
Seqrutinator: scrutiny of large 
protein superfamily sequence datasets 
for the identification and elimination 
of non‑functional homologues
Agustín Amalfitano1†, Nicolás Stocchi2†^, Hugo Marcelo Atencio3, Fernando Villarreal2*    and Arjen ten Have2 

Background
General introduction

Protein superfamilies, here defined as protein families with subfamilies that have differ-
ent functional characteristics, are the subject of many computational studies [1–10] and 
form the target of many computational platforms [11–13]. Structure-function analysis 
aims not only to identify which residues and/or subsequences are involved in functional 
diversification; it also tries to explain and predict the functional differences and can 
identify hitherto nondescript subfamilies [2, 3]. A large set of methods [14–16] is avail-
able and novel methods are published regularly (for review, see [17]) in a research field 
often referred to as phylogenomics.

The basis for many protein bioinformatics tools is formed by phylogenies and their 
underlying multiple sequence alignments (MSAs). Reliable methods for superfamily 
phylogeny reconstruction use maximum likelihood (PhyML [18], RAxML [19]; FastTree 
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[20]) or Bayesian inference (MrBayes [21]). MSA construction has improved signifi-
cantly in recent years [22–26] but, since more complex protein families are analyzed in 
the post-genome era, still forms a major research area [27–29].

Only recently, attention has been paid to the automated identification and removal of 
sequences from Non-Functional Homologues (NFHs) [30–34]. Information that NFH 
sequences provide to an MSA is often considered noise that has no significant effect on 
the results. MSAs are often trimmed to remove not so reliable columns [35, 36], which 
at least in part have resulted from NFHs. This trimming has been shown to lead to 
improved trees [37]. We argue that besides that trimming an MSA is a loss of informa-
tion, NFH sequences provide erroneous signals that hinder the correct processing of the 
MSA, thereby deteriorating the output.

The two major sources of NFH sequences are pseudogenes and erroneous sequences. 
Pseudogenes are no longer under functional constraint and not only accumulate point 
mutations, leading to low similarity, but also obtain inserts and or deletions of subse-
quences, especially when the original gene contained introns. Erroneous sequences can 
result from both sequencing and assembly errors as well as from incorrect gene mod-
els. Notably, recently published complete proteomes that have not yet been subjected to 
community corrections, often contain many incorrect gene models.

MSAs with superfamily sequences from many complete proteomes are often prohibi-
tively long due to an accumulation of various alignment errors (e.g., sequence-specific 
inserts provide information that can derail proper MSA). Identification and removal of 
NFH sequences is therefore required but demands a huge effort on large datasets. Exist-
ing methods are either not fully objective [30], directed at improving existing MSAs by 
removing subsequences [32], or only remove outliers [31, 33, 34]. None of these meth-
ods is fully automated and directed at removing NFH sequences from large sequence 
sets in order to obtain clean datasets. Most of the existing algorithms are only tested 
on simulated datasets and none directs the problem of large gap regions. A likely rea-
son is that defining inclusion thresholds is troublesome and will by definition result in 
both false positives and false negatives. More importantly, no real benchmark datasets of 
functional homologues (FHs) and NFHs exist and any attempt to construct a benchmark 
set will result in a set that is too restrictive.

We have developed a method for objective sequence scrutiny directed at NFH detec-
tion and removal, named Seqrutinator. The method was developed and tested by per-
forming the sequence mining of three single-domain superfamilies in plants: cytochrome 
P450 (CYP), UDP-glycosyltransferase (UGT), and BAHD acyltransferases (BAHD is an 
acronym derived from the first characterized enzymes: benzyl alcohol O-acetyl trans-
ferase; anthocyanin O-hydroxycinnamoyl transferase; N-hydroxycinnamoyl anthranilate 
benzoyl transferase; and deacetylvindoline 4-O-acetyltransferase). These families form 
part of our major biological research interest which is to model flavonoid metabolism 
in potato (Solanum tuberosum) (see Fig. 1), for which it is crucial to functionally assign 
sequences to their functional subfamilies. In addition, they were selected as being chal-
lenging cases.

The three superfamilies are rather large with in between 50 and 500 functional homo-
logues in seed plants. CYP and UGT constitute ~ 4% and ~ 8%, respectively, of the known 
flavonoid metabolism in potato. The BAHD acyltransferase superfamily constitutes a 
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further ~ 12%, of a total of 384 known potato proteins involved in flavonoid metabolism, 
of which all are classified in 59 Pfam domains. Since enzymes from specialized metabo-
lism concern secondary rather than primary metabolites, they are under less functional 
constraint [38]. Moreover, specialized metabolism generates a plethora of chemically 
related compounds via parallel, diverging and converging pathways [38], reflected in 
Fig. 1. These complex superfamilies result from a process in which duplications result 
in functional redundancy, which allows for sequence diversification that, in its turn, is 
required for functional diversification. Hence, these enzymes often also show high sub-
strate permissiveness. Together, the functional constraint often acts on part of the super-
family rather than on specific paralogues. This contributes even further to sequence and 
functional diversification. The resulting low functional constraint explains why high evo-
lutionary rate, high sequence diversity and complexity.

The complexity of the selected superfamilies is so high that no reliable function anno-
tation is at hand for many homologues. CYP and UGT sequences are classified as CYP 
or UGT by Pfam or using a system based on the percentage of identity maintained by 
classification committees [39, 40]. Panther [41] assigns at the subfamily level whereas we 
recently developed HMMERCTTER [42], a software for the clustering and classification 
of protein superfamily sequences, which outperformed Panther in classifying the alpha-
crystallin domain, glycosyl hydrolase 28 and phospholipase C superfamilies. The high 
HMMERCTTER performance depends on its 100% precision and recall (100% P&R) 
rule. This means that for each cluster, when screened with its cluster-specific HMMER 

Fig. 1  Cartoon depicting the phenylpropanoid/flavonoid biosynthesis network in potato. Three major 
superfamilies cover approximately 25% of the enzymatic reactions. The superfamily subnetworks show a 
partial overlap. The BAHD and UGT superfamilies are shifted towards end-products that are conjugated and 
transported to the vacuole, thereby changing the effective sink
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profile, all sequences of the cluster have a HMMER score that is higher than the score of 
any non-cluster sequence from the superfamily sequence set. As such, it depends on sets 
that lack NFH sequences, such as partial or pseudogene sequences. Note that, on the 
one hand, Seqrutinator is a tool to assist HMMERCTTER and that HMMERCTTER, on 
the other hand, can be used to determine Seqrutinator performance.

Here, we present the pipeline and script, with some complementary scripts and meth-
ods. We show numerical data generated by the three case studies alongside, given the 
lack of a valid benchmark dataset, experiments directed at the validation of the method. 
We show that the MSAs of filtered datasets are significantly more reliable and that 
the method is flexible and robust. Most importantly, Seqrutinator shows high preci-
sion since it classified very few FHs as NFH, whereas no false negatives (NFHs classi-
fied as FH) were detected. Furthermore, we present a detailed recovery analysis that, 
besides that it confirms the high performance of Seqrutinator, shows the relative ease of 
sequence analysis once a high-quality MSA has been obtained by Seqrutinator.

Design of the pipeline and its modules

Objective

The objective of this work is to design, provide and test an objective, automated but flex-
ible pipeline for the scrutiny of sequence sets for NFHs. It is directed at large, complex 
protein superfamilies from eukaryotes. Sequences, obtained by sensitive sequence min-
ing are classified as either functional or non-functional. The NFH sequence sets can be 
subjected to a recovery analysis in order to prevent inadvertent false positives, i.e., FHs 
classified as NFH. Seqrutinator should be a method to obtain sequence sets that are rep-
resentative of a functional protein superfamily. Since there are no reliable benchmark 
sets for the quantification of Seqrutinator’s results, we cannot quantify performance by 
which we need to test performance in qualitative ways.

Definition of non‑functional homologue

To scrutinize protein superfamily sequence sets for the presence of NFHs, we need 
to define NFH in terms of sequence characters. We discriminate two major classes of 
NFH sequences that are further subdivided. First, NFH sequences can result from either 
incorrect gene modeling or sequencing and/or assembling errors. Second, an NFH 
sequence can correspond to a pseudogene, which we define as a gene that no longer 
encodes its either supposed or original function.

Incorrect gene modeling and sequencing errors come with several issues. First, some 
sequences will lack or have additional N- or C-terminal subsequences as a result of a 
missed start or stop codon. Then, not all introns are identified from eukaryotic sequences 
whereas, on the other hand, coding subsequences that are incorrectly identified as intron 
form a fourth problem. Both intron issues can lead to intron-sized gaps in an MSA or to 
a switch in the reading frame and the untimely stop of the coding sequence.

Pseudogenes are no longer under constraint and will as such rapidly accumulate muta-
tions. This can have two consequences. It will result in increased evolutionary distances, 
as can often be observed in phylogenetic trees. It may also result in the loss or gain of 
start and stop codons as well as splice donor and acceptor sites. As such, many pseudo-
genes will have issues similar to those mentioned for erroneous sequences. A last issue 



Page 5 of 23Amalfitano et al. Genome Biology          (2024) 25:230 	

is that of the definition of the superfamily. Superfamilies can have related superfamilies 
of which some sequences may be identified in an initial, sensitive data mining but which 
should be identified by Seqrutinator as NFH.

Based on the above problem description we hypothesize that:

1)	 Relatively short sequences are unlikely functional.
2)	 NFH sequences with intron-derived subsequences incorrectly called as exons during 

gene modeling or presented by pseudogenes can instigate large continuous regions of 
gap-rich columns in MSAs. Incorrect identification of start or stop codons can insti-
gate large N- or C-terminal extensions.

3)	 NFH sequences that lack exon-derived subsequences incorrectly called as intron 
during gene modeling or presented by pseudogenes can present large continuous 
gaps at otherwise amino acid-rich columns of MSAs. Incorrect identification of start 
or stop codons can instigate large N- or C-terminal gap regions.

4)	 Distant pseudogenes and otherwise similar sequences such as from related protein 
families will have low similarity and show low scores to a superfamily’s HMMER 
profile.

Modules and algorithms were designed to find NFH sequences based on these four 
hypotheses. The resulting method is based on the concept of homology and it depends 
on MSAs, which makes Seqrutinator in principle not a valid method for the scrutiny and 
cleaning of protein families with different domain architectures.

The default pipeline and its modules

The fully automated Seqrutinator pipeline, described in detail in Additional file 1: Sup-
plemental Document 1, is implemented in a larger procedure (see Fig.  2) that starts 
with a user-guided sequence collection and ends with user-guided recovery analyses, 
described in detail in Additional file 2: Supplemental Document 2. Sequence collection 
from multiple sequence sets is fully automated using the complementary script Multiple 
Fasta Aligner (MuFasA, see Additional file 1: Supplemental Document 1). This requires a 
HMMER [43] profile as well as initial sequence sets (e.g., complete proteomes) as input. 
All sequences from a complete proteome identified by the HMMER profile with a score 
higher than the inclusion threshold are collected in a single fasta file and aligned auto-
matically. We recommend to align a user-selected reference sequence to each MSA, in 
order to remove non-homologous N- and C-terminal subsequences that may negatively 
interfere with the automated procedure. This is can be automatically achieved with an 
optional MuFasA parameter.

Seqrutinator is a flexible pipeline made of five different modules. The user can select 
the modules, in which order they will be implemented, and change settings that will 
affect the stringency of the automated scrutiny and filtration. Here, we summarize the 
default procedure of Fig.  2 and its reasoning. Details and optional settings are in the 
pipeline and module description in Additional file 1: Supplemental Document 1.

The first step is the Short Sequence Remover (SSR) directed at relatively short 
sequences. By default, sequences that have a length of 65% or less of the reference 
sequence are removed. Sequences of proteins with a resolved structure are preferred 
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since these typically concern final, active proteins, resulting from possible post-transla-
tional modifications such as prepeptide cleavage.

The second step is the Non-Homologous Hit Remover (NHHR). It constructs a 
HMMER profile and screens all sequences by hmmsearch [43]. Outlier sequences with a 
HMMER score below Q1-1.5 IQR are removed.

The third module in the default pipeline is the Gap Instigator Remover (GIR) which 
removes sequences that instigate large gaps in MSAs. By default, the GIR removes 
sequences that induce regions of 30 or more continuous gap columns, where a gap 
column is defined as a column occupied by at least 90% of gaps. A 10% of residues is 
allowed since certain residues of FH sequences may have become aligned to the insert. 
The default region size is set according to the minimal intron size observed among 
most eukaryotes but may depend on the organism [44]. Note that sequences with long 

Fig. 2  Schematic of the procedure with default seqrutinator pipeline. The workflow for protein superfamily 
sequence mining consists of three blocks (left). Block 1 concerns the preparation of the input for the 
automated Seqrutinator pipeline in the second block. Block 2 illustrates Seqrutinator’s modules in default 
order, including eventual iterations indicated by circular arrows and described in the main text and Additional 
file 1: Supplemental Document 1. NH Hit means non-homologous hit. The various “_removed.fsa” are archives 
with the removed sequences for each of the modules that can be analyzed in block 3, directed at the 
identification and recovery of inadvertently removed FH sequences. The schematic MSAs on the right show 
the truncation of the MSA in block 1 and, for each of the five modules of the automated pipeline, which 
sequences (indicated by triangles) are removed and why
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N- and/or C-terminal subsequences are also removed, by which truncation of the input 
set is highly recommended. GIR removes sequence-by-sequence using realignment and 
iteration.

The fourth module is the Continuous Gap Sequence Remover (CGSR). This removes 
sequences that show one or more instances of large continuous gaps in the MSA. Again, 
the default setting is at 30 columns, provided that columns are occupied with less than 
50% gaps. This is in order to allow subfamily-specific subsequences. CGSR removes 
sequences in a threshold-controlled batch, as described in detail in Additional file  1: 
Supplemental Document 1, and is iterated. Note that not all sequences that lack a sub-
sequence due to incorrect gene modeling will be detected. Residues that enclose the gap 
caused by the absent subsequence may align to any of the columns of the gap, thereby 
splitting this into two or more continuous gap regions. These instances are not detected.

The last module in the default pipeline is the Pseudogene Remover (PR) which is iden-
tical to the NHHR module except that it is iterated. The names of the NHHR and PR 
modules are as such based on the intent of the modules. Although there is no clear-cut 
threshold that can discriminate between a non-homologous hit and a pseudogene, the 
first is expected to be less similar but more disturbing. As such, NHHR is by default the 
first module and not iterated. PR is iterated since pseudogene identification is more deli-
cate and works with a much improved MSA that corresponds with a different HMMER 
score distribution. As a result, PR is more sensitive than NHHR and by default the last 
module of the pipeline.

We recommend performing a recovery analysis as block 3 since certain FH sequences 
may be inadvertently removed. The Seqrutinator output provides data and graphs that 
show the removal of sequences in detail and can assist in this analysis.

Design of the performance analysis

The performance of a binary classifier such as Seqrutinator is usually determined in 
terms of P&R. Since, as stated before, there are no reliable benchmark sets for the quan-
tification of Seqrutinator’s results, we need to incorporate different measures and exper-
iments to show Seqrutinator performance. We designed experiments to show behavior 
and determine consistency and performance using mostly indirect measures.

UniProtKB/Swiss-Prot (SwissProt) is, to the best of our knowledge, the most appro-
priate dataset for semiquantitative benchmarking of the pipeline. It contains a large 
number of sequences that come with biochemical and/or transcript evidence along-
side sequences that lack wetlab evidence. More importantly, even the most stringently 
curated sequences, those with protein evidence do include partial sequences and pseu-
dogenes. Hence, we used SwissProt expecting that few entries will be NFH sequences 
which should be reflected in Seqrutinator results of three SwissProt homologue sets.

We also tested the pipeline by performing comparative sequence scrutiny and cleaning 
of the same three superfamilies in 16 complete plant proteomes with different degrees 
of quality. The three superfamilies have many homologues to allow for the statistical 
approach used in the outlier modules. Automated NFH sequence identification of three 
superfamilies in 15 land plants and the algae Chlamydomonas reinhardtii, used as an 
outgroup, allows for a comparative analysis that will shed light on performance. This 
is based on the hypothesis that performance on complete proteomes depends on the 
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quality of the complete proteome rather than the superfamily that is analyzed. Each of 
the applied algorithms should identify no or only a few NFH sequences in a high-quality 
sequence set such as the complete proteome from the model organism Arabidopsis thal-
iana (TAIR10). On the other hand, less curated complete proteomes (that have either 
been published recently or do not count on a large research community) are more likely 
to contain many NFH sequences. Indeed, there are large differences between the num-
ber of sequences of the complete proteomes, and although different plants will have dif-
ferent numbers of functional paralogues, we foresee that Seqrutinator not only merely 
removes sequences but will also result in a convergence of the number of retained 
sequences throughout the process. For A. thaliana, we included TAIR v6, besides the 
latest and supposedly superb set of TAIR v10. The superfamily analyses will be published 
elsewhere; here, we report the numerical data from the NFH sequence identification to 
show the performance of the methods.

Finally, we considered how to detect false positives, i.e., inadvertently removed FH 
sequences. To do so, we must understand the method and the biases of the initial data-
sets. For instance, a complete proteome from a single organism has a different bias than 
the SwissProt sequence set or all sequences from a single Pfam seed alignment.

A first minor concern is that of sequences that have been removed by the PR module 
because of a biased HMMER profile. Although HMMER profiles are weighted, they can-
not account for large differences in clade distance. In a superfamily with various equidis-
tant subfamilies and a single, more distant subfamily, sequences of the distant subfamily 
will show low scores in a hmmsearch and may be inadvertently removed by the PR. This 
problem is exacerbated when working with sequence sets from complete proteomes, 
which come with divergent MSAs and HMMER profiles with low P&R. These inad-
vertently removed sequences can be identified by recovery analyses of the combined 
sequences that were removed from the various species sequence sets.

Another concern is that of taxon-specific sequences. Complex superfamilies show 
a high rate of evolution by which taxon-specific sequences are expected. Any type of 
mutation can result in a novel functional subfamily and as such functional sequences 
can have been removed by GIR, CGSR, or PR. Cluster analysis is likely to fail when 
the sequence is taxon-specific; hence, additional sequence mining in a specific part of 
sequence space (e.g., genus, family or order) that is to be analyzed may be required.

Results
Seqrutinator is consistent and performs well on 19 complete proteomes

We subjected 19 sequence sets to sensitive HMMER searches with HMMER profiles for 
BAHD, CYP, and UGT using MuFasA. This resulted in a total of three times 19 sequence 
sets representing the crude BAHDomes, CYPomes, and UGTomes of the 16 plant spe-
cies (Fig. 3A), of which A. thaliana is represented by two versions (v6 and v10), as well 
as two SwissProt plant sequence sets (standard and the more strict subset with pro-
tein/transcript evidence, from here on referred to as curated). All crude sequence sets 
were then prepared for and subjected to the Seqrutinator pipeline using default settings 
and default order of SSR-NHHR-GIR-CGSR-PR, also indicated as 12345. The numbers 
of input and retained homologues after each module were recorded (Additional file 3: 
Supplemental Table  S1) and are shown in Fig.  3B. This shows similar patterns for the 
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selection of FH sequences from the three superfamilies. This suggests Seqrutinator’s 
performance is consistent.

The table in Fig. 3C shows how many sequences were removed by each module from 
each dataset. Shown are the numbers of removed sequences n, for each individual 
BAHDome, CYPome, and UGTome and module. We then calculated n/N, where N is 
the number of accepted sequences. The numbers n are highlighted in red if the corre-
sponding n/N proportion is higher than the average for that module and superfamily, 
which as such indicates if a species has relatively many NFH of a certain superfamily 
that are removed by that particular module (only for SSR, GIR, and CGSR since the 
NHHR and the PR module remove too few sequences for meaningful comparison). As 
hypothesized, relatively few sequences were removed from the A. thaliana datasets 
(see also Fig. 3D). No real difference was found comparing v6 with the more recent 
v10. The Marchantia polymorpha, Physcomitrella patens (moss), Spirodela polyrhiza 
(duckweed), Oryza sativa (rice), Zea mays (corn), Helianthus annuus (sunflower), 

Fig. 3  Seqrutinator performance on 19 BAHDomes, CYPomes, and UGTomes. A Taxonomy of selected 
species. 1, embryophytes (land plants); 2, spermatopsida (seed plants); 3, angiosperms (flowering plants); 4, 
monocots; 5, eudicots; 6, asterids; 7, rosids. B Numbers of BAHD, CYP, and UGT homologues per species found 
(input) and retained after each step of the default Seqrutinator pipeline. C Number of removed sequences. 
Shown are the numbers of the initial and finally accepted sequences as well as the number of removed 
sequences, per module and superfamily (B: BAHD, C: CYP and U: UGT). Red shading indicates a proportionally 
high number of NFH was removed (see also main text and Additional file 3: Supplemental Table S1, SSR, 
GIR, and CGSR only). D Seqrutinator performance for BAHDomes, CYPomes, and UGTomes. Bars show the 
proportions of the number of finally accepted sequences over the number of initial sequences. Species in B, 
C, and D are presented by three letter codes according to A. Ath10 and Ath6 indicate proteome versions 10 
and 6 of Ath. SP, SwissProt; SPC, SwissProt Curated
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Solanum lycopersicum (tomato), Vitis vinifera (grape), Medicago truncatula (bar-
rel clover), and Populus trichocarpa (black cottonwood poplar) datasets appear to 
have intermediate numbers of NFHs (< 50% for all three superfamily datasets). The 
remainder of the complete proteomes consistently show high numbers of NFHs (at 
least 40% but mostly > 50%). The most particular is Pinus taeda (loblolly pine), with 
over 80% NFHs. It is noteworthy that the majority of the NFHs are detected and 
removed by SSR and CGSR; intermediate and few numbers of NFH were detected 
by GIR and by NHHR and PR, respectively. Hence, the performance of the modules 
is largely explained by the provided dataset rather than by the superfamily. This is in 
correspondence with our hypothesis and indicates that Seqrutinator has a consistent 
performance.

The most effective step is SSR, which indicates that many sequences, in particular 
from the complete proteome of P. taeda, are partial. Both versions of the A. thaliana 
complete proteome appear with a few partials (4, 9, and 2 for BAHD, CYP, and UGT, 
respectively for v10). CGSR also removed many sequences, which results from the 
relaxed default setting of SSR (< 65% of length reference sequence). GIR was the third 
most effective module and removed only a few sequences per dataset, except for P. 
taeda and the algae C. reinhardtii. It appears to remove relatively many UGT super-
family sequences from dicotyledonous plants which suggests this case comes with 
false positives, which should be noted in the recovery analysis.

Figure  3D shows how many sequences are classified as FHs, relative to the initial 
number of sequences, for each species and each superfamily. The complete proteome 
of A. thaliana appears as the best, with 85, 87, and 86% of each of the originally iden-
tified BAHD, CYP, and UGT sequences classified as functional. On the other hand, 
the recently published complete proteome of P. taeda appears as very poor with a 
mere 18, 16, and 20% of the sequences classified as functional.

Consistency should also be found by comparing the proportions of classified sequences 
over initial sequences for each species. Since low initial numbers lead to large variations 
of this proportion, we only checked for species with at least 50 initial sequences for all 
three superfamilies. The largest differences in sequence removal among superfamilies 
are found for Zea mays (corn, 76, 58, and 56%) and S. lycopersicum (61, 71, and 55%). 
These are normal fluctuations that result from differences in the initial number of homo-
logues per superfamily. For example, the S. lycopersicum crude CYPome has much fewer 
sequences than the crude CYPome of closely related S. tuberosum, 356 and 585 respec-
tively, while the numbers of finally accepted CYP homologues are similar, 267 and 253. 
Z. mays has relatively few BAHD homologues, 120, of which 91 are functional. O. sativa 
has 142 homologues of which 94 are considered as functional. Hence, although the num-
bers of removed sequences can show large differences between species, the final num-
bers of accepted homologues per superfamily are similar by which Seqrutinator results 
in converging numbers of homologues, indicating good performance.

Most importantly, the SwissProt sequence set appears to have only a few sequences 
that were detected as NFH (4.6, 2.8 and 7.9% per superfamily (curated SwissProt data-
set see Additional file  3: Supplemental Table  S1)). This suggests the method is not 
overzealous in removing sequences but recovery analysis will have to show if all these 
removed sequences are indeed not functional.
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Removal of NFH sequences results in improved MSA quality

One of the results of Seqrutinator should be a sequence set that can be aligned with 
improved fidelity. Several methods can be used to calculate the quality of an MSA. The 
sum-of-pairs [45] and TCS [46] are the most prominent measures but do not provide 
highly discriminative scores, which makes them poor benchmarking methods. Hence, 
we sought alternative methods. A simple method is to look at the length of the MSA, as 
compared to the length of the mature protein. Although this is a quantitative measure, 
MSA length does not accurately describe its quality since, for instance, a single large 
insert leads to a large MSA but does not necessarily result in either a good or a bad 
MSA.

A more sophisticated albeit indirect method is to determine the number of reliable 
columns using trimmed MSAs. Since MSAs of complex superfamilies by definition have 
regions that are either specific to certain subfamilies (i.e., not truly homologous) or not 
too reliable, MSAs are usually trimmed before phylogenetic reconstruction. Trimming 
tools such as BMGE [35] or trimAl [36] remove columns with either high amounts of 
gaps or high entropy. As such, the length of an MSA following trimming conceptually 
reflects the number of reliable columns and can as such be used as a quality measure 
to compare MSAs of the same or, as in this case, similar datasets. Figure 4A shows the 
number of columns of MSAs built throughout the application of Seqrutinator. The 
number of reliable columns increases in almost all steps for all species and the three 
superfamilies. Besides that the MSAs improve, typically with a factor of 2 to 4, there 
appears to be a convergence of trimmed MSA length. Note that scrutiny and filtra-
tion of the non-seed plants datasets end with only a few sequences (Fig.  3), by which 
the MSAs show low complexity and are typically larger following trimming (Fig.  4A). 
Another interesting detail is that, among a few others, the initial P. taeda MSAs of all 
three superfamilies appear completely unreliable. On the other end, the trimmed MSAs 
from the SwissProt and A. thaliana datasets increase little in length. In general, the larg-
est increases in trimmed MSA length occur following SSR and CGSR.

We also checked if the presence of NFHs negatively affected the MSA processing. 
We removed all NFH sequences detected by Seqrutinator from the initial MSAs and 
removed the resulting 100% gap columns. The resulting pseudo-MSAs have the same 
sequences as the final MSAs produced by Seqrutinator but they were aligned in the pres-
ence of NFHs. Figure 4B and C show that the number of reliable columns, as determined 
by BMGE, is generally lower in the pseudo-MSAs and this effect was statistically sig-
nificant (p < 0.001, Wilcoxon signed-rank test). Thus, Seqrutinator and removing NFHs 
results in sequence sets that show significant improvement in the quality of MSAs.

Comparison of Seqrutinator module performance

The performance of the five Seqrutinator modules was analyzed. First of all, we won-
dered how changing the cut-off threshold of the outlier modules affects the results. We 
used the customizable empirical rule of probability distribution threshold (mean – α*σ, 
where σ stands for standard deviation) We compared 3σ, which we applied as default in 
this study, with the more stringent 2.35σ, which corresponds with 95% inclusion accord-
ing to a normal distribution. We also performed analyses with different pipelines in 
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order to determine if different modules can detect the same NFHs. We tested pipe 4235 
to see whether CGSR can replace SSR and at what cost. We tested pipe 134 to see the 
effect of omitting outlier removal and to test if GIR and CGSR detect outliers. Moreover, 

Fig. 4  Non-functional homologue sequences negatively affect MSA processing. A The number of reliable 
columns was computed with BMGE, entropy setting 0.8, for the MSAs made with the sequences before 
Seqrutinator (input) or the sequences retained after each module in the default pipeline. Species codes are 
as in Fig. 3. B Bar, boxplot, and raincloud density representation of number of reliable columns of the final 
output MSAs and the pseudo-input MSAs of the BAHD, CYP, and UGT cases. The pseudo-input MSA was 
obtained by removing all NFH sequences and subsequently all gap columns from the input MSAs. Gray 
lines connect output with corresponding pseudo-input set. * indicates significant difference with p < 0.001 
(Wilcoxon signed-rank test). C Density and boxplot showing differences in reliable columns between 
pseudo-input and output MSAs of the BAHD, CYP, and UGT cases
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Pfam scans with different cut-off thresholds were included as an external reference in 
order to shed light on performance in terms of P&R. Figure 5 summarizes the numbers 
as well as how the different pipelines affect phylogeny and clustering.

The Alluvial plot in Fig.  5A shows the correlation of the fate for every sequence 
among the Seqrutinator modules and accepted sequences, compared to the fate in 
three Pfam Scans. Although most removed sequences are always removed by the 
same module, we also observe most of all possible module swaps among the different 
pipelines. For instance, in the 4235 pipe, CGSR not only takes care of all sequences 

Fig. 5  Seqrutinator is robust and flexible. A Sequence fate in different pipelines. Top: Alluvial plot showing 
the fate of initial BAHD, CYP and UGT representatives (2003, 6782, and 3994 sequences respectively from 
16 species sets (Ath10 for A. thaliana) and the curated SwissProt set) in different pipelines of following Pfam 
scans with cut-off thresholds as indicated. Bottom: Schematic illustration of applied pipelines (S: SSR (1); 
N: NHHR (2); G: GIR (3) C: CGSR (4); P: PR (5); PS: Pfam Scan; and A: accepted). α2 and α5 indicate pipes with 
the more strict 2.35σ cut-off in NHHR and PR, respectively. B HMMERCTTER clustering of BAHD sequence 
sets. Top: Cluster-wise colored maximum likelihood trees and HMMERCTTER partitions of five BAHD 
sequence-sets as indicated: Input: partition of initial sequences; Pfam: partition of sequences obtained 
with most significant Pfam scan (expect value 1E-50); 12345 def: partition of sequences accepted by 
default Seqrutinator pipeline; 4235 and 134: partitions of sequences accepted by alternative Seqrutinator 
pipelines. Each cluster is automatically assigned a different color, black leaves are unclustered sequences or 
orphans. Bottom: Numerical abstract of clustering analysis of all nine tested datasets. Shown are the total 
number of sequences, the number and percentage of clustered sequences, the number of clusters and 
the cluster scores ((Clustered sequences-Orphans)/Total Sequences). C Boxplots of cluster sizes of obtained 
HMMERCTTER partitions. The dotted lines show the mean and the standard deviation
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that SSR removes in the default pipeline; it also removes a number of sequences that 
are normally removed by GIR. This confirms the idea that many NFH sequences show 
more than one of the initially described issues. Applying a more stringent outlier cut-
off for PR results in a significant increase of outliers.

The comparison with the Pfam scans also sheds light on performance. The origi-
nal sequence sets were obtained with Pfam profiles but included all sequences with 
a score above HMMERs inclusion threshold. Pfam normally applies a more strict 
gathering threshold for each profile defined by a bitscore and corresponding E value 
that includes all sequences from the seed alignment. We applied cut-offs with differ-
ent increasing levels of stringency. The most striking result is obtained with the most 
stringent Pfam scan at 1E-50. In the CYP case, it still included many sequences Seqru-
tinator tagged as NFH; for BAHD, it yielded a rather similar result as Seqrutinator, 
while only 12 sequences were accepted as FH for the UGT sequence sets. Intriguingly, 
one of the sequences accepted by Pfam is normally removed by the SSR and another 
one by the CGSR module. This last detail cannot be observed in this particular allu-
vial plot due to the order of the datasets we applied in the figure. Hence, Pfam Scans 
suffer from poor P&R, which is a recurrent issue in clustering and classification and 
related to the fact that Pfam has single, permissive profiles for complex superfamilies.

HMMERCTTER clustering is a method in which superfamily sequences are clus-
tered based on phylogeny and a HMMER score cut-off that is determined to include 
all sequences of a monophyletic clade [42]. Only clusters with 100% P&R are accepted, 
and as such HMMERCTTER clusters are conserved. The presence of less conserved, 
low scoring NFH sequences in a monophyletic clade often prevents the clade to be 
accepted as 100% P&R cluster A sequence set that lacks NFH sequences should there-
fore result in larger and fewer clusters. As such, we performed unguided HMMERCT-
TER clustering on the BAHD datasets and compared the resulting partitions (Fig. 5B).

As expected, HMMERCTTER clustering of the crude dataset results in a very poor 
partition, with more orphans than clustered sequences as shown by the negative clus-
ter score ((Clustered sequences-Orphans)/Final Sequences). Given the strict cut-off of 
HMMERCTTER, many partial sequences do end up as orphan sequence. The Pfam 
1E-50 tree shows fewer orphans and has a better cluster score. The best cluster score 
(57.4, see table in Fig. 5B) is obtained with the dataset that results from the 1234α5 
pipeline in which a substantial number of low-scoring outliers has been removed. The 
default pipeline has a cluster score of 51.7, which reflects a trade-off between a larger 
number of accepted sequences and a slightly lower number of clusters. As compared 
to the default pipeline, the 4235 pipeline has a slightly lower performance which, 
combined with its substantially longer runtime, (see table in Fig.  5B) indicates that 
the default pipeline is preferred. Not applying any outlier module (pipe 134) results 
in a substantially reduced cluster score of 29.6, even though only a few outliers are 
detected at the setting of 3σ.

Figure  5B shows that, based on the above-made assumption, the application of 
Seqrutinator in superfamily sequence mining results in largely improved datasets. 
This is also reflected by the distribution of cluster size (Fig. 5C). Although the strict 
Pfam scan removes more sequences than Seqrutinator, it has much smaller clusters 
than any of the Seqrutinator-derived datasets (Fig. 5C).
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Recovery screen

Benchmark analysis, in which one determines P&R, is not feasible since that would 
imply demonstrating that predicted NFHs are not functional, which is principally 
impossible. We can, however, analyze with other analyses if sequences identified as NFH 
are likely functional or not. We performed various analyses in order to identify eventu-
ally removed FH sequences. We used the SwissProt datasets as the gold standard, albeit 
that even the curated SwissProt dataset has both partial sequences and pseudogenes. 
The sequences removed from the 16 species proteomes were analyzed using tools such 
as hmmscan and the Pfam database, in order to verify correctly removed NFHs. On the 
other hand, we used CD-Hit clustering to identify incorrectly removed sequences, such 
as those from distant or small subfamilies. Additional file 2: Supplemental Document 2 
describes the details and some more profound analyses that may be required to corrobo-
rate whether a certain removed sequence is an NFH or an FH. Here, we give a summary 
of the results of our recovery analyses in order to show Seqrutinator’s performance only.

Out of 820 SwissProt sequences among three superfamilies, 21 sequences (~2.5%) 
were identified as NFH: 19 were removed from the complete and 18 from the curated 
set. Analyses suggest only two of the 21 removed SwissProt sequences may encode 
functional enzymes. GIR removed a single sequence from the BAHD set based on a 65 
amino acid insert. This pseudogene sequence, included in SwissProt based on homol-
ogy, lacks both the strictly conserved HxxxD and the highly conserved DFGWG motifs. 
NHHR removed two GT28 glycosyl transferase sequences from the UGT set. These 
are homologous to but not part of the UGT superfamily. SSR and CGSR removed 6 
and 12 sequences, respectively. Alignment of these sequences to the MSA obtained for 
the accepted SwissProt sequences showed 16 of these were partial, while Q43078 and 
Q9LNE6 were considered as putative incorrectly removed sequences.

Q43078, removed from the CYP set by CGSR, has an internal gap in the MSA made 
against the accepted SwissProt sequences, hence its removal. However, a BLASTP 
against SwissProt did not show a large gap, suggesting the sequence represents an FH 
and is a false positive. The sequence was included in SwissProt based on transcript 
evidence.

Q9LNE6, removed from the UGT set by CGSR, appears to lack an N-terminal 
sequence according to the MSA made against the accepted SwissProt sequences. How-
ever, BLASTP against Reference Proteins identified a number of homologues that show 
good global alignment, which suggests this also concerns an FH and a second false posi-
tive. The inclusion of this sequence in SwissProt is supported by evidence at the protein 
level.

Since analysis suggests Seqrutinator removes only a few putative FHs, we wondered if 
the cut-off we applied, 3σ, was sufficiently strict and we performed outlier analysis with a 
2σ threshold. This removed a number of FHs from the BAHD and the CYP family, rather 
than additional NFHs. Interestingly, this reflected problems with the default pipeline 
outputs from the species BAHDomes and CYPomes.

For BAHD, it concerned three sequences from the ECERIFERUM or CER subfamily, 
which is distant and lacks the generally conserved DFGWG motif. CD-Hit clustering 
of 35 sequences removed from 16 species BAHDomes by NHHR or PR identified 17 
sequences as members of the CER subfamily. These we consider as false positives, while 
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another 40 CER subfamily sequences were not identified as NFH. The other 18 removed 
sequences were confirmed as NFH.

In the CYP case, the strict 2σ cut-off of NHHR identified 17 allene oxide synthase 
sequences from SwissProt of which one is a partial that is normally removed by CGSR. 
Then, out of 76 outlier sequences removed from the species CYPomes, 48 were allene 
oxide synthase subfamily members, which concerns all AOS homologues. In addition, 
we identified a single C-22 sterol desaturase as FH. The remaining 27 outliers were true 
positives.

As stated above, the standard 3σ NHHR module did correctly remove two GT28 gly-
cosyl transferases from the UGT SwissProt set. All 61 GT28 sequences were identified 
from the separate proteome sets albeit by NHHR, GIR, CGSR, or PR. In addition, the 
outliers contained seven epimerases. All were correctly removed as true positives. CD-
Hit did identify a group of three sequences that appears to form a subfamily found in 
Solanaceae only. These are likely false positives.

In the BAHD case, we identified a subfamily that was inadvertently removed by GIR. It 
concerns 11 sequences that instigate a large gap in the MSA. Furthermore, we encoun-
tered four sequences that have non-homologous inserts at what appears as a hot spot of 
acceptable insertions. Finally, we analyzed sequences removed by CGSR. Here, it con-
cerned between 200 and 500 sequences per superfamily. These were clustered by CD-Hit 
and we used MSAs of the large clusters to confirm these were partials. Most sequences 
lack N and/or C terminal subsequences whereas clustered sequences that had complete 
N- and C-termini showed consistently large gaps that were not conserved. As stated 
above, detailed analyses are described in Additional file 2: Supplemental Document 2.

The effect of the data on the performance

We also analyzed if the size of the sequence sets affects performance. Statistics on larger 
sequence sets are more reliable and these should therefore show improved performance. 
However, particularly using MAFFT global alignment, small increases in number of 
sequences come with large increases in computational cost. We tested the effect of 
sequence subset size using four different size conditions and randomized sequence sets. 
The analyses, presented in detail in Additional file 4: Supplemental Document 3 show 
that only the PR module is affected by size, removing more sequences when sequences 
are presented in larger sets. In general, a similar number of mostly the same sequences 
is removed.

Discussion
We present a flexible pipeline to clean superfamily protein sequence sets with the objec-
tive of obtaining sets encompassing most FH sequences and from which most NFH 
sequences have been removed. Since we cannot test for non-functionality, we cannot 
perform classic benchmark analysis showing P&R. Hence, we used other, indirect meth-
ods to gain insight into consistency and performance of Seqrutinator. This implies that 
Seqrutinator should not be seen as a method to determine whether a certain sequence 
corresponds to a FH. Seqrutinator is also likely to fail or make mistakes in the classifica-
tion of spliceoforms.
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We defined NFH sequences in order to provide an objective basis for sequence 
removal. Based on these definitions and the inherent characteristics of for instance 
pseudogenes, we expected that certain sequences could be removed by different mod-
ules. This we confirmed by comparing different pipelines (Fig. 5A) and by using rand-
omized datasets (Additional file  4: Supplemental Document 3). Seqrutinator behavior 
sometimes depends on the dataset. The standard pipeline removed 19 and 18 sequences 
from the two SwissProt datasets, which correspond to 21 different sequences. The analy-
ses in Additional file 4: Supplemental Document 3, where we compared different data-
sets obtained by randomization, also show a small number of sequences having different 
fates. This suggests Seqrutinator has only few false positives and few false negatives.

Another premise we made is that certain complete proteomes, such as from model 
plant A. thaliana, are superior in quality to, for instance, recently completed proteomes, 
and that this should be reflected by similar performance on the three different super-
families. The data demonstrated in Fig.  3 show this premise to be true: Seqrutinator 
removed few sequences from A. thaliana and many from P. taeda, which sequence was 
obtained in 2017 [47]. Seqrutinator is also consistent since it removes similar percent-
ages of sequences per species. Hence, although there is no quantitative measure for com-
plete proteome quality, Seqrutinator’s performance is in line with what was expected.

Application of Seqrutinator results in a convergence of the number of FH sequences 
per superfamily when comparing the different species, albeit that there are outliers. 
Non-seed plants have much smaller genomes and less specialized metabolism than seed 
plants. Outliers among seed plants are Amborella trichopoda that has relatively few final 
sequences and H. annuus that has relatively many final sequences. This can be explained 
by a relatively small and rather large genome size, respectively. The other seed plants 
do show variation but have rather similar amounts of accepted sequences for a specific 
superfamily. In all cases, performance on the three superfamilies is similar. Under the 
presumption that these species have similar amounts of FHs, this is as expected for a 
tool that removes relatively many NFHs and relatively few FHs from a crude sequence 
set.

Another assumption we made is that NFHs provide noise which negatively affects the 
quality of the MSA. This we tested by determining the amount of reliable columns using 
BMGE, a tool designed for trimming MSAs before phylogeny. The numbers of reliable 
columns converge towards approximately 300–400 (Fig. 4A), except for species with few 
homologues that yield more reliable columns. This is explained by the fact that align-
ment size increases with the number of sequences and additional lower sequence vari-
ation since these species have smaller, less complex specialized metabolism. A minor 
detail here is that the MSAs for the three superfamilies converge to similar sizes, which 
is as expected since the three protein superfamilies hold protein with also rather similar 
sizes. We also showed that the presence of NFHs negatively affects the MSA processing 
(Fig. 4B, C). Although the effect may seem marginal, it is significant and corroborates 
the need for sequence scrutiny and cleaning. We were surprised to see the largest effect 
on MSA quality following SSR and CGSR, rather than GIR. This is likely explained by 
complexity that results from large numbers of NFHs.

Particularly clustering of superfamily datasets shows Seqrutinator removes 
NFHs rather than FHs. Pseudogenes have no functional constraint and an elevated 
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evolutionary rate by which they stand out in phylogenies. Four pseudogenes can be 
seen for the BAHD case in Fig. 5B. SSR and CGSR remove the majority of the NFH 
sequences. These partial sequence do often not show higher evolutionary rates and 
cannot be detected by phylogeny. They do, however, interfere in HMMERCTTER 
clustering. As mentioned earlier, HMMERCTTER clustering uses a classifier that 
identifies clades that as sequence cluster show 100% P&R using hmmsearch. Par-
tial sequences will cluster perfectly in a phylogenetic reconstruction but will obtain 
lower scores in a cluster specific hmmsearch since hmmer score is cumulative. As 
such, removing partial sequences will result in larger clusters. Interestingly, the strict 
Pfam set (cut-off at 1E-50) has about 20% less sequences, which cluster in 59 clusters 
compared to 24 clusters for the default pipeline (Fig. 5B, C). Although the objective of 
Pfam is to provide sequence sets for all rather than only functional homologues, this 
shows Seqrutinator removes less sequences, more NFH sequences and as such few 
FH sequences.

The recovery analysis, presented in detail in Additional file 2: Supplemental Docu-
ment 2, also gives valuable insight. It detected both false and true positives. Inter-
estingly, it shows that, as expected, the modules targeting outliers sometimes detect 
complete subfamilies, irrespective of whether it concerns false positives, such as the 
AOS in the CYP case; true positives, such as the homologous glycosyl transferase 
family 28 and merely similar epimerases in the UGT case; or a taxon-specific subfam-
ily also identified in the recovery analysis of the UGT case. In the BAHD case, the 
outlier removers identified only a part of the CER subfamily. Irrespective of the fact 
that it concerns a distant subfamily of sequences that lack the DFGWG motif, it is 
interesting to see that part of them were not removed. This is related to the applied 
threshold and a typical example of how cut-off threshold affects sensitivity and preci-
sion at the same time. When we applied a slightly more strict threshold (2.35σ instead 
of 3σ), the clustering score increases, particularly when applied to PR (see Fig.  5B). 
This reflects a trade-off between retaining FHs and removing NFHs. We recommend 
using the non-parametric IQR threshold since superfamilies tend to have score distri-
butions that are not normal. We merely applied the parametric 3σ threshold since this 
facilitates comparisons (e.g., with 2 and 2.35σ). In order to facilitate the choice of the 
threshold, Seqrutinator output includes a number of graphs (see Fig. SD2-2 in Addi-
tional file 2: Supplemental Document 2,) of which particularly the score plot of the PR 
module is informative.

Another major issue is how to apply Seqrutinator. We present Seqrutinator as a 
pipeline embedded in between the already discussed third block of recovery analysis 
and the initial preparative block. This preparative block guides somewhat how Seqru-
tinator is best applied.

We recommend to use the complementary script MuFasA to automatically mine 
homologues from multiple datasets such as complete proteomes. However, an impor-
tant parameter is the amount of sequences obtained. In principle, the higher the 
number of offered sequences, the better the results of particularly outlier removal 
should be. This is, however, also affected by computational cost of the alignments. 
In our hands using powerful PCs with sixteen threads, 50 up to 200 sequences run 
well, whereas 2003 sequences (complete BAHD case, Additional file 4: Supplemental 
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Document 3) was no longer feasible using the default alignment method (MAFFT 
Global). If fusion of sequence sets is feasible, we advise to do so and do this in a taxo-
nomical meaningful manner since that prevents the loss of taxon-specific subfamilies.

A profound understanding of your biological system can be important. Settings for 
GIR and CGSR depend on the species that are involved. We can envisage Seqrutina-
tor may be applied to bacterial and archaeal superfamilies but GIR and CGSR may be 
less functional. Knowledge on, for instance, how proteins derive from polycistronic 
operons is likely helpful in setting Seqrutinator parameters.

It is important to check the input MSA since Seqrutinator depends on it. Every 
combination of sequences that is hard to align should be approached with care. Differ-
ences in domain architectures and sequence repeats are the major no-gos or at least 
demand additional preparation. We envisage two types of protein classes with differ-
ent domain architectures. The most problematic class has two or more families that 
share at least one domain and differ in at least one domain. This results in alignments 
with large gap regions or, depending on the exact architecture, nonsensical MSAs. An 
example is found for single chain ABC transporters that have two homologous mod-
ules, each with an ABC and a transmembrane region (TMR) domain. In the A and G 
families, the order of the ABC and TMR domain has been switched, resulting in two 
different possible ways of alignment. The second problematic protein class has one 
family that has an additional domain. Besides that these proteins will be aligned with 
large gaps, the shorter class will have low hmmer scores by which pseudogenes of the 
larger class may no longer be detected. This also occurs for a set with single chain 
and dimer ABC transporters. Such problematic domain architecture can be detected 
studying the MSA. A possible solution is to split the sets into the corresponding fami-
lies and run more than a single Seqrutinator analysis. When the parameters for the 
sets are identical this can be done using the complementary script SeqYNeT, which 
automatically controls Seqrutinator to operate over various input datasets.

Sequence repeats, which often but not always correspond with low complexity 
regions, are more difficult to detect but can negatively affect Seqrutinator perfor-
mance. An example from ABC transporters is that where B, C, and D families form 
a superfamily that has the same architecture as the A family, which is however not 
homologous for the TMR domain [48]. Each TMR consists of six helices with mostly, 
but not only, hydrophobic residues. Hence, they form non-homologous but neverthe-
less similar repeats with low complexity. These are infamous when it concerns align-
ment in general, do indeed result in MSAs with poorly aligned subsequences, and are 
fatal for Seqrutinator performance.

Care should also be taken when it concerns multidomain sequences with the same 
architecture. Domains are typically connected by loop regions which have the pro-
pensity to be intrinsically disordered. This may result in inadvertent removal of 
sequences because GIR or CGSR detects a correct gap region instigated by the intrin-
sically disordered region. An example of a superfamily with highly variable, intrinsi-
cally disordered linkers is that of plant phospholipase C [49].

In summary, Seqrutinator is an efficient tool that can assists in the automated 
sequence mining of protein superfamilies that should give good results as long as 
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sequences are truly homologous. More complex cases should as such be split into 
truly homologous subsets for optimal results.

Methods
Initial data mining

The initial sequence mining by hmmsearch from HMMER [43] using Pfam profiles 
PF02458 for BAHD [50], PF00067 for CYP [51], and PF00201 for UGT [52] using 
HMMERs inclusion threshold as cut-off. Searches were performed in batch using the 
MuFasA script (See Additional file 1: Supplemental Document 1) and the 16 plant spe-
cies sequence sets obtained from Phytozome v12.1.6 [53], TAIR v6 obtained from TAIR 
[54], and the SwissProt datasets that were obtained from UniProt [55, 56]. Sequences for 
structures, PDB identifiers 4G0B (BAHD [57]), 5YLW (CYP [58]), and 3HBF (UGT [59]), 
were identified as top scoring sequence with the respective superfamily Pfam profiles 
and used to guide the manual trim of the MSAs that formed the input for Seqrutinator.

Sequence alignment and other biocomputational analyses

All MSAs were performed using MAFFT-G-INS-i [26], except when indicated that 
FAMSA [25] was used. Trimming in Seqrutinator was performed using BMGE [35] 
using standard gap settings, BLOSUM62, and an entropy cut-off h of 0.8. Due to the 
poor quality of some datasets (e.g., dataset before Seqrutinator), which resulted in low 
or none reliable columns with BMGE, all datasets for phylogeny were first trimmed with 
trimAl with -gappyout settings followed by BMGE. CD-Hit clustering [60] was per-
formed at the CD-Hit suite [61] at an identity cut-off of 0.3. BLAST [62, 63] analysis was 
performed at NCBI [64] against the database as indicated. Pfam scans were performed 
at EBI [65] using Pfam’s gathering threshold for cut-off or locally if and with Expect val-
ues as indicated. Dotplots [66] were performed at the SIB [67]. Phylogenies were recon-
structed by FastTree [20], using the WAG model and optimized Gamma20 likelihood, 
and drawn by Dendroscope [68]. Local alignments were performed with LALIGN/PLA-
LIGN [69] at the UVA [70]. Alphafold [71] structure models were made the Colabfold 
[72] form. Alluvial diagrams were generated using RAWGraphs [73]. Boxplots and his-
tograms were prepared with Plotly (Plotly Technologies Inc. Collaborative data science. 
Montréal, QC, 2015 [74]). Statistical analysis and raincloud plots were performed with 
JASP (v0.18.3, JASP Team 2024 [75]).

Seqrutinator

A full description of Seqrutinator and complementary scripts is in Additional file 1: Sup-
plemental Document 1.
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