performance of DcjComm in detecting functional gene 
modules, we implement DRjCC and NMF, which also perform module detection after 
decomposing the top 2000 variable gene expression matrix. Taking Deng and Tabula 
datasets as examples, we equally select the suitable threshold of DcjComm, DRjCC, and 
NMF methods on these two datasets, so as to compare the performance of DcjComm 
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against the other two module detection methods. The detailed information on the 
threshold selection process for DcjComm, DRjCC, and NMF methods during module 
detection is in Additional file 1: Supplementary Note S3 and Fig. S4.

We first validated DcjComm by comparing it with the DRjCC and NMF methods 
through the analysis of cosine similarity between the core modules they identified. The 
DRjCC and NMF methods respectively select the largest module as the core module, 
which has the largest number of cells. For the DcjComm method, the core module we 
select corresponds to the position where the diagonal element of the matrix S is the high-
est value. Figure 2A reports the values of cosine similarity of the comparing methods, 
which represent the importance of detected modules. It is evident that DcjComm has 

Fig. 2  Analysis of gene modules selection, dimension reduction, and cell clustering. A The values of 
cosine similarity of DcjComm and other comparison methods on Deng and Tabula datasets. B The number 
of significant pathways of DcjComm and other comparison methods on Deng and Tabula datasets. C 
Compare the values of cosine similarity of the core module and max module on Deng and Tabula datasets. 
D, E Visualize the cell distribution in the Deng (D) and Tabula (E) datasets based on raw data (left) and 
dimension reduction results (right). F Visualization results of cell clustering after cell type allocation of Deng 
(up) and Tabula (down) datasets. G Boxplots exhibiting the metrics of ARI and NMI for DcjComm and other 
comparison methods tested on 15 single-cell datasets
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the highest cosine similarity among these methods, whereas the values of cosine simi-
larity for Deng of DcjComm, DRjCC, and NMF are 0.7944, 0.7865, and 0.7757, respec-
tively. In addition, the values of cosine similarity for the Tabula of DcjComm, DRjCC, 
and NMF are 0.9197, 0.4932, and 0.6834.

Furthermore, we also perform the pathway enrichment analysis of DcjComm, DRjCC, 
and NMF methods based on Deng and Tabula datasets to further demonstrate the valid-
ity of modules detected by DcjComm. We compare the performance of these three 
methods on GO, KEGG, Reactome, and WikiPathways databases. The number of sig-
nificant pathways reflects the importance of the pathway enriched in modules. We 
select the significant pathways whose P-value (corrected by false discovery rate (FDR)) 
is smaller than 0.05 to analyze the performance of DcjComm, DRjCC, and NMF meth-
ods. The greater the number of important pathways, the higher the importance of the 
module. Figure 2B shows the number of significant pathways detected by these meth-
ods on Deng and Tabula datasets. Compared with DRjCC and NMF, DcjComm enriches 
more significant pathways on these two datasets. This shows that the modules detected 
by DcjComm are meaningful, and it has more important biological significance than the 
other methods. For the pathways enriched in the core modules detected by the Deng 
dataset, we specifically focus on the top 10 pathways with the lowest P-values (Addi-
tional file 2: Table S4). Among them, the cytosolic ribosome pathway is involved in regu-
lating the upregulation of genes in human fibroblasts during fetal development, thereby 
influencing their growth and functional characteristics [39]. The selenocysteine synthe-
sis pathway may be intricately related to collagen production and crosslinking, which 
are intimately associated with fibroblast redox homeostasis [40]. Among the top ten 
pathways enriched in the core modules detected by the Tabula dataset (Additional file 2: 
Table S5), the ribosome pathway and translation pathway are ranked highly in pathway 
enrichment analysis of differentially expressed genes detected in mammary gland sam-
ples [41]. The structural constituent of ribosome pathway as a downregulated molecule 
in mouse mammary glands may influence the expression of mammary genes [42].

Finally, we utilize the diagonal elements in S to evaluate the quality of the identi-
fied modules. The core modules of DcjComm are selected according to the values of 
the diagonal element of the matrix S . To demonstrate the importance of core modules 
detected by DcjComm, we also compare the cosine similarity values of the core modules 
with the largest modules; the results are shown in Fig. 2C. From Fig. 2C, the values of 
cosine similarity of the core modules are higher than the largest modules on these two 
data (i.e., Deng and Tabula datasets).

DcjComm improves the performance of dimension reduction

DcjComm jointly learns dimension reduction and cell clustering, and the process of cell 
clustering guides the feature selection process by dimension reduction. Here we evaluate 
whether the NMF-based joint learning model can improve the performance of dimen-
sionality reduction. We first compare the dimension reduction performance of Dcj-
Comm, DRjCC, PCA, tSNE, and Umap according to calculating the mean square error 
(MSE), which is defined as the average distance between the predicted labels and the 
truth ground of cell types. The results of the above these 5 methods to calculate MSE 
on 15 datasets are shown in Additional file 1: Fig. S3B, which indicates that the MSE of 
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DcjComm is significantly lower than that of DRjCC and PCA. Among them, the MSEs 
of DRjCC, PCA, tSNE, and Umap are 1.83, 1.80, 1.74, and 1.82 times that of DcjComm, 
respectively. Thus, in the low-dimensional space generated by DcjComm, clusters are 
more compact and better separated.

Furthermore, taking the Deng and Tabula datasets as examples, Fig. 2D and Fig. 2E are 
respectively the schematic diagrams of dimensionality reduction of the raw data matrix 
and their dimensionality reduction results using the joint learning model of DcjComm. 
As shown in Fig. 2D and Fig. 2E, the cells in the raw data are mixed and not well sepa-
rated. In contrast, the cells in the low-dimensional space are well separated, indicating 
that DcjComm chose features that are more distinguishable than dimensionality reduc-
tion methods. The NMF-based joint learning model of DcjComm improves the perfor-
mance of dimensionality reduction. Except for the Chen dataset, the cell visualization 
results in the low-dimensional space before and after dimensionality reduction for other 
datasets are respectively shown in Additional file1: Fig. S5 and Fig. S6. Because the Chen 
dataset contains too many cell types, it is not shown here. After using the DcjComm 
method for dimensionality reduction, cells are better separated in the three-dimensional 
space obtained by the PCA method.

To further underscore the importance of dimension reduction, we ranked the low-
dimensional matrix U from the DcjComm method by Laplacian scores [43] and iden-
tified the top 10 feature genes. These genes play crucial roles in the formation and 
development of human skin fibroblasts and mouse mammary gland epithelial cells 
through their specific expression. For the Deng dataset, the FBN1 gene encodes a mem-
ber of the fibrillin family, which provides structural support for tensile strength in elastic 
and non-elastic connective tissues throughout the body [44]. The TRAM1 gene influ-
ences glycosylation and facilitates the translocation of secretory proteins across the 
endoplasmic reticulum membrane [45]. According to the records on the GeneCards 
website (https://​www.​genec​ards.​org/), SNRPG, HIC1, TRAM1, ELANE, CCDC47, 
GPX4, HM13, and NOVA1 as coding genes, are respectively associated with spinal mus-
cular atrophy, Miller–Dieker syndrome, Meckel syndrome, cyclic neutropenia and neu-
tropenia, trichohepatoneuro developmental syndrome, spondylometaphyseal dysplasia, 
hepatitis C, and myoclonus. For the Tabula dataset, the Lmo4 gene plays a crucial role 
in promoting the development of mammary gland [46]. The Ptpn22 gene is a regulator 
of mammary gland differentiation, and inhibiting the expression of Ptpn22 can promote 
stem cell activity [47]. According to records on the GeneCards website, the genes Rgs10, 
Cisd2, Bhlhe40, Rpl3, Cab39, and Cnbp encode proteins associated with schizophrenia, 
Wolfram Syndrome, septal myocardial infarction, Diamond–Blackfan anemia, pancre-
atic cancer, and myotonic dystrophy, respectively. Similarly, based on records on the 
GeneCards website, the Slc35e4 gene is involved in transport mediated from the endo-
plasmic reticulum to the Golgi vesicles, while the cnih4 gene facilitates transmembrane 
transport.

DcjComm improves the accuracy of cell type discovery

In the process of cell clustering, determining the number of cell clusters (parameter k2 ) 
is a fundamental and challenging issue. We introduce the gap decomposition method 
to predict the optimal number of clusters [48], which is a commonly used method for 

https://www.genecards.org/
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analyzing single-cell data. That is, we respectively choose the number of eigenvalues 
close to 0 and the corresponding index when the maximum eigenvalue gap occurs as 
the lower and upper bounds of the number of clusters (Additional file 1: Fig. S2). The 
number of clusters estimated by DcjComm is in agreement with the true number in 11 
out of 15 cases with a difference of no more than 1 (Additional file 2: Table S6). That is, 
the accuracy of the DcjComm method in identifying the number of clusters is 73.3%. In 
contrast, as shown in Table S6, the SC3 method has an accuracy of 18.2%, and the Corr 
method has an accuracy of 13.3%. Thus, DcjComm performs well in determining the 
number of cell types. Considering the effectiveness and fairness of the clustering pro-
cess, the number of clusters provided in the original study is selected for the subsequent 
analysis.

To assess the performance of DcjComm on the identification of cell types, we select 
15 biological datasets where the number of cells ranges from 366 to 14,437. To evalu-
ate the clustering performance of DcjComm, several state-of-the-art clustering meth-
ods are selected for comparison, including three base clustering methods (Kmeans, 
PCA, and Umap), three NMF-based methods (NMF, DRjCC and SSNMDI), two graph-
based methods (SIMLR and Seurat), two deep learning methods (scGNN, ScCAEs), 
and three hierarchical clustering methods (Corr, CIDR, SC3). Two common measure-
ments are adopted as test statistics to characterize the performance of cell clustering, 
such as adjusted rand index (ARI) and normalized mutual information (NMI) (detailed 
definition in Additional file 1: Supplementary Note S4). The higher the value of the two 
metrics, the better the clustering performance. We compare the ARI and NMI results 
obtained using DcjComm with those from other cell clustering methods across fifteen 
scRNA-seq datasets (Additional file 1: Fig. S7 and Fig. S8). For further observation intui-
tively, the boxplot in Fig. 2G demonstrates the results of ARI and NMI, where DcjComm 
obtains the highest and most stable clustering performance on most scRNA-seq data 
compared with other methods in general. Among them, the SC3 method makes it dif-
ficult to handle the cell clustering problem of large-scale data (Baron, Deng, Guerrero 
and Chen) and the CIDR method cannot achieve convergence even after satisfying the 
maximum number of iterations for the Kolod dataset. From Additional file 1: Fig. S7 and 
Fig. S8, DcjComm significantly outperforms them on 12 datasets and has a similar per-
formance with the best state-of-the-art methods on the other three datasets. For most 
methods, the experiment results of datasets with subtypes (i.e., Joost, Guerrero, Chen) 
are not as satisfactory as those with primitive cell types. While DcjComm achieves 
relatively acceptable clustering results on datasets with subtypes compared with other 
methods. Overall, across 15 datasets, DcjComm on average improves ARI by 24.55% and 
NMI by 19.66% over other comparison methods and up to 6.49% and 3.69% over the best 
comparison method for all datasets. These results further demonstrate that DcjComm is 
promising for cell-type assignment.

Based on the above clustering results, the following conclusions are easily obtained. 
Firstly, from Additional file  1: Fig. S7 and Fig. S8, it can be seen that the majority of 
methods exhibit relatively poor clustering performance for the single-cell data from 
the 10 × platform or with high resolution. By comparison, DcjComm obtains accept-
able clustering performance among them. Secondly, the NMF-based methods, base 
clustering methods, and graph-based methods perform relatively well on the majority 
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of scRNA-seq datasets. Specifically, the NMF-based methods combine the dimension-
ality reduction with clustering to achieve better clustering results while graph-based 
methods consider the structural information between cells to improve the clustering 
performance. Thirdly, the base clustering methods and deep learning methods perform 
significant differences in clustering results on different datasets. Since the base clus-
tering methods lack the ability to process contaminated data and deeply consider cell 
heterogeneity, for deep learning methods, the clustering results are not robust due to 
noisy data and parameter settings. Therefore, the DcjComm method demonstrates supe-
rior clustering accuracy compared to other state-of-the-art scRNA-seq clustering algo-
rithms, as evidenced by comparative results.

Furthermore, we also compared DcjComm with other methods, such as Harmony 
[49], CIDER [50], and Seurat V3 [14]. The results demonstrate that DcjComm effectively 
eliminates batch effects in single-cell datasets while preserving excellent clustering per-
formance. Furthermore, our analysis of various batch effect removal methods, includ-
ing ComBat [51] and Limma [52], revealed that these methods have minimal impact on 
the clustering performance of DcjComm (Additional file 1: Supplementary Note S5 and 
Additional file2: Table  S7 provide a detailed description of the above results of batch 
effects.).

In addition, as a widely used data visualization tool, the Umap method is employed to 
project high-dimensional data into a lower-dimensional space. To validate the subspace 
reconstruction ability of DcjComm, we respectively demonstrate the results of cluster-
ing visualization of these fifteen datasets by using Umap (Additional file 1: Fig. S9). From 
Fig. S9, the distance between the cells of different clusters increases and the boundaries 
of cells of the same species are more clearly defined. Therefore, DcjComm achieves bet-
ter clustering results and corresponding visualization results, which demonstrates that 
DcjComm is robust in the improvement of feature extraction. Taking Deng and Tabula 
datasets as examples (Fig. 2F), we further assign cell types to different clusters according 
to the specific expression of marker genes in different clusters and the number of cells 
from different types contained in different clusters (Additional file  1: Supplementary 
Note S6, Fig. S10 and Fig. S11).

To further substantiate the biological significance of the clustering results, we per-
formed differential gene expression (DEG) analysis and pathway enrichment analysis. 
Specifically, we utilized the FindAllMarkers function from the Seurat package to ana-
lyze differential gene expression based on the clustering results of the Deng and Tabula 
datasets, respectively. Subsequently, we employed the gprofiler2 package for pathway 
enrichment analysis of these detected DEGs (Additional file  1: Supplementary Note 
S7). This figure respectively presents the top ten DEGs detected in Deng (Additional 
file  1: Fig. S12A) and Tabula (Additional file  1: Fig. S12B) datasets, while Additional 
file 1: Fig. S13 illustrates the expression profiles of these identified marker genes. This 
analysis of DEGs is largely consistent with known marker genes, further validating the 
accuracy and effectiveness of the clustering results. Furthermore, pathway enrichment 
analysis was performed separately for the differentially expressed genes from the Deng 
(Additional file2: Table S8) and Tabula (Additional file2: Table S9) datasets, resulting in 
enrichment in 2875 and 5365 pathways, respectively. These pathways satisfy the P-value 
(FDR-adjusted) less than 0.05. The smaller the P-value, the higher its significance. 
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Among the top 10 pathways enriched with DEGs detected in the Deng dataset, extra-
cellular space (GO:0005615) [53], extracellular space (GO:0005576) [54], extracellular 
exosome (GO:0070062) [55], and the SRP-dependent co-translational protein target-
ing to membrane pathway play important roles in human skin fibrosis processes [56]. 
Among the top ten pathways enriched with DEGs detected in the Tabula dataset, cel-
lular component organization or biogenesis (GO:0071840) [57], cytoplasm (GO:000573 
[58]), binding (GO:0005488) [42], organelle (GO:0043226) [59], and cellular component 
organization (GO:0016043) [60] are significantly enriched with differentially expressed 
genes in mouse mammary gland development, playing crucial regulatory roles in this 
process.

Comparison of the CCCs inference statistical model of DcjComm with other tools

DcjComm improves the performance of CCCs inference on single‑cell datasets

To evaluate the performance of DcjComm in inferring CCCs, we compare it with that 
of nine other tools (scSeqComm, scMLnet, NicheNet, CellPhoneDB, CellChat, CellCall, 
CellTalker, NICHES, and iTALK) on three scRNA-seq datasets from the mouse skin 
(Guerrero), mouse skin (Joost), and human testicular (Wang). For evaluating the per-
formance of CCCs inference, we perform the CCCs statistical inference model of Dcj-
Comm and other CCCs inference tools using the marker genes expression matrix and 
raw cell meta data. We first demonstrate that DcjComm can identify more comprehen-
sive known L-R pairs. As shown in Fig.  3A–C (left), compared to other methods, the 
DcjComm method significantly identifies more L-R pairs on all three datasets by their 
own default cut-offs, respectively. Since the number of inferred L-R pairs is much larger 
than that of the other methods, for the downstream analysis, we select the top 500 L-R 
pairs from DcjComm of each cell–cell communication according to the CCC score.

Next, we infer that a more accurate method will have a larger proportion of overlap-
ping predictions compared to other methods on average. Since the Jaccard coefficient 
reflects the overlap between different methods, a more accurate method should have 
a larger Jaccard coefficient compared to other methods (detailed definition of Jaccard 
coefficient in Additional file  1: Supplementary Note S8). As shown in Fig.  3D–F, the 
DcjComm method significantly identifies more commonly L-R pairs on all these three 
datasets. We found that DcjComm has the highest average rank based on the Jaccard 
coefficient of L-R pairs between any two methods of all three datasets, suggesting that 
DcjComm has the highest accuracy among these methods. We also evaluate the perfor-
mance of DcjComm by simply comparing the overlap between the CCCs predicted by 
these CCC detection methods. Using the shared CCCs obtained by these CCC detection 
methods as the positive set, we further compare the F1 score for each method on these 
three datasets (Detailed definition of F1 score in Additional file 1: Supplementary Note 
S8). As shown in Fig. 3A–C (right), the DcjComm method shows high F1 score ranks on 
all these three datasets. Taken together, these results suggest that our DcjComm method 
highly ranked Jaccard coefficient and F1 scores in measuring the performance of differ-
ent CCC detection methods and they are successful in finding more commonly identi-
fied communications.

Then, we compare the performance of DcjComm for inference of intracellular signal 
pathways of the receiver cells triggered by the CCCs with those of NicheNet, scMLnet, 
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and CellCall that also infer the downstream target genes of CCC networks. We also 
infer that more accurate methods are more likely to utilize the downstream target genes 
inferred from receptor cells to enrich more receptor-related biological processes or 
pathways. To obtain more statistically significant pathways, we adopt the FDR-corrected 
method for pathway enrichment analysis with the GO, KEGG, Reactome, and WikiPath-
ways databases. We compare the number and P-values of the intracellular pathways and 
biological processes triggered by the target genes obtained from all these methods. As 
shown in Fig. 3G and Fig. 3H, the DcjComm method enriches the most numerous and 
biologically significant pathways or biological processes. Our analyses demonstrate that 
the DcjComm method has an overall better performance in inferring the CCCs on all 
three datasets.

Considering that these methods utilize different default databases, which may affect 
the results of CCC inference, to compare fairly, we uniformly use the DcjComm-DB 
database as the reference database. Firstly, we compare the number of ligand–recep-
tor pairs detected by DcjComm, CellCall, scMLnet, and NicheNet methods on Guer-
rero, Joost, and Wang datasets according to the DcjComm-DB database. These methods 
respectively obtain 319, 28, 46, and 81 ligand–receptor communication pathways on the 

Fig. 3  The superior performance of DcjComm compared to other methods on Guerrero, Joost, and Wang 
datasets. A, B, C Comparison of the number of L-R pairs (left) and the value of the F1 score (right) between 
DcjComm and other methods on Guerrero (A), Joost (B), and Wang (C) datasets. D, E, F The heatmap of the 
Jaccard coefficient of L-R pairs between any two methods on Guerrero (D), Joost (E), and Wang (F) datasets. 
G and H Comparison of the P-values (G) and the number of pathways (H) between DcjComm and other 
methods on Guerrero, Joost, and Wang datasets
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Guerrero dataset (Additional file 1: Fig. S14A (left)), 114, 39, 12, and 25 ligand–recep-
tor communication pathways on the Joost dataset (Additional file  1: Fig. S14B (left)), 
and 969, 58, 47, and 21 ligand–receptor communication pathways on the Wang dataset 
(Additional file  1: Fig. S14C (left)). That is, compared with other methods, DcjComm 
detects more L-R pairs when using the DcjComm-DB database. Then, we compare the 
number of pathways detected by DcjComm, CellCall, scMLnet, and NicheNet meth-
ods. Based on the DcjComm-DB database, the number of pathways detected by the 
four methods on the Guerrero dataset are 5580, 3625, 2606, and 4259 (Additional file 1: 
Fig. S14A (right)) and 4567, 1326, 1410, and 3095 pathways on the Joost dataset (Addi-
tional file 1: Fig. S14B (right)). Similarly, the number of pathways detected by these four 
methods on the Wang dataset is 4803, 1656, 1715, and 3416 (Additional file 1: Fig. S14C 
(right)). What is more, we also record the median of P-values of pathways enriched by 
target genes related to TF of DcjComm, NicheNet, scMLnet, and CellCall methods 
based on the DcjComm-DB database in Additional file 1: Fig. S14D-F. We find that Dcj-
Comm detects the most pathways and also enriches the most effective pathways among 
these methods. Interestingly, when using the DcjComm-DB database instead of their 
default databases on Guerrero, Joost, and Wang datasets, all the above methods detect 
more L-R pairs and significant pathways (Additional file2: Table  S10). Therefore, the 
effectiveness of the DcjComm method and the DcjComm-DB database we constructed 
are proven.

DcjComm improves the performance of CCCs inference on spatial transcriptomic datasets

To further provide additional validation of DcjComm, we apply it to two publicly avail-
able spatial transcriptomic datasets with single-cell resolution and use the information 
on cell spatial location, cell annotation, and gene expression matrices released by the 
original research. The first dataset is BZ5 tissue slices obtained from the medial pre-
frontal cortex of different mice using STARmap technology [61]. The second dataset 
is Bregma-0.04 obtained from the preoptic region of the mouse hypothalamus using 
MERFISH technology [62]. These two datasets respectively include 1049 and 5488 cells. 
Additional information about these two datasets is in Additional file 1: Supplementary 
Note S9.

Based on the assumptions that the adjacent cells should be more likely to have cer-
tain types of interactions than non-adjacent cells that are far away from each other, 
thus, given an L-R pair and two cell clusters, we should observe larger values of CCC 
scores Sk in close cells compared to distant cells. For intuitive observation, Additional 
file 1: Fig. S15A and Additional file 1: Fig. S15C demonstrate all L-R pairs between dif-
ferent clusters of the STARmap and MERFISH datasets. Additional file 1: Fig. S15B and 
Additional file  1: Fig. S15D further demonstrate the number of significant L-R pairs 
between different cell clusters (CCC score Sk > 0.5 ). For the STARmap dataset, the 
eL5 and L5 cells are mainly enriched in the L5 layer and also have a small distribution 
in the L2/3 layer, which leads to significant CCCs between eL5 and L5. In comparison, 
there are limited CCCs between eL6, Lhx6, Oligo, and other cell types, as these three 
cell types are primarily localized in the L6 layer and are spatially distant from other cell 
types. Nevertheless, there are still some interactions among these three cell types; for 
instance, there are effective interaction pairs including Lhx6-eL6 and Lhx6-Oligo. Then, 
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we further characterize the L-R pairs of different cell types on the MERFISH dataset. 
The majority of excitatory and inhibitory neurons are enriched in certain tissue regions 
while a small number of them are dispersed throughout the tissue. Thus, there are CCCs 
between these two cell types and other cell types. Specifically, there is an enrichment of 
Excitatory and Inhibitory neurons in both MPA and PVH regions, which leads to more 
significant L-R pairs between excitatory and inhibitory neurons. On the contrary, the 
ODMature and ependymal cells are respectively enriched in the fx and V3 regions. The 
distance between ODMature and the ependymal cells is relatively far, resulting in a few 
CCCs between them.

In addition, we compared the performance of DcjComm with nine other CCC detec-
tion tools on the STARmap and MERFISH datasets. For the STARmap dataset, Dcj-
Comm identifies three distinct L-R pairs. In contrast, apart from the iTALK method, 
which detects only one L-R interaction, the other eight tools fail to detect interac-
tions between all cell types in the STARmap dataset. On the MERFISH dataset, Dcj-
Comm detects a total of 22 L-R interactions. In comparison, the CellChat, NicheNet, 
and NICHES methods detect 3, 7, and 2 L-R interactions, respectively, while the other 
tools do not detect interactions between all cell types. Thus, DcjComm outperforms the 
other nine CCC tools in detecting the most L-R pairs across both spatial transcriptomics 
datasets.

DcjComm infers CCCs among fibroblasts of human skin

To evaluate the CCC performance of DcjComm, we apply it to the Deng dataset on 
human skin fibroblasts. The marker genes expression matrix and the defined cell type 
assigned after cell clustering are imputed into DcjComm to determine the potential 
CCCs. Deng dataset covers the following four fibroblast subpopulations: reticular, papil-
lary, mesenchymal, and inflammatory, which are known to signal to each other [63]. As 
is shown in Fig. 4A, we identify CCC signals between these cell types, including reticu-
lar–mesenchymal, reticular–papillary, reticular–reticular, reticular–inflammatory, pap-
illary–mesenchymal, papillary–papillary, papillary–reticular, papillary–inflammatory, 
mesenchymal–mesenchymal, mesenchymal–papillary, mesenchymal–reticular, mesen-
chymal–inflammatory, inflammatory–mesenchymal, inflammatory–papillary, inflam-
matory–reticular, and inflammatory–inflammatory. Specifically, the darker the color of 
the edges in the circle plot (Fig.  4A), the higher the score of CCCs between cell–cell 
pairs. For observed intuitively, we further demonstrate the number of significant L-R 
pairs (CCC score Sk > 0.5 ) between different cell types (Fig. 4B), which involve 400, 373, 
377, 281, 384, 345, 352, 277, 421, 412, 402, 385, 326, 259, 284, and 151 L-R interactions 
of the above cell–cell pairs, respectively. As shown in Fig. 4A and Fig. 4B, mesenchymal 
cells exhibit the highest number of detected L-R pairs with other cells, suggesting strong 
evidence of communications between mesenchymal cells and other cell types in CCCs, 
indicating a dominant role of mesenchymal cells. Similarly, the heatmap in Fig. 4C fur-
ther emphasizes the crucial role of mesenchymal cells. The color intensity in the heat-
map reflects the communication score between mesenchymal cells and other cell types, 
with darker colors indicating higher communication scores. To further illustrate the 
important role of mesenchymal cells in cell communication, Fig. 4D further visualized 
the communications between mesenchymal cells and other cell types.
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The L-R pairs involved in Fig. 4C will affect signal transduction between these cell 
types. For instance, the increase of TGFB1 and TGFB2, the decrease of TGFB3, and 
the increase of TGFBR1 and TGFBR2 are known to be related to skin fibrosis [64]. 
CAV1 is a known inhibitor of TGFB1, and the loss of its expression can lead to skin 
fibrosis [65]. The binding of ITGB1 and ITGB5 with latent TGFB regulates the pro-
duction and degradation of extracellular matrix and further leads to skin fibrosis [66]. 
CD109 is known to have the ability to activate TGFB, which is associated with fibro-
sis in many organs [67]. The combination of POSTN and PTK7 is known to activate 
the Wnt signaling pathway [68], which plays an important role in the development of 
fibrotic skin diseases [69]. The pathologic activation of NOTCH signaling is related to 
the pathogenesis of various fibrotic diseases [70], which is composed of four NOTCH 
receptors i.e., NOTCH1-NOTCH4, and several ligands such as JAG1 and JAG2. 

Fig. 4  CCCs analysis of Deng dataset. A Circos plot of CCCs among four cell types. B The number of CCCs 
is summarized by counting the number of significant L-R pairs in the form of a heatmap. C The heatmap 
illustrates the relative importance of mesenchymal cells based on significant CCCs from mesenchymal cells 
to other cell types. D The visualization highlights the important CCCs between mesenchymal cells and other 
cell types with a circos plot. E Sankey plot of CCC pathways of significant L-R-TF. F Ridge plot of significant 
TFs and their corresponding TFactivity score. G Pathway enrichment analysis of differentially expressed genes 
regulated by TFs



Page 17 of 36Ding et al. Genome Biology          (2024) 25:241 	

MFAP5 promotes angiogenesis and interacts with NOTCH1 by activating or inhibit-
ing its activity, thereby promoting human skin fibrosis [71].

Since the CCC networks are regulated by master transcription factors (TFs) accord-
ing to previous reports [72, 73], we further validate the biological significance of these 
intercellular communication pathways by analyzing their TFs downstream (Fig. 4E). For 
the convenience of observation, we only show the top 50 CCC pathways according to 
the correlation score between receptors and TFs in the Sankey plot, such as SMAD2, 
SMAD3, and SMAD4, which have been validated to be involved in skin fibrosis [74]. 
Notably, several master TFs of the fibroblast subpopulations, such as HNF1A, STAT3, 
IRF1 and NF1A, are known to be important in skin fibrosis [63]. To further describe the 
significant roles that TFs play in modulating the transcriptional response of their target 
genes, Fig. 4F shows the TFactivity score between the master TFs and their correspond-
ing target genes. Furthermore, we perform pathway enrichment analysis on differentially 
expressed genes regulated by TFs, Fig.  4G shows the top 20 KEGG pathways accord-
ing to P-value (FDR corrected, P-value < 0.05). Among them, the ribosome pathway 
[75], AGE-RAGE signaling pathway [76], PI3K-Akt signaling pathway [77], JAK/STAT3 
signaling pathway [78], ECM receptor interaction pathway [79], and focal adhesion [75], 
have been reported to be critical for skin fibrosis.

Next, to systematically evaluate the performance of DcjComm, we compare it to other 
nine CCC detection tools (i.e., scSeqComm, scMLnet, NicheNet, CellPhoneDB, Cell-
Chat, CellCall, CellTalker, NICHES, and iTALK) on the marker genes expression matrix 
and the defined cell type assigned after cell clustering of human skin cells. Firstly, we 
calculate the Jaccard coefficients of ligand-receptor pairs to reflect the overlap degree of 
any two methods, which is shown in the heatmap of Fig. 5A. The average values of the 
Jaccard coefficients between these methods are shown in the bar plot above the heat-
map, and the shades of green reflect the size of the Jaccard coefficients. As is shown in 
Fig. 5C (left), the DcjComm method also achieves the highest F1 score. We find that Dcj-
Comm has the highest overlap proportion based on the Jaccard coefficients of L-R pairs 
between any two methods, suggesting that DcjComm has the highest accuracy. Then, 
we compare the number of detected L-R pairs between all cell types by their own default 
cutoffs (Fig. 5B and Fig. 5C (right)) and further count the number of CCCs with the CCC 
score Sk > 0.5 and Sk > 0.8 (Fig.  5D (left) and Fig.  5D (right)) between mesenchymal 
cells and other cell types. From Fig. 5C and Fig. 5D, DcjComm detects more L-R pairs 
than other methods. In addition, to demonstrate the effectiveness of intracellular sig-
nal transduction, we compare the performance of DcjComm with the other three meth-
ods (i.e., NicheNet, scMLnet, CellCall) that offer downstream analysis of TFs and target 
genes. Considering that the downstream target genes mediated by receptor cells may 
affect the significance of biological processes or pathway enrichment, we evaluate the 
inferred target genes for each L-R communication of DcjComm, NicheNet, scMLnet, 
and CellCall methods according to the significance of pathway enrichment. Here, the 
FDR-corrected method is adopted for pathway enrichment analysis with the GO, KEGG, 
Reactome, and WikiPathways databases on the activated genes in receiver cells. Gener-
ally, the number and P-value represent the significance of enriched pathways and biolog-
ical processes. The more pathways there are and the smaller the P-value of the pathway, 
the pathway is more important. Specifically, we record the median P-values of pathways 
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enriched by target genes related to TFs in Fig. 5E (left). Besides, the number of pathways 
detected by DcjComm, NicheNet, scMLnet, and CellCall methods on the Deng dataset 
are 5103, 2603, 2259, and 3293, respectively (Fig. 5E (right)). From Fig. 5E, DcjComm 
obtains a smaller P-value and enriches more pathways compared to NicheNet, scML-
net, and CellCall methods. That is, DcjComm outperforms other compared methods for 
inferencing potential L-R pairs which mediate CCCs. To further assess the sensitivity 
of DcjComm to input data when inferring cell–cell communications, we employed the 
“geometric sketch” method [80] to subsample 80% and 90% of the total cells in the Deng 
dataset for validation. Subsequently, we compared the subsampled dataset with the 
input Deng dataset and computed the false positive rate (FPR). As shown in Additional 
file  1: Fig. S16, DcjComm exhibited the lowest FPR compared to CellCall, NicheNet, 
and scMLnet methods. Additionally, both DcjComm and CellCall demonstrated relative 
robustness during subsampling. According to reference [26], this may be attributed to 
the fact that both methods infer cell–cell communications based on cellular clustering. 
The relevant definition of FPR is detailed in Additional file 1: Supplementary Note S8.

Moreover, to compare fairly, we uniformly use the DcjComm-DB database as the ref-
erence database. Firstly, we compare the number of L-R pairs detected by DcjComm, 
NicheNet, scMLnet, and CellCall methods on the Deng dataset according to the Dcj-
Comm-DB database. These methods respectively obtain 445, 97, 20, and 15 L-R commu-
nication pathways (Additional file 1: Fig. S17A (left)). Then, we compare the number of 
pathways detected by DcjComm, NicheNet, scMLnet, and CellCall methods, i.e., these 
four methods respectively detect 5103, 4646, 2259, and 2847 (Additional file 1: Fig. S17A 
(right)). What is more, we also record the P-values of pathways enriched by target genes 

Fig. 5  Comparison analysis of DcjComm and other methods on the Deng dataset. A The heatmap of the 
Jaccard coefficients of L-R pairs between any two methods. The bar plot above the heatmap represents the 
average Jaccard coefficients between a given method and other methods. B UpSetR plot of predicted CCCs 
from the ten methods on the Deng dataset. C Comparison of the value of the F1 score (left) and the number 
of L-R pairs (right) between DcjComm and other methods. D Comparison of the number of L-R pairs from 
mesenchymal cells to other cell types obtained by DcjComm and other methods when threshold values 
are set to 0.5 (left) and 0.8 (right). E Comparison of the P-values (left) and the number of pathways (right) 
enriched by target genes obtained from DcjComm and other methods
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related to TF of these four methods based on the DcjComm-DB database in Additional 
file 1: Fig. S17C. We find that the DcjComm method detects more L-R pairs and signifi-
cant pathways among these methods. Interestingly, when using the DcjComm-DB data-
base instead of their default databases on the Deng dataset, all other methods except for 
the CellCall method detect more pathways (Additional file 2: Table S11).

DcjComm infers CCCs among epithelial cells of mouse mammary gland

To further evaluate the effectiveness of DcjComm, we apply it to the Tabula dataset 
which contains seven cell types including T cells, B cells, macrophages, luminal cells, 
fibroblasts, endothelial cells, and basal cells. We input the marker genes expression 
matrix and the defined cell type assigned after cell clustering into DcjComm to infer the 
potential CCCs. For a better understanding of the CCCs between different cell types, 
we first record the CCC signals in Fig. 6A. Figure 6B further summarize the number of 

Fig. 6  CCCs analysis of Tabula dataset. A Circos plot of CCCs among seven cell types. B The number of CCCs 
is summarized by counting the number of significant L-R pairs in the form of a heatmap. C The heatmap 
illustrates the relative importance of mesenchymal cells based on significant CCCs from endothelial cells to 
other cell types. D The visualization highlights the important CCCs between endothelial cells and other cell 
types with a circos plot. E Sankey plot of CCC pathways of significant L-R-TF. F Ridge plot of significant TFs and 
their corresponding TFactivity score. G Pathway enrichment analysis of differentially expressed genes regulated 
by TFs
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significant L-R pairs (CCC score Sk > 0.5 ). As shown in Fig. 6A and Fig. 6B, compared 
to other cell types, endothelial cells exhibit significantly more frequent signal exchanges 
with other types of cells, indicating their dominant role in intercellular communication. 
To intuitively observe the role of these specific L-R pairs, we also record the interactions 
of these significant L-R pairs between endothelial cells and other cell types in the heat-
map (Fig.  6C). Figure  6D further visualized the communications between endothelial 
cells and other cell types, elucidating their important roles in cell–cell communications.

What is more, recent studies have demonstrated that endothelial cells are a common 
cell type in many mammalian tissues, which interact with macrophages and play a cru-
cial role in the tissue adaptation and tissue homeostasis of macrophages [81]. Thus, we 
focus on the endothelial cells in the next step. Considering the following eight ligands, 
i.e., Col5a2, Col4a2, Col18a1, Il11, Jag1, Ngf, and Hspg2 and six receptors (Ephb1, Gpc1, 
Itga5, Ldlr, Lrp6 and Tlr2) are known to be important in maintaining normal mouse 
mammary gland development and are associated with basal-like and triple-negative 
breast cancers [82, 83, 84, 85, 86].

Moreover, we also analyze the TFs activated downstream of these intercellular com-
munication pathways to further validate their biological significance. The Sankey plot 
of Fig. 6E demonstrates TFs downstream of the top 50 CCC pathways according to the 
correlation score between receptors and TFs. From Fig. 6E, the specific L-R pairs men-
tioned above may regulate the following nine TFs: Notch1, Notch3, Jun, Fos, Myd88, 
Nfkb1, Rbpj, Rbpj1, and Rela. These TFs are known to be important in the develop-
ment of mammary glands [87, 88, 89, 90]. Several master TFs of the endothelial cells, 
such as Fosl1, Runx1, and Tfap2c, are known to be important in defining cell identities. 
Figure 6F shows the TFactivity score between the above three master TFs and their cor-
responding target genes to demonstrate the significant roles that master TFs play in 
modulating their target genes. Specifically, compromised Runx1 regulation is related to 
many cancers such as the blood, bone, and mammary glands [91]. The expression and 
protein levels of Fosl1 in human normal mammary gland cells and different breast can-
cer cells were significantly overexpressed [92]. Tfap2c has been identified as a prognostic 
factor for breast cancer and regulates the luminal epithelial phenotype in the develop-
ment of the mammary gland [93]. To further validate the significance of these identified 
TFs, we perform pathway enrichment analysis on differentially expressed genes regu-
lated by them. Figure 6G shows the top 20 KEGG pathways according to P-value (FDR 
corrected, P-value < 0.05). Among them, the p53 signaling pathway [94], NF-kappa B 
signaling pathway [94], proteoglycans in cancer [95], and chronic myeloid leukemia [96] 
have been reported to be critical for regulating the development of the mammary gland.

To further demonstrate the effectiveness of DcjComm, we also compare it with other 
CCC detection tools mentioned above on the marker genes expression matrix and the 
defined cell type assigned after cell clustering on the Tabula dataset. We first calcu-
late the Jaccard coefficients (Fig. 7A) and F1 score (Fig. 7C (left)) to reflect the overlap 
degree between different methods, which indicates that DcjComm has the highest over-
lap proportion between any two methods. Then, compared with other methods, Dcj-
Comm obtains the most L-R pairs between all cell types (Fig. 7B and Fig. 7C (right)). 
Furthermore, we also count the number of CCCs with the CCC score Sk > 0.5 (Fig. 7D 
(left)) and Sk > 0.8 (Fig.  7D (right)) between the endothelial cells and other cell types 
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on the Tabula dataset. Finally, we also compare the significance of intracellular signal 
transduction involved in DcjComm with the other three methods (i.e., NicheNet, scML-
net, CellCall) that offer downstream analysis of TFs and target genes. We evaluate the 
inferred target genes for each L-R communication of DcjComm, NicheNet, scMLnet, 
and CellCall methods according to the significance of pathway enrichment. Here, the 
FDR-corrected method is adopted for pathway enrichment analysis with the GO, KEGG, 
Reactome, and WikiPathways databases on the activated genes in receiver cells. Fig-
ure 7E also shows the P-values and the number of pathways enriched by target genes 
related to TFs. Compared to NicheNet, scMLnet, and CellCall methods, DcjComm 
obtains a smaller P-value (Fig. 7E (left)) and enriches more pathways (Fig. 7E (right)). 
Subsequently, we also subsampled 80% and 90% of the total cells in the Tabula dataset 
using the “geometric sketch” method. As shown in Additional file 1: Fig. S18, DcjComm 
also exhibited the lowest FPR on the Tabula dataset compared to CellCall, NicheNet, 
and scMLnet methods.

In addition, based on the DcjComm-DB database, we also compare the number 
of L-R pairs detected by DcjComm, NicheNet, scMLnet, and CellCall methods on 
the Tabula dataset. These methods respectively obtain 763, 465, 115, and 39 L-R 
communication pathways (Additional file 1: Fig. S17B (left)). Then, we compare the 
number of pathways detected by these four methods. Based on the DcjComm-DB 
database, the number of pathways detected by the four methods are 5080, 1166, 
3608, and 4429, respectively (Additional file  1: Fig. S17B (right)). We also record 
the P-values of pathways enriched by target genes related to TF of these four meth-
ods based on the DcjComm-DB database in Supplementary Additional file  1: Fig. 

Fig. 7  Comparison analysis of DcjComm and other methods on the Tabula dataset. A The heatmap of the 
Jaccard coefficients of L-R pairs between any two methods. The bar plot above the heatmap represents the 
average Jaccard coefficients between a given method and other methods. B UpSetR plot of predicted CCCs 
from the ten methods on the Tabula dataset. C Comparison of the value of the F1 score (left) and the number 
of L-R pairs (right) between DcjComm and other methods. D Comparison of the number of L-R pairs from 
endothelial cells to other cell types obtained by DcjComm and other methods when threshold values are set 
to 0.5 (left) and 0.8 (right). E Comparison of the P-values (left) and the number of pathways (right) enriched by 
target genes obtained from DcjComm and other methods
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S17D. We find that DcjComm detects the most pathways and also enriches the most 
effective pathways on the Tabula dataset among these methods (Additional file  2: 
Table S11). That is when using the DcjComm-DB database instead of their default 
databases, all the above methods detect more pathways.

DcjComm infers CCCs among spatial transcriptomics data of human breast cancer

To further validate the effectiveness of the DcjComm method in analyzing spatial tran-
scriptomics data, we compared it with five other spatial methods, including COM-
MOT, Scriabin, SpaTalk, Giotto, and NICHES, for inferring CCCs on the human breast 
cancer dataset (BreastST [97]) downloaded from the 10 × Genomics website. The cell 
types in the BreastST dataset were previously annotated [97], as shown in Additional 
file 1: Fig. S19A. We utilized this annotation information as prior knowledge to differ-
entiate between adjacent and distant cell types. The heatmap in Fig. S19B illustrates the 
Euclidean distances between different cell types in spatial locations. From this figure, 
we observed that basallike2 cells and mesenchymal cells are very close to each other, 
and mesenchymal cells are also in close proximity to stroma cells. In contrast, the dis-
tances between T cells and stroma cells, as well as between basallike2 cells and T cells, 
are relatively greater. We compared the CCC scores detected by DcjComm, COMMOT, 
Scriabin, SpaTalk, Giotto, and NICHES for these four cell types. As shown in Fig. S19, 
DcjComm identifies higher CCC scores for adjacent cell types (basallike2-mesenchymal 
and mesenchymal-stroma), whereas it detects lower CCC scores for distant cell types 
(T cells-stroma and basallike2-T cells). This is consistent with the ground truth of spa-
tial transcriptomics data, which indicates that communications are more likely between 
adjacent cells than between distant cells. In addition to the Giotto and NICHES meth-
ods, DcjComm and other spatial approaches also reveal a consistent trend in spatial 
transcriptomics data, with neighboring cells showing higher CCC scores and distant 
cells exhibiting lower CC scores (Fig. S19C-Fig. S19H). Specifically, DcjComm detected 
relatively higher CCC scores for adjacent cells compared to the other methods. This 
demonstrates that DcjComm is a valuable tool for analyzing spatial transcriptomic data.

Next, we compared the number of L-R pairs and the F1 scores inferred by Dcj-
Comm and five other spatial methods using the BreastST dataset. As shown in Fig. 
S20A (left), DcjComm detected a greater number of L-R pairs compared to the other 
methods, highlighting its enhanced capability to capture spatial CCCs. Further-
more, DcjComm achieved the highest F1 score, outperforming the other methods 
and demonstrating superior accuracy in detecting CCCs (Fig. S20A (right)). Then, 
among these five comparison methods, only SpaTalk consider the downstream target 
genes involved in CCCs. To further validate the biological significance of DcjComm, 
we conducted a detailed analysis comparing the statistical significance (P-values) 
and the number of intracellular pathways and biological processes identified by Dcj-
Comm with those identified by SpaTalk. As illustrated in Fig. S20B and Fig. S20C, 
the pathways identified by DcjComm are more biologically significant and more 
numerous. Therefore, DcjComm still demonstrates superior performance compared 
to other methods for detecting CCCs in spatial transcriptomic data.
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Discussion
Systematically characterizing gene expression patterns, exploring cell subpopula-
tions, and exploring complex signaling patterns of scRNA-seq data can help reveal the 
dynamic phenomena within cells. Despite the development of various computational 
methods to address multiple single-cell analysis tasks, there is still a significant absence 
of comprehensive tools capable of effectively performing these tasks coherently.

Here, we develop the DcjComm, a toolkit to perform multiple scRNA-seq data anal-
ysis tasks coherently, such as detecting functional gene modules, selecting representa-
tive features, clustering cells, and inferring CCCs. We first propose the NMF-based 
joint learning method to detect functional gene modules, select representative features, 
and cluster cells simultaneously. By employing the projection matrix decomposition, 
DcjComm detects the functional gene modules to study the mechanisms of molecular 
actions and performs dimension reduction to select representative features. Meanwhile, 
DcjComm utilizes non-negative matrix factorization for cell clustering to decode the 
cell subpopulations. Then, we develop the CCCs inference statistical model by integrat-
ing paired L-R, R-TF, and TF-TG interactions to decipher intercellular and intracellu-
lar communications. In addition, to facilitate intuitive visualization and perform various 
downstream analysis tasks, DcjComm provides a rich suite of visualization options, 
i.e., circos plot, heatmap, sanky plot, ridge plot, and bubble plot. Compared with other 
state-of-the-art scRNA-seq data analysis methods, DcjComm achieves excellence in 
functional gene modules detection, representative features selection, cell clustering, and 
CCCs inference. DcjComm enables systematically performing multiple scRNA-seq data 
analysis tasks and offers valuable insights into a comprehensive understanding of the 
intricate communicative mechanisms across different conditions.

Despite DcjComm possesses specific advantages and characteristics in executing mul-
tiple scRNA-seq data analysis tasks, it still has certain limitations. First, the analysis of 
intercellular signaling mainly centers on transcript expression, neglecting the analysis of 
protein bioactivity and its post-translational mechanisms. This limitation could restrict 
the localized analysis of intracellular signaling networks and the comprehensive under-
standing of intercellular communications. While in intracellular signaling mechanisms, 
multiple signaling pathways may interfere with each other, impacting gene regulatory 
rules and potentially causing false positives or false negatives. Therefore, the results of 
the predicted CCCs still need further biological validation. Second, the communica-
tion between cells typically involves cellular distance information and their positional 
relationships. The lack of information about the spatial arrangement of cells within tis-
sues or organs may hinder the understanding of cellular behavior under physiological 
and pathological conditions. In the future, the integration of other omics technologies, 
such as proteomics and glycomics, will be critical for further exploring the complexity 
and diversity of CCCs. The practical applicability of these data types can be explored 
in the future development of DcjComm. Furthermore, integrating spatial information 
with scRNA-seq data may provide new insights into CCCs. The current version of Dcj-
Comm offers a user-friendly tool for the systematic analysis of scRNA-seq data. In future 
work, we anticipate that the DcjComm method will enable the establishment of CCC 
networks on spatially resolved transcriptomic datasets by incorporating cellular spatial 
constraints.
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Conclusions
In this study, we propose DcjComm, a novel computational method designed to per-
form multiple scRNA-seq data analytical tasks. By incorporating sparse penalty and 
graph regularization, DcjComm presents the NMF-based joint learning model to 
reduce the impact of noise and preserve algorithmic coherence. Compared to state-
of-the-art methods, the NMF-based joint learning model demonstrates outstanding 
performance in functional gene module detection, dimension reduction, and cell clus-
tering. Then, by integrating ligand-receptor pairs, transcription factors, and their tar-
get genes, DcjComm achieves accurate inference of CCCs. The superior performance 
of DcjComm applies to several publicly available scRNA-seq datasets, demonstrating 
that DcjComm extracts more biologically relevant modules and representative fea-
tures, improves cell clustering, and enhances CCC network inference performance. 
The ability of DcjComm to perform multiple tasks coherently facilitates a comprehen-
sive understanding of potential biological processes.

Methods
Data collection and preprocessing

We collect 15 scRNA-seq datasets of mice and humans to verify the accuracy of the 
NMF-based joint learning model of DcjComm. Specifically, this contains nine mouse 
scRNA-seq datasets including Tabula [98] for the mammary gland, Klein [99] for the 
embryonic stem cells, Park [100] for the kidney, Joost [101] and Guerrero [102] for 
the skin cells, Kolodziejczyk [103] for the embryo stem cell, Zeisel [104], Usoskin 
[105], and Chen [106] for the mouse brain, as well as six human datasets including 
Baron [107] and Segerstolpe [108] for the pancreas, Tirosh [109] for the melanoma 
cells, Wang [110] for the testicular cell, and Camp [111] and Deng [112] for the skin 
cells. And another dataset (Mammary [113]) with batch effect was used to analyze the 
ability of DcjComm to remove batch effects. Among them, Joost, Guerrero, and Chen 
datasets are with sub-types while others are with primitive cell types. These bench-
mark datasets are collected from recently published papers about scRNA-seq experi-
ments and their detailed information is summarized in Additional file 1: Table S12).

Since highly variable genes play an important role in assigning cell types and pro-
viding more biological information [14], we select highly variable genes to prioritize 
for downstream analysis. First, we filter the low-quality cells that are not informative 
for cell clustering. That is, these genes are expressed in less than α % of cells or at least 
1− α % of cells ( α = 6 by default) [48]. Then, principal component analysis (PCA) is 
performed on the filtered genes. Finally, we select the first 2000 principal components 
as highly variable genes and further perform log2 normalization for the downstream 
analysis. For datasets containing multiple batches (e.g., Mammary), it is advisable to 
use the ComBat method from the SVA package [51] to remove batch effects before 
selecting highly variable genes. A detailed explanation of the theoretical mechanism 
of batch effects is provided in the Additional file 1: Supplementary Note S5.
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The NMF‑based joint learning model of DcjComm

It is valuable to identify the most representative features by projecting X into a low-
dimensional space due to the extensive gene repertoire in scRNA sequencing. The 
typical two-factor dimension reduction method decomposes the input matrix X 
into the basis matrix U and the loading matrix V (that is, X ≈ UV ). The three-fac-
tor dimension reduction method (that is, X ≈ USV ) also plays an important role of 
matrix factorization technique [6], which provides an extra factor S to absorb the dif-
ferent scales of X , U , and V . Thus, we approximate the difference between the original 
and selected features as

where �•�2F represents the Frobenius norm. The input single-cell gene expression matrix 
X ∈ R

m×n includes m genes and n cells. Besides, the project matrix U ∈ R
m×k1 and the 

coefficient matrix V ∈ R
k1×n respectively represent the features of each gene and cell 

in the low-dimensional space, factor matrix S ∈ R
k1×k1 provides additional degrees of 

freedom to ensure the accuracy of the projected matrix. k1 is the feature number after 
dimensionality reduction. Due to the sparsity inherent in single-cell data, previous stud-
ies have incorporated the l2,1-norm regularization in the objective function to facili-
tate cell clustering [114]. This approach imposes sparsity on the rows of the coefficient 
matrix, enabling more effective and meaningful cell clustering. Considering that the l1
-norm focuses on the row sparsity and the l2-norm is dedicated to eliminating the influ-
ence of noise and outliers, to combine their advantages, the l2,1-norm first calculates the 
l2-norm for the row vector, and then calculates the l1-norm for the column vector:

That is, the introduction of l2,1-norm not only improves the interpretation and accu-
racy of algorithm through sparse representation but also reduces the impact of noise and 
outliers (the detailed proof of robustness is presented in the Additional file 1: Supple-
mentary Note S10, Fig. S21, Fig. S22). Therefore, the objective of dimension reduction in 
Eq. (1) is reformulated as follows:

where parameter α1 controls the relevant importance of l2,1 constraint.
At present, great evidence has indicated that joint learning improves the accuracy and 

flexibility of algorithms [15]. To overcome the problem of the independence of dimen-
sion reduction and clustering of cells, we jointly learn the feature selection by projected 
matrix decomposition and cell type clustering by NMF. We assign cells into clusters 
according to the maximum coefficient of matrix F , which is obtained by decomposing 
the matrix V into the two nonnegative matrices B and F:

(1)QU,V,S = �X −USV�2F ,

(2)�V�2,1 =

m

i=1

n

j=1

x2ij =

m

i=1

�xi�2

(3)QU,V,S = �X −USV�2F+α1�V�2,1,

(4)RB,F = �V − BF�2F s.t.B ≥ 0, F ≥ 0.
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where B ∈ Rk1×k2 and F ∈ Rk2×n are respectively represented as the basis matrix and the 
feature matrix. k2 is the number of clusters. Since F is expected to maintain the intrinsic 
geometrical structure of V , while the NMF method cannot detect the inherent geomet-
ric structure of high-dimensional data such as manifolds, we introduce the graph regu-
larization into the objective function of NMF:

where the parameter α2 balances the importance of graph regularization. The basic idea 
of graph regularization is to reconstruct the low-dimensional manifold structure embed-
ded in high-dimensional ambient space. That is, if two cells vi and vj are close in the high-
dimensional sample space, the corresponding representations in low-dimensional space, 
i.e., fi and fj , should be as close as possible, and vice versa. We construct a graph G to 
depict the closeness of cells in V , each sampling point is used as a vertex and the similar-
ity between a pair of cells denotes the edges. To quantify the edges, we define a symmet-
ric weight matrix W , whose element Wi,j represents the weights of the edges connecting 
cell i and cell j:

where vi is the i− th cell, Nk(vi) is the set of K  nearest neighbors of vi . Thus, the graph 
regularization can be formulated as follows:

where D is a diagonal matrix in which elements are obtained by the sum of the rows 
or columns of W . fi and fj are the low-dimensional representation of vi and vj . L is the 
Laplacian matrix of graph G , i.e., L = D−W.

Then, by combining Eq.  (3) and Eq.  (5), we propose the NMF-based joint learning 
model for simultaneously executing gene module selection, dimension reduction, and 
cell clustering. By formulating these three tasks as a constrained optimization prob-
lem, the DcjComm method effectively improves solution efficiency. DcjComm not only 
extracts essential feature information from the data but also significantly enhances the 
performance of cell clustering. The dimension reduction process generates features 
under the guidance of individual cell clustering, with the clustering of individual cells 
selecting appropriate features. The objective function of the NMF-based joint learning 
model is defined as the following optimization problem:

(5)RB,F = �V − BF�2F+α2Tr(FLF
T)s.t.B ≥ 0, F ≥ 0.

(6)Wi,j =

{

1 if vi ∈ NK(vj) or vj ∈ NK(vi)

0 otherwise
.

(7)

min
F

∑

i,j

∥

∥fi − fj
∥

∥

2
Wi,j

= min
F

Tr(F(D−W)FT ),

= min
F

Tr(FLFT )

(8)
minN = QU,S,V + RB,F

= �X −USV�2F+α1�V�2,1+�V − BF�2F+α2Tr(FLF
T)

s.t.B ≥ 0, F ≥ 0.
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The factor matrix U obtained from Eq.  (8) guides us to construct gene functional 
modules, where features with relatively large values in each column are selected as 
members of the module. Specifically, we select the nodes with relatively large abso-
lute values of the weighted factors U by calculating its z-score for each column vector 
ui(i = 1, ..., k) [6]:

where µ(U)·j =
1
N

∑

(U)ij and σ 2
(U)·j

= 1
N−1

∑

((U)ij − µ(U)·j )
2 . Based on the above 

transformation, we assign g(i) that satisfies the condition zij > θ as the i− th module 
member. θ is a given threshold that enables the selected module members to have a sig-
nificant signal. The element sij of the factor matrix S can be considered as the weight of 
uiv

T
j  in the reconstruction of X . The larger the value of sij , the larger the elements of X 

for all combinations of selected features based on ui and vj . Since matrix S is a diagonal 
matrix, we use the value of S to represent the importance of the selected module.

Next, we assign cells to clusters based on the maximum coefficient of their matrix F , 
which is consistent with previous studies [15]. Furthermore, marker genes expressed 
in specific cell types play an important role in the identification of cell types. There-
fore, we annotate cell clusters to known cell types based on the expression levels of 
the marker genes given in the original studies. In cases where clusters lack known 
marker expression, we assign the cell type containing the most cells to that cluster.

In addition, the NMF-based joint learning model contains five parameters k1 , k2 , α1 , 
α2 and θ , where k1 is the number of features for dimension reduction, k2 is the number 
of clusters, α1 and α2 are regularization parameters, and θ is the threshold to select 
module members (Additional file 1: Supplementary Note S1 and S3).

Optimization algorithm

The iterative strategy is used to solve the non-convex problem of Eq.  (8), it involves 
multiple variables, i.e., U , S , V , B , and F , we optimize one variable by fixing the others 
until the termination criterion is reached. The Lagrange function of Eq. (8) is formu-
lated as follows:

Let ψik and φik be Lagrange multipliers to constrain bik ≥ 0 and fjk ≥ 0 , where 
� = [ψik ] and � = [φik ].

Firstly, we optimize the variable U by fixing S and V , the optimal value of U is given 
by

Taking the partial derivative of function L with respect to matrix U , when the deriv-
ative is 0, we obtain the optimal solution for U:

(9)zij =
(U)ij − µ(U)·j

σ(U)·j

.

(10)
L(U,V, S,B,F) = �X −USV�2F+�V − BF�2F

+α1�V�2,1+α2Tr(FLF
T) + Tr(�B

T ) + Tr(�F
T ).

(11)U ← arg min
U

�X −USV�2F .



Page 28 of 36Ding et al. Genome Biology          (2024) 25:241 

Next, we optimize the variable S by fixing U and V:

We also taking the partial derivative of function L with respect to matrix S , when the 
derivative is 0, we get the optimal solution for S:

Then, for optimizing variable V , let

Since J (V) includes the conductive portion �X −USV�2F+�V − BF�2F and the non-
conductive portion α1‖V‖2,1 , we redefine the above problem as

The augmented Lagrange function of Eq. (16) can be formulated as:

where σ > 0 is the penalty parameter and T ∈ R
k1×m is the Lagrange multiplier. Then, 

we optimize the following sub-problems of Eq. (17) by performing ADMM:

Specifically, optimizing the subproblems of V can be approximated through the fol-
lowing iterative process:

The sub-problem of optimizing E is given by

and S is a soft threshold function, which is defined as follows:

(12)U ← U
XV

T
S

USVV
T
S
.

(13)S ← arg min
S

�X −USV�2F .

(14)S ← S
U

T
XV

T

VV
T
UTUS

.

(15)J (V) = �X −USV�2F+�V − BF�2F+α1�V�2,1.

(16)J (V) = �X −USV�2F+�V − BF�2F+α1�E�2,1 s.t.E− V = 0.

(17)

L(V,E;T) =

�X −USV�2F+�V − BF�2F+α1�E�2,1 + σ�E− V�2F + �T,E− V�

= �X −USV�2F+�V − BF�2F+α1�E�2,1 + σ

∥

∥

∥

∥

E− V +
T

σ

∥

∥

∥

∥

2

F

.

(18)







































V ← arg min
V

�X −USV�2F+�V − BF�2F + σ

�

�

�

�

E− V +
T

σ

�

�

�

�

2

F

E ← arg min
E

σ

�

�

�

�

E− V +
T

σ

�

�

�

�

2

F

+ α1�E�2,1

T ← T+ σE− V

.

(19)V ← V
SU

T
X + BF+ σE+ T

UTUSSV + (I+ σ)V
.

(20)E ← Sα1/σ (E−
T

σ
)+ 2α1D1E,
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Furthermore, the process of optimizing the variable B is given below

We calculate the partial derivative of function L with respect to matrix B . Incorporat-
ing the known KKT conditions [115], �B

T = 0 , when the derivative of function L equals 
0, we obtain the optimal solution for matrix for B:

In addition, Eq. (24) describes the optimization process for the variable F . By incorpo-
rating the known conditions L = D− E and �F

T = 0 , and setting the partial derivative 
of function L with respect to the matrix F to 0, we derive the optimal solution for the 
matrix as given in Eq. (25).

Finally, based on the matrix F obtained from the iterative optimization process, cells 
are automatically assigned to different cell clusters based on the largest coefficients in 
this matrix.

The CCCs inference statistical model of DcjComm

In this process, ligands function as transmitter cells, while receptors act as receiver cells. 
The binding of ligands alters the conformation of the receptors, subsequently influenc-
ing the expression levels of downstream transcription factors and target genes. There-
fore, an extensive and reliable database is essential for inferring cellular interactions.

Here, we have developed the DcjComm-DB database by collecting and integrating mul-
tiple complementary data sources to serve as evidence for inferring CCCs. Specifically, we 
have compiled and integrated information from three layers: L-R, TF-TG, and R-TF pairs. 
The DcjComm-DB is available for both human and mouse. Firstly, we collect human L-R 
interactions derived from literature data: Jin [21], Shao [116], Cabello[117], Hou [86], Rami-
lowski [118], Zhang [119], Gao [120], and mouse L-R interactions are collected from the 
following literature data: Shao [116], Baccin [121], Jin [21], Zhang [119], Cain [122], Ding 
[123], Hu [81], Sheikh [124], Skelly [125], and Yuzwa [126]. Secondly, we use the R-TF data-
base constructed by Baruzzo et al. [25], which includes 1533 receptors associated with 411 
transcription factors for humans, and 731 receptors associated with 369 transcription fac-
tors for mice. In addition to receptors and their corresponding TF, the R-TF database also 
includes scores of the degree of association between a given receptor and a given TF in 

(21)Sε[x] =







x + ε if x > ε

x − ε if x < −ε

0 otherwise

.

(22)B ← arg min
B

�V − BF�2F + Tr(�B
T ).

(23)B ← B
VF

T

BFF
T
.

(24)F ← arg min
F

�V − BF�2F+α2Tr(FLF
T ) + Tr(�F

T ).

(25)F ← F
B
T
V + α2FW

BTBF+ α2FD
.
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a specific pathway, which are obtained using the PageRank algorithm based on KEGG or 
Reactome pathway databases. Finally, to provide an accurate and comprehensive repository 
of human and mouse TF-TG interactions, we include a merged version of human HTRIdb, 
TRRUST v2, RegNetwork “medium” confidence, and RegNetwork “high” confidence, 
resulting in 1537 transcription factors and 18,421 regulated gene, and a merged version 
of mouse TRRUST v2, RegNetwork “medium” confidence, and RegNetwork “high” confi-
dence, resulting in 1649 transcription factors and 14,570 regulated genes [25].

To quantify the CCCs between different cell types, we have proposed the CCCs inference 
statistical model. In this model, we define the Sk as the product of the intercellular commu-
nication score ( Sinter ) and the ongoing intracellular signaling ( Sintra):

The intercellular signaling score Sinter is evaluated by the l2− norm of the L-R interaction 
LRk , that is, Sinter =

∥

∥

∥

−→
LRk

∥

∥

∥

2
 . LRk is a two-dimensional vector represented by the normal-

ized expression value of the ligand and receptor for L-R interaction k:

where softmax(•) is the softmax function to obtain the normalized expression values. 
Li,k and Rj,k are respectively the mean expression values of ligand and receptor in cell 
type i and cell type j.

In addition, if the ligand L contains n subunits and lg represents the expression value of 
subunit g , then we define L as the geometric mean of the expression value of all subunits:

Similarly, if the receptor R contains n subunits and rh represents the expression value of 
subunit h , R is defined as the geometric mean of the expression value of all subunits:

The intracellular signaling score Sintra is evaluated according to the R-TF scores and the 
interaction of transcription factors and target genes. To evaluate the interaction of recep-
tor and TF, we introduce the TFPPR(t, r, p) score to measure the association of the given 
receptor r and the given TF t in the pathway p [25]. Besides, to provide the transcriptomic 
evidence of cell communication effects, we score the activity of TFs within the pathway 
measuring changes in expression levels of their regulated genes. Then, the activity of each 
TF t in the cluster k is computed through a Fisher test as follows:

(26)Sk = Sinter × Sintra.

(27)LRk = (softmax(Li,k), softmax(Rj,k)),

(28)L = n

√

√

√

√

n
∏

g=1

lg .

(29)R = n

√

√

√

√

n
∏

h=1

rh.

(30)PFisher =

(

a+ b

a

)(

c + d

c

)

(

a+ b+ c + d

a+ c

) .
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where a = |TDEG ∩ LTF| , b = |TDEG| − a , c = |LTF| − a , d = |Lall| − (a+ b+ c) . TDEG is 
the gene set of differentially expressed genes, LTF is the target genes list corresponding 
to each TF, |Lall| is a list of all annotated genes. In addition, the Mann–Whitney U test 
is chosen for the identification of differentially expressed genes due to its excellent per-
formance and low computational burden in identifying differentially expressed genes of 
single-cell data.

Then, the activity of each TF t in the cluster k is defined as follows:

Finally, combining the R-TF score and the TF-TG score, we obtain the intracellular 
signaling score:
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