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Background
Missing data is a common problem in observational studies, as modeling techniques 
such as linear regression cannot be fit to data with missing points. Missing data is fre-
quently handled using complete case (CC) analyses in which any individuals with miss-
ing data are dropped from the study. Dropping participants can reduce statistical power 
and, in some cases, result in biased model estimates. A common technique to address 
these problems is to replace or “impute” missing data points with substituted values. 
Typically, for a given covariate, missing data points are imputed using a prediction 
model including other relevant covariates as independent variables. In single imputa-
tion (SI), a missing value is replaced with the most likely value based on the predictive 
model. Statistical efficiency can be improved by including the outcome in the predictive 
model in addition to covariates. However, in this setting, SI methods can result in biased 
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coefficients and over-confident standard errors [1]. Multiple imputation (MI) addresses 
this problem by generating several predictions, thereby allowing for uncertainty about 
the imputed data to propagate through the analysis. In a typical MI procedure: (1) m 
imputed data sets are created, (2) each data set is analyzed separately (e.g., using linear 
regression), and (3) estimates and standard errors across the m analyses are pooled using 
Rubin’s rules [2, 3].

To date, there has been no concerted effort to determine the most advantageous 
method for handling missing covariate data in transcriptomic studies. A large propor-
tion of RNA-sequencing studies are conducted in in vitro or in vivo models and do not 
suffer from missing covariate data. Complete datasets are common in experimental 
studies with controlled conditions and a limited number of covariates. In an experimen-
tal setting, studies may employ two-group analyses with no additional variables or utilize 
covariates for which collecting data is trivial (e.g., sequencing batch and sex). However, 
the cost of sequencing has decreased over time [4], and transcriptomic data are already 
becoming more common in large human observational studies where missing data is a 
prevailing concern [5, 6]. Therefore, guidelines for handling missing data in this context 
are critically needed to facilitate the integration of transcriptomic and epidemiologic 
approaches.

While SI methods must omit the outcome from the imputation predictive model to 
avoid bias, the opposite is true of MI [7]. However, including the outcome in the MI 
predictive model can be problematic in “omics” studies with high dimensional data. Fit-
ting an imputation model where the number of independent variables is far greater than 
the number of individuals in the study is generally not feasible. For instance, in RNA-
sequencing studies with tens of thousands of genes, an equal or greater number of par-
ticipants may be needed to apply a standard MI procedure.

To ensure that outcome data are included in the predictive model (a requirement of 
MI to avoid bias [7]), one solution is to make one set of m imputed datasets per gene, 
where expression data for a single gene is included in the predictive model. Then, each 
set of imputed data can be used to estimate differential expression of the gene that was 
used in that set’s predictive modeling. However, the generation of tens of thousands of 
sets of imputed data is computationally intensive and may require an unfeasible amount 
of model checking and diagnostics. In epigenetic studies of DNA methylation at CpG 
cites, this approach has been modified to be less computationally intensive by using 
groups of CpG sites together to impute missing data [8, 9]. We propose an alternative 
solution for applying MI to high dimensional gene expression data, which is to utilize 
principal component analysis (PCA) to reduce the dimensionality of the transcriptome. 
Then, the top PCs can be included in the MI prediction model when imputing missing 
covariates, satisfying the requirement that outcome information is included in the MI 
predictive models.

Here, we developed the first method to our knowledge to make MI compatible with 
high dimensional transcriptomic data. We created an R package (RNAseqCovarIm-
pute) that is fully compatible with the popular limma-voom [10–12] differential expres-
sion analysis pipeline. We conducted a simulation study to compare the performance 
of MI as implemented in RNAseqCovarImpute with random forest SI and CC analy-
ses. Finally, we applied RNAseqCovarImpute to two analyses involving (1) the placental 
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transcriptome associated with maternal age, and (2) the blood platelet transcriptome 
associated with colorectal carcinoma.

Results
Multiple imputation and differential expression analysis in the RNAseqCovarImpute 

package

The RNAseqCovarImpute package includes two methods accommodating the require-
ment of MI that the outcome data are included in the MI predictive models. The first 
method surmounts the problem of high-dimensional outcome data by binning genes 
into smaller groups to analyze pseudo-independently (MI Gene Bin method, see Addi-
tional file  1: Supplemental Methods). Analyzing smaller bins of genes independently 
lowers the dimensionality of the outcome gene expression data, allowing us to include it 
in the MI predictive modeling. However, binning genes into smaller groups is computa-
tionally inefficient, as it requires that the MI and limma-voom analysis is run many times 
(typically hundreds).

A second method uses PCA to avoid binning genes while still retaining outcome infor-
mation in the MI models. The MI PCA method implements covariate MI in gene expres-
sion studies by (1) performing PCA on the normalized log-counts per million (logCPM) 
for all genes using the Bioconductor “PCAtools” package [13]; (2) creating m imputed 
datasets where the imputation predictor matrix includes all covariates and the optimum 
number of PCs to retain; (3) conducting the standard limma-voom differential expres-
sion analysis pipeline in R with the “limma::voom” followed by “limma::lmFit” followed 
by “limma::eBayes” functions [10–12] on each m imputed dataset; (4) pooling the results 
with Rubin’s rules to produce combined coefficients, standard errors, and P values; and 
(5) adjusting P values for multiplicity to account for false discovery rate (FDR) (Fig. 1; see 
“ Methods” for details). Various methods for determining the number of PCs to retain 
in the MI prediction model can be utilized. For example, Horn’s parallel analysis, which 
retains PCs with eigenvalues greater than eigenvalues of random data [14, 15], utilizing 
an 80% explained variation cutoff, or the elbow method.

Three versions of MI PCA using different criteria to determine the number of retained 
PCs were compared with the MI Gene Bin approach (“ Methods”). MI PCA using Horn’s 
parallel analysis performed better than the MI Gene Bin and other MI PCA methods. 
All methods had similar true positive rates (TPRs), while MI PCA horn had the lowest 
false positive rates (FPRs) across most scenarios (Additional file 1: Supplemental Results, 
Additional file 1: Figs. S2–S4). Among the methods for retaining PCs, results were rela-
tively comparable when missing data were minimal. For instance, for the ECHO-PATH-
WAYS dataset, Horn’s parallel analysis retained 35 PCs, an 80% variance explained 
cutoff retained 213 PCs, and the elbow method retained 15 PCs. Despite substantial dif-
ferences in the number of retained PCs, all methods had similarly high TPRs and good 
FPR control at approximately 0.05 when there was only 5–15% missing data (Additional 
file 1: Fig. S2). However, when levels of missing data were higher, FPRs were consistently 
controlled at 0.05 for Horn’s parallel analysis, but not for the 80% variance explained or 
elbow approaches (Additional file 1: Fig. S2). Thus, MI PCA using Horn’s parallel anal-
ysis was selected as the MI method of choice (hereinafter the “RNAseqCovarImpute” 
method).
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Performance on three real datasets following simulations of missing covariate data

Three large real-world RNA-sequencing datasets encompassing multiple tissue types 
and a diverse range of covariates were utilized to compare RNAseqCovarImpute, SI, and 
CC differential expression analysis (“ Methods”). 

The ECHO prenatal and early childhood pathways to health (ECHO-PATHWAYS) 
dataset (dbGaP phs003619.v1.p1 and phs003620.v1.p1) includes RNA-sequencing of pla-
centas sampled at delivery from socioeconomically and racially/ethnically diverse par-
ticipants from two regionally distinct birth cohorts in Washington (Seattle and Yakima) 
and Tennessee (Memphis), USA [5]. For the ECHO-PATHWAYS dataset (N = 994), 
maternal age served as the predictor of interest in differential expression analysis, while 
covariates included fetal sex, RNA-sequencing batch, maternal tobacco use during preg-
nancy, maternal alcohol use during pregnancy, and family income. 

The non-small cell lung cancer (NSCLC) dataset (EMBL-EBI: E-GEOD-81089) 
includes RNA-sequencing of both lung tumor and non-malignant tissues sampled from 
patients diagnosed with NSCLC being surgically treated from 2006 to 2010 at the Upp-
sala University Hospital, Sweden [16]. For the NSCLC dataset (N = 670), the predic-
tor of interest was sex, while covariates included participant age, participant smoking 
status, and sampling site (tumor versus non-malignant).  The non-small cell lung can-
cer (NSCLC) dataset (EMBL-EBI: E-GEOD-81089) includes RNA-sequencing of both 
lung tumor and non-malignant tissues sampled from patients diagnosed with NSCLC 
being surgically treated from 2006 to 2010 at the Uppsala University Hospital, Sweden 

Fig. 1  Overview of RNAseqCovarImpute multiple imputation differential expression analysis. A Inputs are 
covariates, including the predictor of interest and adjustment variables, and RNA-sequencing counts that are 
filtered to remove low counts and normalized as log-counts per million (logCPM). The logCPM calculation 
uses the effective library sizes calculated using the weighted trimmed mean of M-values method. B Principal 
component analysis (PCA) is used to reduce the dimensionality of the count matrix and Horn’s parallel 
analysis determines the number of PCs (1-h) to retain. Retained PCs (PC1-PCh) are added to the input dataset 
of covariates (C1-Cn). C Multiple imputation imputes missing covariate data m times (RNA-sequencing data 
are not imputed). All covariates and all retained PCs are included in the imputation prediction models. D 
Associations are estimated between the covariates and gene expression, according to the user’s statistical 
model design of interest, separately within each m imputed dataset using voom followed by lmFit followed 
by eBayes functions. In this example, the design is a multivariable linear model including all covariates 
C1-Cn. E Combine across m sets of model results using Rubin’s rules to produce combined log fold changes, 
standard errors, and P values for each term in the design
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[16]. For the NSCLC dataset (N = 670), the predictor of interest was sex, while covariates 
included participant age, participant smoking status, and sampling site (tumor versus 
non-malignant).

The Epstein-Barr virus (EBV) dataset (EMBL-EBI: E-MTAB-7805) analyzed primary 
cultures of human B lymphocytes obtained from adenoid tissue [17]. For the EBV data-
set (N = 384), the predictor of interest was time elapsed in culture, while covariates 
included EBV infection status and individual donor source.

The ECHO-PATHWAYS dataset included 14,026 genes after filtering, of which 2517 
were significantly associated with maternal age in the full data model (true positives) 
while adjusting for covariates. Following the full data model, simulations to induce miss-
ingness in the covariate data were performed 10 times per level of missing data and miss-
ingness mechanism (“ Methods”). Patterns of simulated missing data depended on the 
missingness mechanism. When data were simulated to be missing at random (MAR) or 
missing not at random (MNAR), the maternal alcohol and family income variables had 
strong influence over patterns of missing data as intended. For example, in the simulated 
datasets where 55% of individuals had at least one missing data point, the average rate of 
individuals with at least one missing data point was 91% among alcohol users but only 
50% among those reporting no alcohol use. Family income also impacted missingness: 
the missing data rate was 37% among those in the bottom quartile of family income, 
but 75% among those in the top quartile. These patterns of missingness were identi-
cal between the MAR and MNAR mechanisms, the only difference being that SI and 
RNAseqCovarImpute had access to these variables (while imputing data) under MAR, 
while these variables were masked under MNAR. Thus, under MNAR, unobserved data 
influenced the patterns of missingness. When data were simulated to be missing com-
pletely at random (MCAR), missingness did not depend on alcohol use, family income, 
or any other covariate. For example, in the 10 simulated datasets where 55% of individu-
als had at least one missing data point, the rate of individuals with at least one missing 
data point was 55% among alcohol users, 53% among those reporting no alcohol use, 
56% among those in the bottom quartile of family income, and 54% in the top quartile of 
family income.

In differential expression analysis using the ECHO-PATHWAYS dataset, RNAseqCo-
varImpute was the best performer, with the highest TPR, lowest FPR, and lowest mean 
absolute percentage error (MAPE) across most scenarios, especially with increasing lev-
els of missing data (Fig. 2). For example, when 55% of participants had at least one miss-
ing data point, the TPR ranged from 0.713 to 0.994 for RNAseqCovarImpute, from 0.214 
to 0.977 for SI, and from 0.006 to 0.391 for CC (Fig. 2A). FPR was well-controlled under 
0.05 in most scenarios, but more consistently so for RNAseqCovarImpute. For exam-
ple, the median FPR was always < 0.05 for RNAseqCovarImpute, while there were some 
cases of high FPRs for the CC method when data were MCAR, and for the SI method 
when data were MNAR (Fig. 2B). MAPE was lower for RNAseqCovarImpute in almost 
every scenario (Fig. 2C).

The NSCLC dataset included 12,353 genes after filtering, of which 5718 were sig-
nificantly associated with sex in the full data model (true positives) while adjusting for 
covariates. After inducing missingness in the covariate data, RNAseqCovarImpute was 
the best performer with the highest TPR, lowest FPR, and lowest MAPE across most 
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scenarios, especially with increasing levels of missing data (Fig. 3). For example, when 
85% of participants had at least one missing data point, the TPR ranged from 0.933 to 
0.987 for RNAseqCovarImpute, from 0.902 to 0.984 for SI, and from 0.296 to 0.604 for 
CC (Fig.  3A). Many scenarios had FPR > 0.05 for CC, while FPR was well-controlled 
at approximately 0.05 for SI, and consistently below 0.05 for RNAseqCovarImpute 
(Fig. 3B). As with FPR, MAPE was lowest for RNAseqCovarImpute, followed by SI and 
CC, respectively (Fig. 3C).

The EBV dataset included 8677 genes after filtering, of which 7449 were significantly 
associated with time in the full data model (true positives) while adjusting for covariates. 
As with the datasets above, after inducing missingness in the covariate data, RNAseqCo-
varImpute was the best performer with the highest TPR, lowest FPR, and lowest MAPE 
across most scenarios (Fig. 4).

In addition to the real RNA-sequencing datasets above, four sets of synthetic RNA-
sequencing data were used to compare performances of RNAseqCovarImpute, SI, 

Fig. 2  Performance of missing data methods on ECHO-PATHWAYS dataset. A True positive rate (TPR), B 
false positive rate (FPR), and C mean absolute percentage error (MAPE) shown for complete case (CC), 
single imputation (SI), and RNAseqCovarImpute multiple imputation differential expression analyses on ten 
datasets with simulated missingness per missingness mechanism per level of missingness. Box (median 
and interquartile range) and whiskers (1.5* interquartile range) shown along with one point per simulation. 
Dashed line at target FPR of 0.05



Page 7 of 25Baker et al. Genome Biology          (2024) 25:236 	

and CC differential expression analysis. The NSCLC RNA-sequencing data were 
modified to add known signal using the seqgendiff package [18] (“ Methods”). Com-
pared with fully synthetic count data from theoretical distributions, this method bet-
ter reflects realistic variability in RNA-sequencing data. Subsets of 25–99% of genes 
were randomly selected to have their coefficient of association (Log2 fold-changes) 
with sex set to zero. Distributions of gene expression coefficients associated with sex 
depended on the desired null gene rates for each synthetic dataset, but followed a 
similar form compared with the original NSCLC data as intended (Additional file 1: 
Fig. S5). Coefficients for the remaining genes were drawn randomly from a gamma 
distribution, and an additional diagnostic confirmed that the coefficients for each 
gene estimated from the limma-voom pipeline on the synthetic count tables closely 
matched these pre-defined coefficients input into the seqgendiff package (Additional 
file  1: Fig. S6). Applied to these synthetic RNA-sequencing datasets, RNAseqCova-
rImpute had higher TPRs (Additional file 1: Fig. S7) and lower FPRs (Additional file 1: 

Fig. 3  Performance of missing data methods on NSCLC dataset. A True positive rate (TPR), B false positive 
rate (FPR), and C mean absolute percentage error (MAPE) shown for complete case (CC), single imputation 
(SI), and RNAseqCovarImpute multiple imputation differential expression analyses on ten datasets with 
simulated missingness per missingness mechanism per level of missingness. Box (median and interquartile 
range) and whiskers (1.5* interquartile range) shown along with one point per simulation. Dashed line at 
target FPR of 0.05
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Fig. S8) compared to CC and SI differential expression analysis across most scenarios. 
Moreover, the advantages of RNAseqCovarImpute were most apparent for synthetic 
datasets with weaker signals. For example, all methods had FPRs < 0.05 for the syn-
thetic data with the strongest signal (i.e., 75% of genes associated with the predic-
tor of interest and only 25% null genes). However, with 99% null genes and only 1% 
of genes modified to correlate with the predictor of interest, RNAseqCovarImpute 
maintained FPRs < 0.05 while the other methods did not (Additional file 1: Fig. S8).

Overall, RNAseqCovarImpute outperformed SI and CC methods in differential 
expression analysis by achieving higher TPRs, lower FPRs, and lower MAPEs across 
various real-world and synthetic RNA-sequencing datasets. Its advantages were most 
notable, especially with respect to controlling FPRs, in scenarios with high levels of 
missing data or predictors of interest that are only weakly associated with the RNA-
sequencing data.

Fig. 4  Performance of missing data methods on EBV dataset. A True positive rate (TPR), B false positive rate 
(FPR), and C mean absolute percentage error (MAPE) shown for complete case (CC), single imputation (SI), 
and RNAseqCovarImpute multiple imputation differential expression analyses on ten datasets with simulated 
missingness per missingness mechanism per level of missingness. Box (median and interquartile range) and 
whiskers (1.5* interquartile range) shown along with one point per simulation. Dashed line at target FPR of 
0.05
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Computational benchmarks

Methods were benchmarked in an analysis of the ECHO-PATHWAYS dataset with 
14,026 genes, 994 observations, 4 covariates in the model, and 55% missingness under 
MCAR on a Windows machine with 3.8  GHz processing speed and 16  GB random-
access memory. MI methods were assessed with 10 imputed datasets. Over three 
iterations per method, memory allocations and median run times were 16.6  GB and 
13.52 min for the RNAseqCovarImpute MI Gene Bin method, 4.32 GB and 2.68 min for 
the RNAseqCovarImpute MI PCA method, 7.58 GB and 17.46 s for SI, and 3.23 GB and 
6.71 s for CC. Computation time was further assessed for the RNAseqCovarImpute MI 
PCA method over several combinations of sample size, number of genes, and number of 
imputed datasets (Additional file 1: Fig. S9).

Application of RNAseqCovarImpute in analysis of maternal age and placental 

transcriptome

In a real-world example, RNAseqCovarImpute was applied to the largest placental tran-
scriptomic dataset to-date, which was generated by the ECHO prenatal and early child-
hood pathways to health (ECHO-PATHWAYS) consortium [5]. This analysis examined 
the association of maternal age with the placental transcriptome while adjusting for race, 
ethnicity, family income, maternal education, tobacco and alcohol use during pregnancy, 
delivery method, study site, fetal sex, and sequencing batch. The causal relationships 
among these variables are illustrated in Fig. 5.

Among 1045 individuals included in this analysis, 6% (61) were missing data for at 
least one of the 10 covariates, mostly driven by 4% (41) of individuals missing family 
income data. There were no missing data for delivery method, study site, fetal sex, and 

Fig. 5  Maternal age and placental transcriptome conceptual model. Conceptual model of association 
between maternal age (predictor) and the placental transcriptome (outcome). Confounders are upstream 
causes of both the predictor and outcome. Mediators are on the causal pathway between the predictor and 
outcome. Precision variables could affect the outcome but have no clear casual effect on the predictor
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sequencing batch, and a minimally adjusted analysis including these variables identi-
fied 1071 differentially expressed genes (DEGs) significantly associated with maternal 
age. Adjusting for all covariates resulted in fewer maternal age DEGs: in the CC, SI, 
and RNAseqCovarImpute MI analyses, maternal age was associated with 575, 214, 
and 399 DEGs, respectively (Fig. 6A). The CC and SI analyses uncovered 91% (362) 
and 54% (214) of the significant DEGs from the MI method, respectively, while there 
were 32 DEGs exclusive to MI (Fig. 6A). Additionally, CC analysis was repeated while 
omitting the family income covariate, which preserved sample size while allowing 
possible confounding by this variable. This analysis uncovered 334 DEGs, of which 
68% (270) overlapped with the DEGs from the MI method (Additional file 1: Fig. S10). 

Fig. 6  Maternal age and the placental transcriptome differential expression analysis. Venn diagram depicts 
shared and distinct differentially expressed genes for each method (A). P value rankings for each method 
for the top 10 genes with the lowest P values from the multiple imputation analysis (B). Volcano plots of 
maternal age associations with placental gene expression in complete case (C), single imputation (D), and 
multiple imputation (E) analyses. “Drop Income” indicates complete case analysis excluding the income 
covariate (F). Models include the following covariates: maternal race, ethnicity, education, tobacco and 
alcohol use during pregnancy, household income adjusted for region and inflation, delivery method, fetal 
sex, sequencing batch, and study site. Log2-adjusted fold-changes (LogFCs) shown for each 1 year increase 
in maternal age. Horizontal and vertical lines at P = 0.05 and LogFC ± 0.04, respectively. HGNC gene symbols 
shown for significant genes with false discovery rate adjusted P value (P-adj) < 0.05 and LogFC beyond 0.04 
cutoff
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Although there were some differences, genes ranked from lowest to highest P value 
followed similar orders between the methods (Fig.  6B). The most substantial differ-
ences compared with the P value rank order from the MI analysis were observed in 
the fully adjusted CC and CC omitting family income analyses (Fig. 6B). Imputation 
diagnostics for family income following the RNAseqCovarImpute MI method indi-
cated good convergence and reasonable imputed values (Additional file 1: Fig. S11).

Many of the top DEGs in the MI analysis, according to their significance and fold-
change magnitude (Fig. 6C–F), play roles in inflammatory processes and the immune 
response. S100A12 and S100A8 are pro-inflammatory calcium-, zinc-, and copper-
binding proteins, CXCL8 (IL-8) and IL1R2 are pro-inflammatory cytokines/cytokine 
receptors, SAA1 and CASC19 are known to be expressed in response to inflamma-
tion, while LILRA5, a leukocyte receptor gene, may play a role in triggering innate 
immune responses [19].

Pathway enrichment of the MI differential expression results revealed 32 Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways that were downregulated 
in association with older maternal age (Fig.  7). Among these downregulated KEGG 
pathways, 11 belong to the immune system KEGG group and 6 belong to the signal 
transduction group. Antigen processing and presentation, an immune system KEGG 
pathway, was the most strongly downregulated pathway according to its enrichment 
effect size and P value (Fig. 7).

Fig. 7  Maternal age and the placental transcriptome pathway analysis. T-statistics (Log2FCs divided by 
standard error) from the differential expression analyses of maternal age were input into pathway analysis 
for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (excluding KEGG human disease pathways) 
using the generally applicable gene set enrichment (GAGE) method. Mean t-statistic of all genes in each 
KEGG pathway shown with corresponding P value from GAGE (larger points indicate smaller P values)
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Application of RNAseqCovarImpute in analysis of colorectal carcinoma and the blood 

platelet transcriptome

In another real-world example, RNAseqCovarImpute was applied to a dataset of blood 
platelet RNA-sequencing from 42 individuals with colorectal carcinoma and 59 healthy 
donors [20]. This dataset included 3227 genes after filtering. There were 14 individu-
als with KRAS mutant tumors and 2 individuals with PIK3CA mutant tumors compared 
with 85 wild-type individuals. No data were missing for cancer status or genotype, while 
34% (34) were missing data for sex, and 40% (40) were missing data for age. In the CC, 
SI, and RNAseqCovarImpute MI analyses, colorectal carcinoma was associated with 
2491, 2403, and 2579 DEGs, respectively, while controlling for genotype, sex, and age 
(Additional file 1: Fig. S12A). The CC and SI analyses uncovered 94% (2422) and 92% 
(2360) of the significant DEGs from the MI method, respectively, while there were 98 
DEGs exclusive to MI (Additional file 1: Fig. S12A). Genes ranked from lowest to highest 
P value followed similar orders between the methods (Additional file 1: Fig. S12B).

Many of the top DEGs in the MI analysis, according to their significance and fold-
change magnitude (Additional file 1: Fig. S12C–E), have been previously shown to play 
roles in cancer etiology. For example, colorectal carcinoma was associated with the 
downregulation of GK5. Genes involved in glycerol metabolism, including GK5, have 
been previously implicated in the etiology of cancers, including colorectal carcinoma 
[21–24]. Mutations in MDN1, which was downregulated in association with colorectal 
cancer here, have been shown to correlate with elevated tumor mutation rates in breast 
and colorectal cancers [25, 26]. Downregulation of TNFRSF1B (a member of the tumor 
necrosis factor gene family) in association with colorectal cancer here is consistent with 
prior studies showing lower mRNA expression of TNFRSF1B in lung cancer compared 
with normal lung tissue [27].

Discussion
We have shown that a MI procedure that includes PCA of the gene expression data in 
the imputation predictor matrix has a performance advantage relative to CC and SI 
methods in RNA-sequencing studies using the limma-voom pipeline. We found that our 
newly implemented MI method in RNAseqCovarImpute was the best performer with 
higher TPRs and lower FPRs and MAPEs across a wide range of missing data scenarios.

Similar methods allowing for the inclusion of high dimensional outcome data in MI 
models have been developed for epigenome wide association studies (EWAS) [8, 9]. In 
EWAS, there appear to be tradeoffs between CC analysis and MI, with MI identifying 
more true positives but also more false positives [8]. In the simulations presented here, 
however, RNAseqCovarImpute identified more true DEGs with no false positive trade-
off. The application of MI to EWAS studies represents a more challenging problem owing 
to higher dimensionality of the methylome (850,000 CpG sites with Illumina’s EPIC array 
[28]) versus the transcriptome (typically tens of thousands of genes). The application of 
MI to EWAS studies might benefit from employing a PCA-based approach similar to the 
one used here. Moreover, future methods development could also tackle the additional 
challenges in applying MI to alternative epigenomic and transcriptomic methods such 
as differentially methylated region and pathway enrichment (discussed below) analyses.
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To address the sparsity of single-cell RNA-sequencing data, imputation methods to 
fill in missing or zero RNA-sequencing counts have been extensively developed [29]. 
Little attention has been paid, however, to the imputation of missing covariate data in 
studies where gene expression is the outcome of interest. Methods for the treatment of 
missing data are well-established in observational epidemiology [30], with MI increas-
ingly the method-of-choice [31, 32]. Yet human observational studies of gene expres-
sion have often failed to report on the treatment of missing data, despite its prevalence. 
When missing data are explicitly addressed in this context, researchers typically utilize 
CC analyses [33–35], while SI is a less common alternative [6]. Despite its advantages, 
we are unaware of any studies with transcriptomic outcomes that have utilized MI for 
missing covariate data. The simulations presented here suggest that future observational 
transcriptomic studies may benefit from employing MI via RNAseqCovarImpute over 
CC or SI. Moreover, we developed an R package so that users may easily apply the meth-
ods presented here to their own data.

We applied RNAseqCovarImpute to a large observational study of maternal age and 
the placental transcriptome. This analysis assessed the association of maternal age 
with placental gene expression controlling for confounding variables such as mater-
nal race, ethnicity, and socioeconomic status, and potential mediators such as alcohol 
and tobacco use during pregnancy. Although there was some overlap, the MI analysis 
uncovered a different set of differentially expressed genes compared with the CC and 
SI analyses. CC analysis uncovered a larger number of DEGs compared with MI, pos-
sibly indicating that CC may have higher power in some cases. However, the simulations 
suggest that CC analyses have higher FPRs across many scenarios compared with MI 
via RNAseqCovarImpute. Individuals with missing data could systematically differ from 
those with complete data, and dropping these individuals could result in bias. Although 
higher power of CC remains a possibility, it is more likely that the excess number of 
DEGs in the CC analysis could be explained by false positives owing to such bias. Ulti-
mately, in a real-world example, the method for dealing with missing data matters, and 
our simulations suggest that MI should be the preferred approach.

Nevertheless, any of these missing data methods would be a better alternative than 
omitting covariate control entirely, a common albeit unsatisfactory approach in obser-
vational transcriptomic studies. Another reasonable alternative is to perform CC analy-
sis while omitting variables with the most missing data. Compared with fully adjusted 
CC analysis, CC while omitting the family income variable was more similar to the MI 
analysis in terms of the total number of DEGs, but displayed more differences in terms 
of the P value rank order of DEGs. Researchers may also opt to only include covariates 
with complete data, which preserves sample size and avoids the need for imputation but 
may introduce bias due to uncontrolled variables. For the ECHO-PATHWAYS dataset, 
only including covariates with complete data resulted in a minimal model adjusting for 
delivery method, study site, fetal sex, and sequencing batch. This reduced model identi-
fied a much larger 1071 DEGs significantly associated with maternal age compared with 
214–575 DEGs in the CC, SI, and RNAseqCovarImpute MI analyses adjusting for all 
covariates. This larger number of DEGs was likely due to confounding by race, ethnic-
ity, lifestyle, and socioeconomic status variables that were not controlled in this analysis. 
Failure to control for these variables in analyses of maternal age could lead to erroneous 
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conclusions and even faulty clinical recommendations. For instance, studies have shown 
that the positive associations of young maternal age with child ADHD in unadjusted 
analyses are eliminated or even reversed following adjustment for confounding and 
mediating variables [36–38]. Thus, younger pregnancies do not confer increased ADHD 
risk because of the biology of aging per se but owing to other variables that are correlated 
with maternal age. Younger mothers are more likely to smoke during pregnancy, and 
prenatal tobacco exposure may impair neurodevelopment. If the link between younger 
pregnancy and adverse child development is mediated by increased tobacco exposure, 
then clinical efforts focusing on reducing tobacco exposures during pregnancy would be 
more effective than recommendations regarding the ideal age for childbearing [36].

Advanced maternal age is a well-known risk factor for preterm birth [39, 40]. These 
analyses demonstrated associations of advanced maternal age with downregulation of 
individual genes (i.e., CXCL8) and pathways (i.e., 9 immune system and 4 signal trans-
duction pathways) that were also downregulated in association with spontaneous 
preterm birth in a prior analysis [41]. Future studies should formally explore these over-
lapping results as putative mechanistic links between advanced maternal age and pre-
term birth.

To the best of our knowledge, MI via RNAseqCovarImpute is applicable to any RNA-
sequencing study that has missing values in the paired covariate data. In addition to the 
placental transcriptomics data in ECHO-PATHWAYS, we applied RNAseqCovarImpute 
to three different datasets. In one example, we analyzed blood platelet RNA-sequencing 
data from individuals with colorectal carcinoma and healthy controls [20]. This analysis 
uncovered several differentially expressed genes with known roles in the etiology and 
progression of various cancers, including colorectal carcinoma. Future studies may uti-
lize RNAseqCovarImpute to achieve higher power and lower FPRs in differential gene 
expression analyses of a wide range of factors and across diverse tissue types.

One limitation to RNAseqCovarImpute is that it is dependent on selection of a number 
of PCs to integrate, and the user will need to define the optimal number of PCs to retain 
using established methods such as Horn’s parallel analysis or a variance explained cut-
off. Our testing suggests that several popular methods perform well when missing data 
is minimal. At high levels of missing data, Horn’s parallel analysis was the best general 
method of choice, but performance could vary with different datasets. Another draw-
back to RNAseqCovarImpute is that its compatibility with pathway and gene set enrich-
ment methods is currently limited, as many of these methods were developed without 
MI in mind. The RNAseqCovarImpute MI method produces one final list of genes 
with their associated t-statistics, log fold changes, and P values for differential expres-
sion. Thus, the method is compatible with gene set enrichment analyses that utilize gene 
rankings such as overrepresentation analysis, or gene level statistics such as camera [42] 
and GAGE (utilized here in the maternal age analysis) [43]. However, the final gene list 
produced by RNAseqCovarImpute is based on the combined analyses of the MI data-
sets. Although theoretically possible, methods that require as input a gene expression 
matrix or data at the individual sample level are likely not out-of-box compatible with 
RNAseqCovarImpute. Future work could moderate such methods to accommodate 
analysis of multiply imputed RNA-sequencing data. Additionally, the RNAseqCovarIm-
pute package is also not out-of-box compatible with all differential expression analysis 
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methods, as it was designed to utilize the limma-voom pipeline. Another limitation was 
that, as an MI method, RNAseqCovarImpute required more processing time compared 
with CC or SI. Finally, data imputation is a rapidly evolving field, and emerging machine 
learning SI and MI methods [44] should be tested in the context of RNA-sequencing in 
future studies.

Conclusions
As the cost of sequencing decreases, studies of the transcriptome may experience a sub-
stantial shift from small-scale in vitro and in vivo experimental systems to larger-scale 
clinical and epidemiologic contexts where missing covariate data is prevalent. MI is a 
well-established method to handle missing covariate data in epidemiology, but was pre-
viously not compatible with transcriptomic outcome data. We developed an R package, 
RNAseqCovarImpute, to integrate limma-voom RNA-sequencing analysis with MI for 
missing covariate data, and demonstrated that this method has superior performance 
compared with SI and CC analyses. Ultimately, RNAseqCovarImpute represents a 
promising step towards harmonizing transcriptomic and epidemiologic approaches by 
addressing the critical need to accommodate missing covariate data in RNA-sequenc-
ing studies. Future studies may expand upon the MI methods developed here for RNA-
sequencing to address problems associated with missing covariate data in other settings, 
including DNA methylation, proteomics, metabolomics, and other high dimensional 
data types.

Methods
RNAseqCovarImpute multiple imputation principal component analysis (MI PCA) method

A graphical overview of the RNAseqCovarImpute MI PCA method is shown in Fig. 1, 
and the corresponding R code are available on GitHub and Bioconductor (see Availabil-
ity of data and materials).

Filtering genes with low counts

A common filtering cutoff in RNA-sequencing is around 10 counts per gene, and filter-
ing on log-counts per million (logCPM) values rather than raw counts is recommended 
to avoid giving preference to samples with large library sizes [45, 46]. The filtering cutoff 
on the CPM scale is roughly equal to the count cutoff of 10 divided by the minimum 
library size in millions. Here, we filter to keep genes with an average CPM across all 
samples above this cutoff reflecting approximately 10 counts per gene.

Data normalization

Following RNA-sequencing and mapping of reads to each gene or probe, an RNA-
sequencing dataset consists of a matrix of counts for genes g = 1 to the total number of 
genes G, where counts are recorded for all samples i = 1 to the total number of samples 
n. The library size Ri, which is the total number of reads for a given sample, is expressed 
as:
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The library size Ri is additionally scale-normalized using the weighted trimmed mean 
of M-values (TMM) method [47], and logCPMs normalized to library size are computed, 
offsetting the counts by 0.5 to avoid taking the log of zero and offsetting the library size 
by 1:

Principal component analysis (PCA)

Fitting an imputation model where the number of independent variables is far greater 
than the number of individuals in the study is generally not feasible. In RNA-sequencing 
studies with tens of thousands of genes, we can surmount this problem by reducing the 
dimensionality of the gene expression data with PCA and including a subset of PCs in 
the MI prediction models.

For the MI PCA method, we conduct PCA using Bioconductor’s PCAtools R package 
[13] on the gene expression data normalized as described above. There is no universally 
optimal approach to selecting the number of PCs to retain in PCA. Horn’s parallel analy-
sis retains PCs with eigenvalues greater than eigenvalues of random data [14, 15] and 
is regarded as one of the best empirical methods to determine component retention in 
PCA [48]. Performance of MI PCA was compared when using Horn’s parallel analysis, 
an 80% variance explained cutoff, and the elbow method, where all PCs are retained that 
come before the elbow point in the curve of variance explained by each successive PC. 
Methods for determining the number of retained PCs were implemented using Biocon-
ductor’s PCAtools R package [13].

Data imputation

The retained PCs are added to the covariate data and utilized along with all covariates in 
the MI prediction model when creating m multiply imputed datasets. Data are imputed 
using the “mice” R package with its default predictive modeling methods, which are pre-
dictive mean matching, logistic regression, polytomous regression, and proportional 
odds modeling for continuous, binary, categorical, and unordered variables, respectively 
[49].

Differential expression analysis

The limma-voom pipeline is run on each m imputed dataset separately. This procedure 
fits weighted linear models for each gene that take into account individual-level preci-
sion weights based on the mean–variance trend [10]. A linear model is fit by ordinary 
least squares separately for each gene. The model includes an intercept β0 , and coeffi-
cients β1–βn for any number of covariates C1–Cn.

Ri =

G

g=1

rgi

logCPMgi = log2(
rgi + 0.5

Ri + 1.0
∗ 106)
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The geometric mean of the library sizes plus one, R̃ is computed. The average logCPM 
for each gene, logCPMg  is computed and converted to an average log-count by:

The regressions provide fitted logCPM values, µ̂gi for each gene (g) and each sample (i) 
that are converted to fitted counts by:

A LOWESS curve is fitted to the square root of the residual standard deviations from 
the regression models as a function of r̃  , the average log-counts. Interpolating the curve 
on the interval of library sizes R̃ defines the piecewise linear function lo() for predict-
ing individual observation-level square-root standard deviations. The predicted square-
root standard deviation of individual logCPM observations logCPMgi is equal to lo(�̂gi ). 
Voom precision weights are defined as the predicted inverse variances, lo(�̂gi)−4.

Voom precision weights and logCPM values are input into the limma linear modeling 
framework which utilizes an empirical Bayes procedure to squeeze gene-wise variances 
towards a common value [11, 12]. This procedure is run separately on each m set of 
imputed data to obtain coefficients and standard errors for each gene.

Pooling results

Rubin’s rules [2] are used to pool coefficients and standard errors, and the Barnard and 
Rubin adjusted degrees of freedom is calculated [50] (see [3] for more details). From the 
limma-voom pipeline above, the linear regression coefficient ( β ) and the Bayesian mod-
erated standard error (SE) for each gene from each m number of models on the m num-
ber of imputed datasets is extracted. The Bayesian moderated degrees of freedom (df) 
are averaged across the m models. One gene at a time, results are pooled across the m 
models as follows.

Coefficients are pooled with the basic formula of taking the mean.

Within imputation variance (VW) is the average of the sum of the squared standard 
errors (SEs) divided by m.

Between imputation variance (VB) reflects extra variance due to missing data and is 
expected to be large when missing data is high. It is calculated as the sum of the squared 
differences between the pooled coefficient ( β ) and each coefficient ( βi ) from each 
imputed dataset divided by m − 1.

logCPMg = β0 +

N∑

n=1

βn ∗ Cn

r̃ = logCPMg + log2

(
R̃
)
− log2(10

6)

�̂gi = µ̂
gi
+ log2(Ri + 1)− log2(10

6)

β =
1

m

m∑

i=1

βi

VW =
1

m

m∑

i=1

SE2
i
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Total variance (VTotal) is calculated and its square root as the pooled standard error 
(SEPooled).

The pooled coefficient ( β ) divided by the pooled standard error (SEPooled) is defined as 
the t-statistic (t) for significance testing.

The degrees of freedom for significance testing also needs adjustment. First calculate 
lambda, the proportion of total variance due to missingness.

An older version of the degrees of freedom (dfOld) proposed in Rubin (1987) is adjusted 
using the equations from Barnard and Rubin (1999). This MI adjusted degrees of free-
dom (dfAdjusted) is the same degrees of freedom used in the “mice” R package.

P values are derived from the t-distribution. In R, 2-sided P values can be calculated 
using the pt function, which returns the area for the Student’s t-distribution to the left of 
the t-statistic for a given degrees of freedom. In R:

After this pooling procedure is completed for every gene, P values for the linear model 
contrast of interest are adjusted for false-discovery-rate control [51].

Performance on three example datasets

Performance was evaluated in a simulation study using three real RNA-sequencing 
and covariate datasets and four synthetic sets of RNA-sequencing data (described 
below). Performance was compared between SI followed by the standard limma-voom 

VB =

∑m
i=1(βi − β)

2

m− 1

VTotal = VW +

(
1+

1

m

)
V

B

SEPooled =

√
VTotal

t =
β

SEPooled

lambda =
VB +

VB
m

VT

df Old =
m− 1

lambda2

df Observed =
df + 1

df + 3
∗ df ∗ (1− lambda)

df Adjusted =
df Old ∗ df Observed
df Old + df Observed

2 ∗ pt(−abs(t), df Adjusted)
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differential expression analysis, CC limma-voom differential expression analysis, and 
the two RNAseqCovarImpute methods, MI Gene Bin (Additional file 1: Supplemental 
Methods) and MI PCA (described above).

Determining true differentially expressed genes (DEGs)

Differential expression analysis using the limma-voom pipeline was conducted on the 
entire set of observations with their complete covariate data (hereinafter “full data”). 
These models estimated the effect of a predictor of interest on gene expression while 
controlling for several covariates. Genes significantly associated with the predictor of 
interest at FDR < 0.05 in these full data models were defined as true DEGs.

Simulating missing data under different missingness mechanisms

Missingness was simulated using the ampute function from the “mice” package [49]. 
Missingness was simulated to emulate a common situation in scientific research where 
an investigator has complete data for a predictor of interest, but may have missing data 
for other important covariates. Therefore, missingness was only induced in adjustment 
covariates and not the predictor of interest. We explored scenarios with various lev-
els of missing data ranging from 5 to 85% of participants having at least one missing 
data point, and under three missingness mechanisms: missing completely at random 
(MCAR), missing at random (MAR), and missing not at random (MNAR). We simulated 
ten datasets for each missingness mechanism at each level of missingness before apply-
ing the SI, CC, MI, and MI PCA methods and comparing the results with the full data 
model.

One or two covariates (described in detail below for each dataset) were defined as 
MNAR variables: these variables were not included as adjustment covariates in the dif-
ferential expression analysis, but had influence in determining the missingness in the 
other covariate data. Under the MAR mechanism, the data that explain the missing-
ness are all available. Thus, for the MAR mechanism, the SI, MI, and MI PCA meth-
ods had access to these MNAR variables while imputing missing covariate data. Under 
the MNAR mechanism, patterns of missingness in the data are related to unobserved or 
unmeasured factors. Thus, for the MNAR mechanism, the SI, MI, and MI PCA meth-
ods did not have access to these MNAR variables while imputing missing covariate data. 
Under the MCAR mechanism, missingness in the data are completely random and do 
not depend on values of the covariates.

CC analyses dropped any individual with at least one missing data point, while SI 
imputed missing data using the missForest package [52]. The limma-voom pipeline was 
applied for CC and SI as described for the full data model.

Evaluating results

Our objective was to evaluate the ability of the SI, CC, MI, and MI PCA methods to 
identify true DEGs from the full data model as significant while limiting false positives. 
True DEGs from the full data model that were also identified as significant by a given 
method were defined as true positives. We report the true positive rate (TPR) as the pro-
portion of true DEGs identified as significant for each method out of the total number 
of true DEGs from the full data model. Genes erroneously identified as significant by a 
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given method that were not true DEGs from the full data analysis were defined as false 
positives. We report the false positive rate (FPR) as the proportion of false positives out 
of the total number of significant results for each method. We report the mean abso-
lute percentage error (MAPE) across all true DEGs to characterize the ability of each 
method to reproduce gene expression coefficients from the full data model, where βtruthg 
is defined as the true coefficient from a DEG in the full data model, and βg is defined as 
the coefficient for the same gene estimated using SI, CC, MI, or MI PCA following simu-
lated missingness. MAPE was calculated as:

Datasets

Three RNA-sequencing datasets with mapped reads were obtained and processed as 
described above in “ Data normalization” and “ Filtering genes with low counts.” The first 
dataset was based on placental RNA-sequencing and covariate data from the ECHO pre-
natal and early childhood pathways to health (ECHO-PATHWAYS) consortium [5]. This 
study harmonized extant data from three pregnancy cohorts from diverse populations 
across the country. The consortium’s core aim is to explore the impact of chemical expo-
sures and psychosocial stressors experienced by the mother during pregnancy on child 
development, and to assess potential underlying placental mechanisms. To investigate 
placental mechanisms, the study generated RNA-sequencing data for the CANDLE and 
GAPPS pregnancy cohort samples. All participants of the CANDLE and GAPPS stud-
ies provided informed consent upon enrollment and research protocols were approved 
by the Institutional Review Boards (IRBs) at the University of Tennessee Health Sci-
ence Center (IRB approval: 17–05154-XP) as well as the Seattle Children’s Hospital 
(IRB approval: STUDY00000608) and the University of Washington (IRB approval: 
STUDY00000638). The generation of placental RNA-sequencing data for this study is 
described elsewhere [41]. Among the enrolled study sample of 1503, transcriptomic data 
are available for 1083 individuals. We excluded 18 placental abruptions and 20 individu-
als missing maternal age data, leaving a sample of 1045. We retained only protein-coding 
genes, processed pseudogenes, and lncRNAs.

Covariates from the ECHO-PATHWAYS dataset included in the simulation study 
were maternal age (continuous), child sex (male versus female), RNA-sequencing batch, 
maternal tobacco use during pregnancy (yes versus no), maternal alcohol use during 
pregnancy (yes versus no), and family income (continuous). The full data model restricted 
to 994 individuals with complete data for these variables. Mothers self-reported alcohol 
use, while the positive tobacco exposure group included individuals with maternal urine 
cotinine above 200  ng/mL [53], as well as individuals who were below this cutoff but 
self-reported tobacco use during pregnancy. Maternal age was defined as the predictor 
of interest, while sex, prenatal tobacco exposure, and RNA-sequencing batch were mod-
eled as covariates. Simulated missing data ranged from 5 to 55% of participants having at 
least one missing data point. Maternal alcohol use and family income served as MNAR 
variables. Levels of missingness according to different values of these MNAR variables 

MAPE =
1

G

G∑

g=1

∣∣βtruthg − βg
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∣∣βtruthg
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were summarized to illustrate differences between MAR, MNAR, and MCAR missing-
ness mechanisms.

Two additional datasets were selected based on their large sample sizes, public avail-
ability, and ample number of covariates that could be examined in covariate imputation 
analyses. The non-small cell lung cancer (NSCLC) dataset was downloaded from the 
European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-
EBI: E-GEOD-81089) and is based on [16]. For the NSCLC dataset (N = 670), the 
association of sex (male versus female) with the transcriptome was examined, adjust-
ing for participant age (continuous) and participant smoking status (smoker versus ex-
smoker versus non-smoker). Sampling site (tumor versus non-malignant) served as an 
MNAR variable. The Epstein-Barr virus (EBV) dataset was downloaded from EMBL-EBI 
(E-MTAB-7805) and is based on [17]. For the EBV dataset (N = 384), the association of 
time (continuous days) with the transcriptome was examined, adjusting for infection 
status (EBV infected versus not infected). Donor source (categorical, three individuals) 
served as an MNAR variable. All methods performed better at recovering the full data 
model results for the EMBL-EBI datasets compared with the ECHO-PATHWAYS data-
set, so analyses with these datasets examined 55–85% of participants having at least one 
missing data point.

Finally, four sets of synthetic RNA-sequencing data were also used to compare per-
formances of RNAseqCovarImpute (MI PCA Horn method), SI, and CC differential 
expression analysis. The NSCLC RNA-sequencing data were modified to add known 
signal using the seqgendiff package [18]. The method relies on binomial thinning of the 
RNA-sequencing count matrix to closely match user defined coefficients. Rather than 
generating counts from theoretical distributions, thinning a real set of RNA-sequenc-
ing counts can better preserve realistic variability and inter-gene correlations typical of 
RNA-sequencing data [18]. Subsets of 25%, 50%, 75%, or 99% of genes were randomly 
selected to have their coefficient of association (Log2 fold-changes) with sex set to zero. 
The remaining coefficients were drawn randomly from a gamma distribution generated 
using rgamma(shape = 1) from the stats package in R.

Application of RNAseqCovarImpute in analysis of maternal age and the placental 

transcriptome

This analysis examined the association of maternal age with the placental transcriptome 
while controlling for 10 covariates using the ECHO-PATHWAYS sample described 
above (N = 1045). Covariates included family income adjusted for region and inflation 
(USD), maternal race (Black vs. other), maternal ethnicity (Hispanic/Latino vs. not His-
panic/Latino), maternal education (< high school vs. high school completion vs. college 
or technical school vs. graduate/professional degree), study site, maternal alcohol dur-
ing pregnancy (yes vs. no), maternal tobacco during pregnancy (yes vs. no), delivery 
method (vaginal vs. C-section), fetal sex (male vs. female), and RNA-sequencing batch. 
The causal relationships among these variables are illustrated in Fig. 5. For the maternal 
race variable, American Indian/Alaska Native, multiple race, and other were collapsed 
along with White participants to avoid small or zero cell sizes in multivariable mod-
els. Only protein-coding genes, processed pseudogenes, and lncRNAs, and genes with 
average log-CPM > 0 (approximately 10 counts for this dataset) were retained, resulting 
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in a final sample of 14,029 genes. DEGs associated with maternal age while adjusting 
for all 10 covariates were compared between the CC, SI, and RNAseqCovarImpute MI 
PCA methods. To retain the entire sample size without covariate imputation, a reduced 
model was fit by omitting any covariates with missing data. Additionally, an alternative 
CC analysis was performed while omitting family income, the variable with the most 
missing data.
T-statistics (Log2FCs divided by standard error) from the differential expression anal-

yses were input into pathway analysis for Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways (excluding KEGG human disease pathways) using the generally appli-
cable gene set enrichment (GAGE) method [43]. For pathways with GAGE FDR < 0.05, 
GAGE P values and the mean differential expression t-statistic for all genes in the path-
way were plotted.

Application of RNAseqCovarImpute in analysis of colorectal carcinoma and the blood 

platelet transcriptome

In another real-world example, RNAseqCovarImpute was applied to a dataset of blood 
platelet RNA-sequencing from 42 individuals with colorectal carcinoma and 59 healthy 
donors (EMBL-EBI: E-GEOD-68086) [20]. This analysis examined the association of 
colorectal carcinoma versus healthy cancer status with the transcriptome while control-
ling for genotype (KRAS vs. PIK3CA vs. wild-type), sex, and age (N = 101). DEGs asso-
ciated with colorectal carcinoma while adjusting for these covariates were compared 
between the CC, SI, and RNAseqCovarImpute MI PCA methods.
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