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Abstract 

Background: The design of nucleotide sequences with defined properties is a long-
standing problem in bioengineering. An important application is protein expres-
sion, be it in the context of research or the production of mRNA vaccines. The rate 
of protein synthesis depends on the 5′ untranslated region (5′UTR) of the mRNAs, 
and recently, deep learning models were proposed to predict the translation output 
of mRNAs from the 5′UTR sequence. At the same time, large data sets of endogenous 
and reporter mRNA translation have become available.

Results: In this study, we use complementary data obtained in two different cell types 
to assess the accuracy and generality of currently available models for predicting trans-
lational output. We find that while performing well on the data sets on which they were 
trained, deep learning models do not generalize well to other data sets, in particular 
of endogenous mRNAs, which differ in many properties from reporter constructs.

Conclusions: These differences limit the ability of deep learning models to uncover 
mechanisms of translation control and to predict the impact of genetic variation. We 
suggest directions that combine high-throughput measurements and machine learn-
ing to unravel mechanisms of translation control and improve construct design.
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Background
The translation of most mRNAs into proteins is initiated by the recruitment of the eIF4F 
complex at the 7-methylguanosine cap, followed by eIF3, the initiator tRNA and the 40S 
subunit of the ribosome [1]. The 40S subunit scans the mRNA’s 5′ untranslated region 
(5′UTR) until it recognizes a start codon; then, the 60S subunit joins to complete the 
ribosome assembly and initiate protein synthesis. Initiation is the limiting step of trans-
lation, largely determining the rate of protein synthesis [2]. It is influenced by multiple 
features of the 5′ untranslated region (5′UTR), from the structural accessibility of the 
cap-proximal region [3], to the strength of the Kozak sequence around the start codon 
(consensus gccRccAUGG, upper case-highly conserved bases, R = A or G, [4]), and 
the number and properties of upstream open reading frames (uORFs) that can hinder 
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ribosome scanning to the main ORF (mORF), inhibiting its translation [5–8]. These 
(and presumably other) factors lead to initiation rates that differ up to 100 fold between 
mRNAs [9] and a similarly wider range of protein relative to mRNA abundance [10].

Accurate prediction of protein output from the mRNA sequence is of great interest for 
protein engineering and increasingly relevant with the rise of RNA-based therapies. This 
has prompted the development of both experimental methods for the high-throughput 
measurement of protein outputs as well as of computational models that can be trained 
on these data. An important development has been the introduction of ribosome foot-
printing (also known as ribosome profiling), a technique for capturing and sequencing 
the footprints of translating ribosomes (RPFs) on individual mRNAs [2]. The ratio of 
normalized RPFs and RNA-seq reads over the coding region is used as an estimate of 
“translation efficiency” (TE), which is considered a proxy for the synthesis rate of the 
encoded protein [2]. Ribosome footprinting has been applied to a variety of cells and 
organisms [11], yielding new mechanistic and regulatory insights (e.g., [12, 13]). An 
early study of yeast translation concluded that up to 58% of the variance in TE can be 
explained with 6 parameters, though the most predictive was the mRNA level expres-
sion of the gene, which is not a feature that can be derived from the sequence of the 
mRNA [6].

At the same time, massively parallel reporter assays (MPRA) were developed to meas-
ure translation for large libraries of reporter constructs, further used to train deep learn-
ing (DL) models. A convolutional neural network (CNN) [14] explained 93% of the 
variance in the mean ribosome load (MRL) of reporter constructs, but less, 81%, for 
5′UTR fragments taken from endogenous mRNAs. The CNN also recovered some of the 
important regulatory elements such as uORFs [14]. More recently, a novel experimental 
design was used to accurately measure the output of yeast reporters driven by natural 
5′UTRs [15], while novel DL architectures and training approaches aimed to improve 
prediction accuracy [16, 17]. Potential limitations of DL models built from synthetic 
sequences is that it is a priori unclear whether the training set contains the regulatory 
elements that are relevant in vivo and whether the features extracted by the model gener-
alize well across systems such as cell types and readouts of the process of interest. These 
bottlenecks may limit not only the understanding of regulatory mechanisms but also the 
use of derived models for predictions of functional impact of sequence variations and 
for construct design. To assess whether these issues impact the current RNA sequence-
based models of translation, we carried out a detailed comparison of model performance 
in a standardized setting that uses complementary data sets obtained in two distinct cell 
types. We trained and applied models to the prediction of translation output in yeast 
and human cells, addressing the following questions: (1) are models trained on synthetic 
sequences able to predict the translation output of endogenous mRNAs in the same cel-
lular system? (2) do these models generalize between different cellular systems (different 
cell types, different species)? (3) what is their parameter-efficiency (fraction of explained 
variance per model parameter)? (4) what are the conserved regulatory elements of trans-
lation that have so far been learned by DL models?
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Experimental measurements of translation output

The current method of choice for measuring the translation output of endogenous 
mRNAs is ribosome footprinting, consisting in the purification and sequencing of 
mRNA fragments that are protected from RNase digestion by translating ribosomes 
[2]. The TE of an mRNA is then estimated as the ratio of ribosome-protected fragments 
(RPFs) obtained from the mRNA by ribosome footprinting and coding-region-mapped 
reads obtained by RNA-seq from the same sample [18]. Ribosome footprinting has been 
applied to many systems, including yeast cells [6, 19] and the human embryonic kidney 
cell line HEK 293 [20], for which a variety of omics measurements are available. Impor-
tantly, MPRA of translation were carried out in these cell types, giving us the opportu-
nity to determine whether reporter-based models can predict translation of endogenous 
mRNAs in a given cell type. Figure 1 summarizes the main approaches used to measure 
translation in yeast and human cells, starting from the just-described ribosome foot-
printing technique (Fig.  1A). The MPRA approach used by [14] to generate the Opti-
mus50/100 MPRA data sets (Fig. 1B) consists in the transfection of in vitro-transcribed 
mRNAs with randomized 5′UTRs upstream of the eGFP coding region into HEK 293 
cells, followed by sequencing of RNAs from polysome fractions. The MRL, i.e., the aver-
age number of ribosomes on individual mRNAs is derived from abundance profile of 

Fig. 1 Experimental approaches to quantifying translation output. A Sequencing of total mRNA and 
ribosome-protected fragments of endogenous mRNAs is used to estimate the translation efficiency 
per mRNA. B Massively parallel reporter assays (MPRA) measure the output of constructs consisting in 
randomized 5′UTRs attached to the coding region of a reporter protein. Sequencing of polysome fractions 
enables the calculation of a mean ribosome load per construct, which is used as a measure of translation 
output. C DART follows a similar approach with endogenous 5′UTRs, once upstream AUGs (uAUGs) located 
in the 5′UTR are mutated to AGU to avoid ambiguity in translation start sites. D In an alternative MPRA in 
yeast, the enrichment of 5′UTRs driving expression of a protein required for growth served as proxy for the 
translation output of the respective constructs. More details can be found in the Methods - Experimental 
methods section
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individual mRNAs along polysome fractions. In another approach, called DART (for 
direct analysis of ribosome targeting), Niederer and colleagues [15] have synthesized 
in  vitro translation-competent mRNAs consisting of natural 5′UTRs and a very short 
(24 nucleotides (nts)) coding sequence. A few mutations were introduced in the 5′UTRs, 
as necessary to unambiguously define the translation start. After incubation with yeast 
extract, ribosome-associated mRNAs were isolated, sequenced, and a ribosome recruit-
ment score (RRS) of an mRNA was calculated as the ratio of its abundance in the ribo-
some-bound fraction relative to the input mRNA pool (Fig. 1C). A previously developed 
MPRA used plasmids containing randomized 5′UTRs placed upstream of the HIS3 gene 
to transform yeast cells lacking a native copy of the gene [21]. The amount of HIS3 pro-
tein generated from the reporters was assessed in a competitive growth assay, by cul-
turing the yeast cells in media lacking histidine and using the enrichment of reporter 
constructs in the output vs. the input culture as a measure of HIS3 expression (Fig. 1D).

The reproducibility of experimental measurements sets an upper bound on the accu-
racy of models’ predictions of different types of data. For MPRA data sets the R2 of rep-
licate measurements is usually very high, values of  0.95 being generally reported [14]. In 
contrast, the reproducibility of TE, which is a ratio of two variables-ribosome footprints 
and RNA-seq fragments mapping to a given mRNA-is generally lower. In the HEK 293 
ribo-seq data set that we analyzed [20], the R2 for RPFs was in the range 0.77− 0.82 , 
while for mRNA-seq it was 0.96, leading to R2 of TE estimates 0.47− 0.52 (Additional 
file 1: Fig. S1). We further obtained an additional ribo-seq data set from another human 
cell line, HepG2, with the aim of exploring the limits of replicate reproducibility of this 
type of measurement and evaluating the conservation of TE between cell types, which 
is also important when applying a model trained in a particular cell type to predict data 
from another cell type, c.f. Additional file 1: Fig. S2. The TE estimates from HepG2 cells 
were more reproducible, with R2 for replicates 0.68− 0.8 . When comparing the TE esti-
mates from HEK 293 and HepG2 cells, we obtained an R2

= 0.31 , which would be an 
upper bound on the accuracy of a model trained on one of these data sets in predicting 
the TEs in the other cell line. The general reproducibility of translational efficiency as 
well as coverage in RNA sequencing and ribosome footprinting in yeast (data from [19]) 
appears to be of similar quality as the HepG2 data, as can be seen from Additional file 1: 
Fig. S3.

To ensure comparability of our results with those of previous studies, we aimed to rep-
licate their model training strategy, which generally involved setting aside the highest 
quality data (constructs with the largest number of mapped reads) for testing and using 
the rest for training [14, 16]. High expression is not the only determinant of measure-
ment accuracy for endogenous mRNA data sets. For example, in yeast, the integrity of 
the sequenced RNAs was previously identified as key source of noise for TE estimates 
[6]. A proxy for RNA integrity is the transcript integrity score (TIN) [22], which quanti-
fies the uniformity of coverage of the RNA by sequenced reads and ranges from 0 (3′ 
bias) to 100 (perfectly uniform coverage). As the TE reproducibility in HEK 293 cells 
increased with the TIN score ( R2

= 0.67− 0.75 for TIN > 70 vs. 0.47− 0.52 for all), 
for the human endogenous data, we used the mRNAs with TIN > 70 ( ≈ 10% mRNAs) 
for testing and all the others for training. In yeast, however, the reproducibility of TE 
does not depend on TIN (Additional file  1: Fig.  S3 shows that), indicating that RNA 
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degradation is much less dominant here than in human cells. As can be seen from Addi-
tional file 1: Fig. S4, selection of the test data set based on the TIN score does not intro-
duce any bias in 5′UTR length, main ORF length, or TE in HEK 293 cells. The situation 
for yeast, however, is slightly different; transcripts with higher TIN score have higher 
TE. Also, in the yeast data, the increase in inter-replicate reproducibility of TE when 
selecting the transcripts with TIN > 70 is negligible. Therefore, we used three different 
random splits for the endogenous yeast data set and provide the average performance.

Models for predicting translation output from the mRNA sequence

To explain the translation efficiency estimated by ribosome footprinting in yeast, Wein-
berg et al. [6] proposed a simple, 6-parameter linear model with the following features: 
lengths of the CDS and 5′UTR, G/C content of the 5′UTR, number of uAUGs, free 
energy of folding of the 5′cap-proximal region and the mRNA abundance. This linear 
model was surprisingly accurate ( R2

= 0.58 ) in predicting the efficiency, though leaving 
out the mRNA level reduced the R2 to 0.39. Here, we use a similar model as baseline to 
assess the parameter efficiency of DL models, i.e., the fraction of explained variance per 
model parameter. The features of our linear model are as follows: we use the same length 
and G/C content measures, the 5′UTR folding free energy divided by the 5′UTR length, 
the number of out-of-frame upstream AUGs (OOF uAUGs), the number of in-frame 
upstream AUGs (IF uAUGs), and the number of exons in the mRNA [23]. A bias term 
adds an additional parameter.

The first type of DL architecture trained on MPRA data was the Optimus 5-Prime 
CNN [14], operating on one-hot-encoded 5′UTR sequences. Optimus 5-Prime has 3 
convolutional layers, each with 120 filters of 8 nucleotides (nts), followed by two dense 
layers separated by a dropout layer. The output of the last layer is the predicted transla-
tion output, i.e., the MRL for the HEK 293 cell line data set (Fig. 1B, Fig. 2A) and the 
relative growth rate for yeast cells [21] (Fig. 1D). While reaching very good performance 
in predicting the MRL for synthetic sequences, Optimus 5-Prime could only make pre-
dictions for UTRs of up to 100 nts, which account for only ∼ 32% of annotated human 5′

UTRs. Longer 5′UTRs could be accommodated by truncation to the upstream vicinity 
of the start codon. The Optimus 5-Prime model just described has 474,681 parameters.

The 5′UTR length limitation was overcome by Framepool [16], another CNN contain-
ing 3 convolutional layers with 128 7-nts filters (Fig. 2B). Importantly, Framepool slices 
the output of the third convolutional layer according to the frame relative to the start 
codon, then pools the data frame-wise, taking the maximum and average values for each 
pool. This allows both the processing of sequences of arbitrary length and the detec-
tion of motifs in specific reading frames. The frame-wise results are the input for the 
final two dense layers. For variable length 5′UTRs, Framepool was shown to yield some-
what improved predictions relative to Optimus 5-Prime [16], with a smaller number of 
parameters, 282,625.

MTtrans [17] is the most recently proposed DL model (Fig.  2C). Its basic premise 
is that the elements controlling translation generalize across data sets generated with 
different experimental techniques. Each data set is viewed as a task. The model com-
bines 4 convolutional layers with batch normalization, regularization and dropout, 
with two bidirectional gated recurrent unit (GRU) layers and a final dense layer. GRUs 
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are recurrent layers that process the input sequence token by token and map these to 
an internal space that allows contextual information to be preserved. Inputs of differ-
ent lengths can naturally be processed by this architecture. The 4 convolutional layers, 
which the authors called “shared encoder,” are assumed to be universal among differ-
ent prediction tasks, while the recurrent and dense layers (“task-specific tower”) are spe-
cific to each task. The shared encoder is therefore trained on multiple data sets, while 
the task-specific tower is trained only on the respective task. In comparison to Optimus 
5-Prime and Framepool, MTtrans provides an increase in R2 of 0.015− 0.06 in predic-
tion accuracy, depending on the data set [17]). Interestingly, training MTtrans on mul-
tiple data sets at once rather than in a sequential, task-specific manner, achieved an 
almost similar effect. While we were able to obtain the code for MTtrans from [24], we 
were unable to run the code “out-of-the-box.” Therefore, we set up MTtrans as described 
in the conference publication [17] though this left many details unclear, i.e., the exact 
layout of the “task-specific tower,” its recurrent and dense layers, the number of training 
epochs, the exact training rate schedule, and criteria for early stopping. It also led to a 

Fig. 2 Architectures of different artificial neural networks used to predict the output of translation. Optimus 
5-Prime [14] uses three convolutional layers and two dense layers (A), Framepool (B) is similar, but with a 
customized frame-wise pooling operation between convolutional and dense layers [16], and MTtrans (C) 
stacks a “task-specific” tower of two recurrent and one dense layers on top of a “shared encoder” of four 
convolutional layers. D represents an approach entirely relying on recurrent layers; it is built from two 
bidirectional LSTM layers, followed by a dropout and fully connected layer. TranslateLSTM (E) consists of 
three sub-networks: a two-layer bidirectional LSTM network for the 5′UTRs, another two-layer bidirectional 
LSTM network for the first 100 nts of the CDS, and non-sequential input features previously found to control 
translation. For further information, we refer to the Methods - Model architectures section
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different number of parameters in our implementation, 776,097, compared to the num-
ber reported by the authors ∼ 2.1 million. Consequently, we trained with a callback that 
automatically stops once overfitting is reached and restores the best weights. Although, 
in our experience, these are details have only a minor impact on the model performance, 
we note that our results differ to some extent from those reported in [17]. The use of 
GRUs in the task-specific tower allows MTtrans to predict output for any 5′UTR length.

While DL models become increasingly more parameter-rich, their performance 
improves only marginally, leading to a decrease in the gained accuracy per parameter. 
We were therefore interested in whether the parameter-efficiency of DL models can 
be improved, i.e., whether the top performance can be achieved with smaller rather 
than larger models. To address this, we turned to long short-term memory networks 
(LSTMs), a variety of recurrent neural networks (RNNs) designed to detect and take 
advantage of long-range dependencies in sequences [25]. While such dependencies are 
expected in structured 5′UTRs, LSTMs have not been applied yet to the prediction of 
translation output. We therefore implemented here two LSTM-based architectures: one 
operating only on 5′UTR sequences and a second one, TranslateLSTM, operating not 
only on 5′UTRs but also on the first 100 nts of the associated coding regions and the 
non-sequential features of the linear model described above. The extended TranslateL-
STM allows for factors such as the secondary structure and codon bias in the vicinity 
of the start codon [5] to impact the translation output. One-hot-encoded sequences are 
fed into two bidirectional LSTM layers, the outputs of the second layers are concate-
nated and sent to dense layer which predicts the output (Fig. 2D). TranslateLSTM has 
268,549–268,552 parameters, while the 5′UTR-only LSTM model has 134,273 param-
eters. We further note that, depending on the experimental design, not all data sets to 
which a given model is applied require the same number of parameters. For instance, a 
data set in which all sequences have the same length like Optimus50 does not require 
the sequence length as a parameter in TranslateLSTM or the linear model. Similarly, as 
the first 100 nts of the CDS are the same in all MPRA data sets, the associated param-
eters are not needed in TranslateLSTM, which reduces the number of parameters to 
about 50% relative to the full model.

Results
Available DL models do not generalize well across experimental systems

The results of our comprehensive tests of prediction accuracy of all models across mul-
tiple data sets are summarized in Fig. 3A. The most salient result is that differences in 
performance between DL models applied to a particular data set are much smaller than 
differences between applications of the same model to distinct data sets. In particu-
lar, DL models can be trained on synthetic constructs to predict the output of leave-
out constructs, but they cannot be trained well on TE data to predict the translation 
of endogenous mRNAs (compare lines 1,2,3 and 4,5 in Fig. 3A). To make sure the test 
data selection strategy is not the issue, we also tested three different random splits and 
stratified splits (enforcing similar distributions in test and train sets) for TIN and TE as 
selection strategies for the test data in HEK 293 cells for Optimus 5-Prime and Trans-
lateLSTM. They showed comparable but mildly worse performance (difference in R2 
around 0.02). The stratified split along the TE-axis performed the worst, whereas random 
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and stratified split along the TIN-axis performed with R2 values only 0.01 smaller than 
test data selection based on the TIN, where only highest TIN score transcripts were 
used for testing. Figure 3B shows scatter plots of ribosome load predicted by each of the 
discussed DL architectures against their measured counterparts. It can be clearly seen 
that OOF uAUGs are strongly inhibiting translation. Moreover, the TranslateLSTM pre-
dictions are most uniformly spread around the diagonal, as measured by the sum of the 
differences between predicted and measured MRL for every model, where we find −360 
(translateLSTM) vs. −652 (Optimus 5-Prime) vs. −762 (Framepool) vs. −461 (MTtrans). 
The size of the training data set is not strictly a limiting factor, because DL models can 
be trained to some extent on the relatively small DART data set of ∼ 7′000 natural yeast 

Fig. 3 Performance of all evaluated models in different application scenarios (A), measured by the Pearson 
correlation coefficient R2

Pearson
 between experimentally measured and predicted translation output in the 

test data. Different random splits of the DART data lead to variations in R2 of � 0.02 , with the exception of 
the Framepool model, which had differences of up to 0.16 between splits. The average of the correlation of 
TE between different replicates for the endogenous HEK 293 and yeast data sets serves as theoretical upper 
bound on the predictive power of the model, imposed by measurement reproducibility. Values for DART and 
Optimus50 data sets were taken from the corresponding publications [14, 15]. B Correlation of predicted 
and true ribosome load of four model architectures trained on the Optimus100 data set. OOF uAUGs clearly 
inhibit translation initiation. TranslateLSTM predicts the most even scattering pattern around the diagonal, as 
measured by sum of the differences between predicted and measured ribosome load for all transcripts in the 
test set
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5′UTRs (Fig. 3A, l. 6). Furthermore, models trained on synthetic 5′UTRs do not predict 
the TE of endogenous mRNAs measured in the same cell type (see Fig. 3A ls. 7,8). This 
reduced performance was previously attributed to the different experimental readout 
and to the influence of the coding sequence, which is the same in MPRA, but different in 
TE assays [16]. To test this, we applied the models trained on human MPRA data to the 
prediction of MPRA data from yeast and vice versa. This involved not only a very differ-
ent readout of translation (MRL in human, growth-dependent enrichment of 5′UTRs in 
yeast) but also entirely different organisms. In both cases, the cross-system performance 
was substantially higher, R2

= 0.41 and 0.64 (c.f. Fig. 3A ls. 9,10) compared to the perfor-
mance of the model trained on synthetic data in predicting the TE data in the same cell 
type. Thus, the type of readout is not the main factor behind the reduced predictability 
of TE data. Another limiting factor, not discussed before, could be the accuracy of the 
experimental measurements. MPRA and DART-based measurements are very repro-
ducible, with R2 0.95 , while the TE estimates much less so ( R2

≈ 0.5 for the HEK 293 
data set, Additional file 1: Fig. S1). Thus, the TE data may be less predictable as it is also 
more noisy. However, the measurement accuracy is not a factor in the highly reproduc-
ible DART experiments, yet models trained on synthetic construct data from yeast could 
not predict the RRS measured in the DART experiment, also done in yeast. Altogether, 
these results indicate that synthetic sequences differ substantially from natural, evolved, 
5′UTRs, leading to models trained on synthetic data not being able to adequately cap-
ture 5′UTR features that are relevant for the translation of endogenous mRNAs. We also 
applied a transfer-learning strategy to human HEK 293 data, where we first trained the 
models on the Optimus100 data set, then re-trained the last layer on endogenous data, 
and finally some epochs of training the entire network on the endogenous data. For the 
models that did not specify a certain number of training epochs training was terminated 
automatically by a callback function with patience of 10 epochs. Typically, that lead to 
∼ 30 epochs of pre-training, ∼ 50 epochs re-training the last layer, and ∼ 15 epochs of 
fine-tuning the entire network. The results are displayed in Fig. 3A l. 13. Applying trans-
fer learning indeed lead to a small performance increase of 0.04 in R2.

As seen above, the yeast-human cross-species prediction accuracy is substantial, indi-
cating that the translation regulatory elements inferred from synthetic constructs in the 
two species are partially conserved. Given that the cell type in which a model is devel-
oped will generally differ from the cell type where model predictions are of interest, we 
asked whether the TE of human mRNAs are largely similar across human cell lines. We 
thus generated ribosome footprinting data from the human HepG2 liver cancer cell line 
and compared the TE inferred from this cell line with those from the HEK 293 cell line 
data set. The estimates of TE were more reproducible than those from the HEK 293 cells 
( R2

= 0.68− 0.8 for replicate experiments). The TEs estimated from HEK 293 were 
moderately similar to those from HepG2 cells ( R2

= 0.31 ), especially when considering 
mRNAs with TIN > 70 ( R2

= 0.44 ). This indicates that within an organism, transcript-
intrinsic properties contribute substantially to the variation in translation output relative 
to the cellular context. This is a good basis for developing models in model systems, pro-
vided that the protocol allows for highly accurate measurements on translation output 
(Additional file 1: Fig. S2).
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Although DL models are not generally benchmarked against simple models with more 
limited predictive power, this test provides an assessment of parameter-efficiency (gain 
in predictive power per parameter) as well as insights into model interpretation. Trained 
on synthetic construct data, the 8-parameter linear model described above could explain 
as much as 60% of the variance in the respective test sets, which is quite remarkable 
given the size of the model. In addition, this model could also be trained to some extent 
on TE measurements of endogenous mRNAs. Strikingly, the accuracy of cross-system 
predictions of synthetic construct-based DL models is similar to the accuracy of linear 
models inferred from the respective data sets. This indicates that the conserved mecha-
nisms of translation control learned by the DL architectures from synthetic sequences 
are represented in a small number of features and that currently available DL architec-
tures are heavily over-parameterized.

Reporter sequences differ in translation‑relevant properties from endogenous mRNAs

To further identify the most predictive and conserved features, we inspected the weights 
learned by the linear model from individual data sets (Additional file 1: Fig. S5A). We 
found that only the uAUGs, especially those located out-of-frame (OOF) with respect 
to the mORF, consistently contributed to the prediction of translation output across all 
systems. OOF uORFs/uAUGs are known to repress translation, by hindering ribosome 
scanning towards the mORF [26] and triggering the mechanism of nonsense-mediated 
mRNA decay [27]. uAUGs contribute much more to the translation output of human 
or yeast reporters constructs compared to endogenous mRNAs, which is a reflection of 
differences in sequence composition between synthetic and natural 5′UTRs (Additional 
file 1: Fig. S6). To gain further insight into the sequence features learned by the LSTMs, 
we visualized the contributions (Shapley values) of single nucleotides in test sequences 
to the output of the LSTM architecture using the SHAP package [28]. While the inhibi-
tory effect of a uAUG becomes evident for representative sequences from the Opti-
mus50 data set (Additional file 1: Fig. S5C), this is not the case for sequences from the 
HEK 293 data, where individual nucleotides composing the AUG codon may even have 
contributions of opposite signs (Additional file 1: Fig. S5D). A superposition of 200 high-
TIN sequences from the HEK 293 data set in Additional file 1: Fig. S5E shows position-
dependent nucleotide biases that contribute to the translation output of endogenous 
sequences (with the caveat of a small predictive power in this setting). Specifically, C 
nucleotides contribute positively when located upstream and in the vicinity of the start 
codon, while G nucleotides contribute negatively, especially when located at the 5′ end, 
downstream of the cap. Thus, test examples, the weights of the linear model, and the 
visualization of the effect of individual nucleotides on the LSTM predictions all suggest 
that models trained on synthetic sequences will incorrectly weigh the translation-rele-
vant features they learned from these sequences when predicting the output of natu-
ral 5′UTRs, leading to reduced prediction accuracy. To illustrate this, we carried out a 
simulation using the Optimus50 data set: we set aside the 20,000 constructs with highest 
coverage in mRNA sequencing for testing as before but trained the Optimus 5-Prime 
model on the subset of remaining constructs that did not contain uAUGs. As shown 
in Additional file 1: Fig. S5B, the resulting model performs poorly on the test set, spe-
cifically on the subset of test sequences that do contain uAUGs. However, the model 
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trained on the entire spectrum of sequences that could, in principle, learn all regulatory 
elements of translation does not predict the translation output of the DART dataset of 
natural yeast 5′UTRs lacking uAUGs, see l. 11 of Fig. 3A. These results demonstrate that 
the similarity of distributions of translation-relevant features among training and test set 
are key to the ability of the DL model to generalize. Having undergone extensive selec-
tion under a variety of constraints, endogenous 5′UTRs likely accumulated multiple ele-
ments that control their translation, elements that are probably not represented among 
synthetic 5′UTRs. This leads to large differences in performance when models trained 
on synthetic data are applied to other data sets.

Previous studies reached different conclusions concerning the impact of IF uAUGs on 
translation [15, 21, 29, 30]. To clarify this, we determined the relationship between the 
location of OOF and IF uAUGs in the 5′UTR and the translation output of the mRNAs, 
in both yeast and human sequences, synthetic or endogenous. To avoid a superposition 
of effects from multiple uAUGs, we analyzed only constructs with a single uAUG in 
the 5′UTR. As shown in Additional file 1: Fig. S7A-F, the repressive effect of IF uAUGs 
increases with their distance from the mORF, while the repressive effect of OOF uAUGs 
on the translation of synthetic constructs only weakly depends on the position. The data 
for endogenous mRNAs was too noisy to verify or falsify the trend observed in synthetic 
data (Additional file 1: Fig. S7E, F). These results indicate that both the frame and the 
distance of uAUGs with respect to the mORF should be taken into account when pre-
dicting their impact on translation.

A more accurate and parameter‑efficient DL model to predict the impact of 5′UTR 

sequence variation on translation

To provide a more accurate model of endogenous mRNA translation, accommodat-
ing different constraints on uAUGs and improving parameter-efficiency, we turned to 
LSTM-based architectures. The two architectures that we implemented, LSTM and 
TranslateLSTM (see Fig.  2) performed similarly on the synthetic data sets, and were 
more accurate than the other DL models tested. The largest performance gain was 
reached for RNAs with IF uAUGs, as may be expected from the model’s treatment of 
sequence context (Additional file  1: Fig.  S8). The similar performance of LSTM and 
TranslateLSTM on synthetic data indicates the LSTM can learn correlates of the non-
sequential features represented in TranslateLSTM. However, these features were impor-
tant for the performance of TranslateLSTM on the endogenous HEK 293 TE data 
(Fig. 3A and Additional file 1: Fig. S5A).

To demonstrate the relevance of DL models for interpreting the functional signifi-
cance of single nucleotide polymorphisms (SNPs), Sample et al. [14] measured the MRL 
of constructs with 50 nts-long fragments of natural 5′UTRs as well as of variants with 
naturally occurring SNPs. TranslateLSTM predicted better the measured MRL of these 
sequences than Optimus 5-Prime model (Fig.  4A, B). However, in this experiment, 
5′UTR sequences were taken out of their endogenous context, which, as we have shown 
above, is important for the prediction of translation output and thereby functional 
impact. Therefore, we sought to improve the prediction of SNP effects on translation 
taking advantage of the insights provided by our analyses. We used transfer learn-
ing (TL) to extract information from both synthetic and endogenous 5′UTRs, and we 
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applied the resulting model to all the 5′UTR-located SNPs from the ClinVar database 
[31, 32], in their native 5′UTR context. 84,128 of the 2,300,005 SNPs were located in 
5′UTRs, and of these, 7238 were located in mRNA isoforms (one per gene) expressed 
and with measured TE in HEK 293. As shown in Fig. 3A l. 13, the TL strategy leads to 
better predictions than the training on endogenous data alone and also better than the 
predictions of other DL models trained by TL. The distribution of log-ratio of predicted 
translation output of variant and wildtype sequences is shown in Fig. 4C. One hundred 
ten of the 7238 variants are predicted to affect the TE by 10-fold or more, 34 increas-
ing and 76 decreasing the TE compared to the wildtype sequence. Interestingly, despite 
the large predicted impact, none of the 110 SNPs create or destroy an uAUG. However, 
overall, while absolute numbers of uAUG changes are small (328 of 7238 variants), crea-
tion/destruction of an uAUG was associated with a predicted reduction/increase of 

Fig. 4 Effect of 5′UTR sequence variation on mRNA translation output. A Optimus 5-Prime was trained 
on a pool of randomized 50nt long sequences and applied to a pool of equally long known variants 
(see the “Human genetic variants” section). Yellow points indicate 5′UTRs with OOF uAUGs; purple points 
without OOF uAUGs. Same was done for the TranslateLSTM architecture in panel (B). C TranslateLSTM was 
used to predict the TE of known clinical variants of endogenous sequences from the ClinVar database [31], 
which were compared to the measured TEs of their wildtype counterparts (see the “ClinVar data” section) 
and obtain predictions of log-fold changes of the translation efficiency (TE LFC). These follow a normal 
distribution, where a negative TE LFC can be associated with a propensity for the variant to create uAUGs 
(orange fraction of bars), while positive TE LFC is associated with a propensity of breaking uAUGs (green 
fraction of bars). D Clinical variants annotated as  pathogenic (clinical significance annotation: pathogenic, 
likely pathogenic, risk factor) are predicted to significantly increase the TE compared to variants with 
neutral phenotype annotation (clinical significance annotation: other, uncertain), whereas variants with 
benign phenotypes (clinical significance annotation: benign, likely benign, protective, drug response) do not 
significantly alter the distribution, as demonstrated by Kolmogorov-Smirnov tests
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translation output. Moreover, the pathogenic variants had a small bias for increased TE 
(Fig. 4D).

Discussion
The wider dynamic range of protein compared to mRNA expression suggested an 
important role of translation control in determining protein levels [10]. Initiation is the 
limiting step of translation [2, 6, 7], modulated by a variety of regulatory elements in the 
5′UTRs [6, 33], from uORFs to internal ribosome entry sites [34–36]. With the rise in 
mRNA-based therapies, the interest in designing 5′UTRs to drive specific levels of pro-
tein expression has surged [14], prompting the development of DL models to predict the 
translation output of mRNAs from the 5′UTR sequence. To satisfy the large data needs 
of these models, a few groups have devised innovative approaches to measure the trans-
lation output of large numbers of constructs, containing either random 5′UTRs or frag-
ments of endogenous sequences [14, 15, 21]. DL models trained on these data achieve 
impressive prediction performance on leave-out data and are used to identify sequence 
elements that modulate translation, the most predictive among these being uAUGs/
uORFs. However, DL models trained on synthetic data do not predict well the trans-
lation output of endogenous mRNAs. In this study, we carried out an extensive com-
parison of models of translation across multiple data sets and settings, to understand the 
limits of their applicability and generality.

We took advantage of two systems in which the translation output has been measured 
for both synthetic and endogenous 5′UTRs, namely yeast [6, 21], and HEK 293 cells [14, 
20]. For yeast, an additional library of ∼ 12, 000 endogenous 5′UTRs devoid of uAUGs 
was tested for their ability to recruit ribosomes [15]. We observed the best performance 
in the yeast-human cross-prediction of translation output of synthetic constructs, even 
though the readouts of the assays were very different for the two organisms. This predic-
tion relies on a small number of conserved determinants of translation output, in par-
ticular uAUGs, as underscored by the similar performance achieved with an 8-parameter 
linear model trained on the same data sets. However, models trained on synthetic con-
structs do not predict the translation output of endogenous mRNAs. The coding region 
or trans-acting factors do not explain this discrepancy, as demonstrated with the various 
yeast data sets, where these factors were controlled. Rather, endogenous sequences have 
been selected in evolution under multiple constraints, not limited to translation output, 
and have acquired a variety of regulatory elements that are not well-represented in the 
randomized 5′UTRs. This leads to models trained on synthetic data not having the pos-
sibility to learn such features. We could most clearly demonstrate this with a simulation, 
in which a model trained on sequences lacking uAUGs performed poorly on a data set 
in which these elements are represented. While in this case the outcome may seem obvi-
ous, as uAUGs are important modulators of translation output, there are likely many 
other elements that are not well represented among synthetic sequences yet affect the 
translation output in various ways, including for, e.g., by influencing the mRNA stability. 
All of these factors ultimately contribute to the poor performance of models trained in 
synthetic 5′UTRs on predicting the translation output of endogenous mRNAs.

The same issues likely compound the prediction of SNP effects. As the genetic varia-
tion of human populations is being mapped, DL models are increasingly used to predict 
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various molecular phenotypes, including the translation output of mRNAs [14, 16]. 
Genetic variation is manifested in the native gene expression context, implying that pre-
dictions of models trained on synthetic sequences will not be reliable. Given that with 
TranslateLSTM we were able to explain more of the variance in TE compared to other 
DL models, we also sought to provide updated predictions of the potential impact of 
ClinVar variants on TE [31]. Surprisingly, variants classified as pathogenic are predicted 
to more often increase than decrease the TE of the respective mRNA, i.e., they tend to 
be gain-of-function variants. Interestingly, the increase is not generally explained by the 
removal of a repressive uAUG, as relatively few SNPs changed the number of uAUGs 
in the 5′UTRs. These 1000 SNPs predicted to most increase the TE came from genes 
involved in protein and organelle localization (Additional file  1: Tab.  S1), predictions 
that could be tested in a future study.

That ∼ 60% of the variance in MPRA data can be explained with models constructed 
from such distant species such as yeast and human indicates that the models have 
learned deeply conserved mechanisms of controlling the translation output. That the 
simple, 8-parameter linear model, performs almost on par with the DL models in this 
setting indicates not only that these mechanisms are reflected in a small number of 
mRNA features but also that the DL models are heavily over-parameterized. Indeed, the 
cross-species prediction power comes largely from the OOF uAUGs, as demonstrated 
by the poor performance of the linear model lacking this element. The 5′UTR G/C con-
tent and/or free energy of folding appear to be additional conserved regulatory elements, 
with more prominent role in explaining the translation output of evolved 5′UTRs.

To the extent to which synthetic data sets and DL models are used to uncover molecu-
lar mechanisms, it is important to ponder whether the synthetic sequences cover these 
mechanisms as well as whether the model architecture allows for the appropriate rep-
resentation of these mechanisms. This is, of course, difficult to ensure a priori, when 
the mechanisms are unknown. However, an improved grasp of the parameter efficiency 
of models and their interpretation should facilitate the discovery of regulatory mecha-
nisms and avoid false inferences. For example, CNN type of architectures may be able to 
encode correlates of RNA secondary structure sufficiently well to predict the translation 
of short, synthetic 5′UTRs. Yet, the sequence motifs learned by the CNN need not rep-
resent as such a regulatory mechanism. Instead, they could reflect long-range second-
ary structure constraints, which could be more efficiently captured by a different type of 
representation than the CNN allows.

A main application of DL models trained on synthetic sequences is the design of con-
structs with desired translation outputs [14]. While this has been demonstrated within 
the setting of the MPRA, where randomized 5′UTRs drive the expression of proteins 
such as eGFP or mCherry, whether the same accuracy can be achieved for endogenous 
mRNAs of interest remains to be determined [14] have tested the same 5′UTR library in 
the context of the eGFP and mCherry coding regions and found that the model trained 
on the eGFP constructs explains 77–78% of the variance in mCherry expression, con-
trasting the 93% of the variance explained in eGFP expression. Interestingly, this differ-
ence has been attributed, in part, to differences in the polysome profiling protocol [14]. 
This points to the importance of establishing robust experimental protocols for gener-
ating reference data sets. However, the different coding regions likely contribute to the 
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discrepancy in prediction accuracy as well, underscoring the importance of measuring 
the same library of constructs in different systems to identify the mechanisms responsi-
ble for a specific readout.

Conclusion
In summary, our analysis suggests a few directions for the study of translation control 
and applications to protein expression. First, to continue to uncover mechanisms that 
explain the expression of endogenous sequences, it will be important to include these 
sequences in high-throughput assays. The method of choice for measuring the transla-
tion output of endogenous mRNAs is ribosome footprinting, a method that, on its own, 
is very reproducible ( R2 � 0.8 ). However, factoring in the mRNA-seq-based estimation 
of mRNA abundance to calculate the TE leads to increased error in the TE  estimate. 
Ensuring high accuracy of mRNA-seq and ribo-seq is important for obtaining reference 
data sets of TE. An additional limitation of endogenous mRNA translation data is its 
size. Currently, the number of mRNAs whose TE is estimated in a typical experiment 
is ∼ 20, 000 , which corresponds roughly to one isoform per gene. Accurate estimation 
of the TE of individual isoforms could be an important direction of methodological 
development [37, 38]. However, it is unlikely that many isoforms are simultaneously 
expressed at a high enough level to be accurately measured in a given cell type or that 
sufficiently accurate data can be currently obtained from single cells [39] that express 
distinct isoforms. As a suboptimal alternative, TE measurements could be obtained in 
closely related cell types in which sufficient variation of transcription and thereby trans-
lation start sites occurs. In terms of training DL models on such data, an important con-
sideration will be to ensure that training and test sets do not contain related sequences, 
to prevent models from achieving high prediction accuracy simply based on sequence 
similarity, without learning the regulatory grammar [40].

Second, towards predicting the impact of SNPs on translation, accurate models of 
endogenous mRNA expression are needed. As we have seen here, architectures beyond 
CNNs are desirable, and models used in natural language processing may provide a 
useful stepping stone. However, it will be interesting to develop architectures that can 
represent long-range dependencies of RNA secondary structures, perhaps also incorpo-
rated co-evolution constraints, as done for protein structure prediction [41, 42].

Third, towards the goal of designing constructs with specified translation outputs, 
it will be important to first determine the range of variation afforded by randomized 
5′UTR variants by actually measuring the range of protein expression that can be cov-
ered with these variants. If this is sufficient, it will be important to determine the impact 
of unexplored parameters, such as the cellular context of construct expression and the 
impact of the coding region downstream of the randomized construct. For the former, 
the same construct library can be tested in various cell types, especially those that are 
closest to the cell type in which the mRNAs will be ultimately expressed (e.g., muscle 
cells for mRNA vaccines) [43]. Regarding the coding region, it will be interesting to test 
at least a few that cover the range of endogenous expression, from mRNAs with different 
life times and codon bias.

To conclude, DL models can be trained to very high precision on synthetic data, irre-
spective of their architecture. However, so far, synthetic data does not appropriately 
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cover the space of regulatory elements influencing translation initiation. To achieve a 
comprehensive and predictive model as well as understand translation, training on 
endogenous sequences is necessary. The main bottleneck at the moment is obtaining 
sufficient and highly reproducible data on the translation of endogenous mRNAs. Exper-
iments in a single cell type such as a cell line may not yield sufficiently many reliably 
measured 5′UTRs to train models such as TranslateLSTM. Perhaps this limitation can 
be circumvented by collecting data from multiple cell types, as they may contain distinct 
isoforms, with distinct 5′UTRs and translation efficiencies. Such a model could then be 
used for a broad variety of tasks, such as predicting the effect of point mutations, the 
translation efficiency of synthetic constructs, and for deepening our mechanistic under-
standing of translational control.

Methods
Experimental methods

We outline the experimental procedure for RNA and ribosome footprint sequencing of 
HepG2 cells.

Cell culture

The HepG2 cell line was obtained from the laboratory of Dr. Salvatore Piscuoglio (DBM, 
Basel) and was cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 4.5 
g/l glucose, 10% fetal calf serum, 4 mM L-glutamine, 1X NEAA, 50 U/ml penicillin and 
50 µg/ml streptomycin at 5% CO2 , 37◦C . Cells were passaged every 3–4 days.

Cell lysis and collection

Cells were grown in 15-cm dishes to achieve a 70–80% confluency. Medium was replen-
ished 3 h prior to cell lysis. Cycloheximide (CHX) was added to a final concentration of 
100 µg/ml to arrest elongating ribosomes. Medium was immediately discarded and cells 
were washed once with ice-cold PBS containing 100 µg/ml CHX. Five hundred microlit-
ers of lysis buffer (20 mM Tris-HCl pH 7.5, 100 mM NaCl, 10 mM MgCl2 , 1% Triton 
X-100, 2 mM dithiothreitol (DTT), 100 µg/ml CHX, 0.8 U/µl RNasin plus RNase inhibi-
tor (Promega), 0.04 U/µl Turbo DNase (Invitrogen), and EDTA-free protease inhibitor 
cocktail (Roche)) was added directly to the cells on the Petri dish. Cells were scraped and 
collected into 1.5 ml tubes. Then, samples were incubated for 5 min at 4◦C at continuous 
rotation (60 rpm), passed through a 23G needle for 10 times, and again incubated for 5 
min at 4◦C at continuous rotation (60 rpm). Lysates were clarified by centrifugation at 
3000×g for 3 min at 4◦C . Supernatants were centrifuged again at 10,000×g for 5 min at 
4◦C.

Ribosome footprint sequencing

The ribosome footprinting sequencing protocol was adapted from protocols 
described in Refs.  [18, 19, 44]. An equivalent to 8  OD260 of lysate was treated with 
66 U RNase I (Invitrogen) for 45 min at 22◦C in a thermomixer with mixing at 1000 
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rpm. Then, 200 U SUPERase·In RNase inhibitor (20 U/µl, Invitrogen) was added to 
each sample. Digested lysates were loaded onto 10–50% home-made sucrose density 
gradients in open-top polyclear centrifuge tubes (Seton Scientific). Tubes were centri-
fuged at 35,000 rpm (210,100×g) for 3 h at 4◦C (SW-41 Ti rotor, Beckmann Coulter 
ultracentrifuge). Samples were fractionated using the Piston Gradient Fractionator 
(Biocomp Instruments) at 0.75 ml/min by monitoring A260 values. Thirty fractions 
of 0.37 ml were collected in 1.5 ml tubes, flash frozen, and stored at −80◦C . The frac-
tions (typically 3 or 4) corresponding to the digested monosome peak were pooled. 
RNA was extracted using the hot acid phenol/chloroform method. The ribosome-
protected RNA fragments (28–32 nt) were selected by electrophoresis on 15% pol-
yacrylamide urea TBE gels and visualized with SYBR Gold Nucleic Acid Gel Stain 
(ThermoFisher Scientific). Size selected RNA was dephosphorylated by T4 PNK 
(NEB) for 1 h at 37◦C . RNA was purified using the acid phenol/chloroform method. 
Depletion of rRNA was performed using the riboPOOL kit (siTOOLs biotech) from 
433 ng of RNA according to the manufacturer’s instructions. Libraries were prepared 
using the SMARTer smRNA-Seq Kit for Illumina (Takara) following the manufactur-
er’s instructions from 15 ng of RNA. Libraries were purified by electrophoresis on 
8% polyacrylamide TBE gels and sequenced on the Illumina NextSeq 500 sequencer 
in the Genomics Facility Basel (Department of Biosystems Science and Engineering 
(D-BSSE), ETH Zürich).

RNA‑sequencing

RNA was extracted from 15 µl of cell lysate using the Direct-zol RNA Microprep Kit 
(Zymo Research) following the manufacturer’s instructions and including DNase 
treatment for 15 min at room temperature. Samples were eluted with 15 µl nucle-
ase-free water. The RNA integrity numbers (RIN) of the samples were between 9.9 
and 10.0, measured using High Sensitivity RNA ScreenTape (TapeStation system, 
Agilent). RNA was quantified using a Qubit Flex fluorometer (Thermo Fisher Scien-
tific). Libraries were prepared using the SMART-seq Stranded for total RNA-seq kit 
(Takara) from 5 ng of RNA and sequenced on the Illumina NextSeq 500 sequencer 
in the Genomics Facility Basel (Department of Biosystems Science and Engineering 
(D-BSSE), ETH Zürich).

Data sets

The data sets used in this study are as follows.

Optimus50

Constructs consisted in 25 nts of identical sequence (for PCR amplification) followed 
by a 50-nt-long random 5′UTR sequence upstream of the GFP coding region. Their 
sequences and associated mean ribosome load measurements were obtained from 
the GEO repository, accession number GSE114002 [45]. Non-sequential features 
were computed and annotated for each sequence with a python script. The normal-
ized 5′UTR folding energy was determined with the RNAfold program from the Vien-
naRNA package [46]. The G/C-fraction was calculated using the biopython package 
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[47]. Number of OOF and IF uAUGs were calculated with standard python methods. 
ORF/UTR length and number of exons were identical in this data set and therefore 
uninformative. Following [14], we split the 20,000 5′UTRs with the highest coverage 
in mRNA seq for testing and kept the rest for training.

Optimus100

Constructs were made from random sequences, human 5′UTRs of suitable size (25–100 
nts), their single nucleotide polymorphism-containing variants, and 3′-terminal frag-
ments of longer 5′UTRs. MRL measurements were done as for the Optimus50 data 
set. Sequences and associated MRL estimates were obtained from the GEO repository, 
accession number GSE114002 [45]. The non-sequential features were computed just as 
for Optimus50, with the UTR length being an additional degree of freedom. The 5000 
5′UTRs with highest coverage in mRNA-seq are held out for testing, just as in [14].

Human genetic variants

Sample et al. [14] extracted 3577 5′UTR SNPs from the ClinVar database [31] and con-
structed variant 5′UTRs containing these SNPs. These variants were transfected to 
HEK  293 cells, and the respective MRL was measured as described in the paragraph 
about Optimus50. We also appended non-sequential features as outlined there, with the 
UTR length as an additional variable. The sequences and MRL were downloaded from 
GEO repository GSE114002 [45].

Yeast50

Yeast colonies were grown in media without HIS3. Yeast cells were transduced with plas-
mids containing the HIS3-ORF attached to a random pool of ∼ 500, 000 randomized 
50-nt-long 5′UTRs. The growth rate is directly controlled by the amount of HIS3 pro-
tein, which only is controlled by the 5′UTR sequence. The data were obtained from 
GEO, accession number GSE104252 [48]. The calculation of non-sequential features fol-
lowed the exact same procedure as for Optimus50. The top 5% 5′UTRs in terms of read 
coverage were used for testing.

DART 

We downloaded the training data from Suppl.  Tab.  S2 of [15]. Non-sequential fea-
tures were calculated as for Optimus50. Since uAUGs are mutated in this data set to 
avoid ambiguity in the translation start site, we did not include the number of OOF or 
IF uAUGs in the list of non-sequential features to learn from. Also, DART uses a lucif-
erase reporter only including the first bit of the coding sequence, so neither the number 
of exons nor the CDS length are meaningful; therefore, we did not include these fea-
tures, either. The first bit of the CDS sequence is available as a separate column in their 
Suppl. Tab. S2. We use three different random splits of 10% of the data for testing.
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Human mRNA sequences

The human transcript sequences were pulled from ENSEMBL [49] with pybiomart. We 
use the GRCh38.105 annotation and the GRCh38.dna_sm.primary_assembly.
fa primary assembly file. The human transcriptome sequences were assembled with 
gffread version 0.12.7 [50].

Yeast mRNA sequences

We used the R64.1.1 yeast genome [51] with the R64.1.1.110 annotation from 
the Saccharomyces cerevisiae Genome Database (SGD). We enriched this annotation 
with the longest annotated transcript from TIF-seq, see [52], providing us with 5′UTR 
sequences. Gffread [50] yielded the yeast transcriptome.

Yeast TE data

We used ribosome footprinting (GSM2278862, GSM2278863, GSM2278864) and RNA 
sequencing data (GSM2278844, GSM2278845, GSM2278846) from the control experi-
ments performed in [19], downloaded from the European Nucleotide Archive, accession 
PRJNA338918 [53]. The riboseq analysis was conducted as in [54]; the RNA-seq analy-
sis  was performed using zarp [55]. All non-sequential features (log ORF length, UTR 
length, G/C-content fraction of the UTR, number of exons, number of OOF uAUGs, 
number of IF uAUGs, normalized 5′UTR folding energy) were computed or extracted 
from the genome annotation. The 10% of transcripts with the highest TIN were used for 
testing purposes.

HEK 293 TE data

Ribo-seq and mRNA-seq data were obtained from the European Nucleotide Archive, 
accession PRJNA591214 [56]. The riboseq analysis was conducted as in [54]; the RNA-
seq analysis was performed as in [55]. For the calculation of the translation efficiency, 
we only took into account RNA-seq and ribo-seq reads in the CDS, not on the entire 
transcript. For stringency in the attribution of reads to mRNAs, we calculated relative 
isoform abundances by running salmon [57] on the RNA-seq samples and selected the 
most abundant isoform as representative, to which we mapped the RNA and ribo-seq 
reads. The 10% of transcripts with the highest TIN (squared average over the three repli-
cates) were used for testing.

HepG2 TE data

We followed the experimental procedure outlined in the experimental methods. The rest 
of the analysis was done as for the HEK  293 TE data. The data was deposited in the 
European Nucleotide Archive under accession PRJNA1045106 [58].

ClinVar data

We downloaded the ClinVar data base vcf file (vcf_GRCh38 [32]). With bedtools-inter-
sect (v 2.30) [59], we identified variants from ClinVar in annotated genes and only kept 
variants of annotated 5′UTRs. With a python script, we calculated the coordinates of the 
polymorphisms on all affected transcripts. Then, we constructed the variant 5′UTRs in 
the human transcriptome (created with gffread [50] from the GRCh38.105 ENSEMBL 
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annotation) and extracted the coding regions. This left us with 84,127 mutated tran-
scripts. Next, we computed the non-sequential features as for Optimus50. We predicted 
the variant TE with the transfer-learning version of TranslateLSTM (trained on human 
endogenous HEK 293, pre-trained on the Optimus100 data set). Matching the transcript 
variants and predictions to transcripts for which we have TE measurements left us with 
7238 transcripts.

Model architectures

We implemented previous published models that predict the translation output from 
5′UTR sequences according to the their description in the respective studies. We used 
tensorflow 2.10, along with cuda toolkit 11.8.0 on NVIDIA titanx GPUs with 12GB of 
graphics memory.

Optimus 5‑Prime

Optimus 5-Prime was the first neural network trained to predict translation initiation 
efficiency [14]. It consist of three convolutional layers with 120 8nt-long filters each. 
They all feature a relu activation function and are succeeded by two dense layers, one 
reducing the input dimensionality to 40 with another relu nonlinearity, and a last dense 
layer reducing to a single number. The two last layers are separated by a dropout layer 
that stochastically ignores 20% of the input signals during training. The configura-
tion allowing predictions for 5′UTR s up to 100 nts in length has 714,681 parameters. 
Two different configurations of Optimus 5-Prime were proposed: one trained of a pool 
of ∼ 280, 000 5′UTR sequences of 50 nts and another trained on a pool of ∼ 105, 000 
5′UTRs of 25–100 nts. Variable lengths were handled by anchoring the 5′UTR at their 
3′end (adjacent to the start codon) and padding the 5′ end with 0s in the one-hot 
encoded representation. Since endogenous 5′UTR s vary widely in length, we used the 
latter configuration and data set, considering it to be more realistic. However, the size 
of the model is also larger. To run the Optimus models on the local scientific computing 
infrastructure, the model training was re-implemented in a python script, rather than a 
jupyter notebook as in the git repository cited in [14].

Framepool

Framepool [16] technically overcomes the limitation on 5′UTR length. While also rely-
ing on convolutional layers and a final two-layer perceptron, Framepool introduced an 
operation called “framewise pooling.” This was motivated by previous observations that 
out-of-frame uORFs have a strong impact on the translation output. Framewise pool-
ing involves the pooling of output of convolutional layers separately for the +0, +1, and 
+2 frames. The subsequent multi-layer perceptron (MLP) takes as input the average and 
the maximum of each of the three pools (per convolutional filter). This makes the input 
of the final MLP independent of the input length and allows for varying UTR lengths 
from a technical standpoint. Trained on the same data sets as Optimus 5-Prime, the 
performance on data of varying UTR length was increased. The number of parameters 
in Framepool is only about a third of what Optimus 5-Prime requires for UTR lengths 
≤ 100 nt, namely 282,625 parameters. We pulled Framepool from the git repository ref-
erenced in [16]. A python script related the model to our format of input data.
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MTtrans

While CNNs are generally not a natural choice when it comes to modeling sequences of 
variable length, recurrent neural networks (RNNs) were developed exactly for this pur-
pose. Conventional RNNs suffer from the so-called vanishing gradient problem, whereby 
memory of distant context is lost. Moreover, they can only memorize the left-side con-
text, since they process sequences from left to right. These problems are solved by long-
short term memory units (LSTM) [25] and bidirectional layers. However, as there is no 
correspondence between output cells and position in the sequence, the interpretability 
of this type of model is more challenging. MTtrans [17] has been proposed as an attempt 
to get the best of both CNN and LSTM worlds. It follows the general idea of detecting 
motifs, with four convolutional layers stacked on top of each other, batch normaliza-
tion, L2 regularization, and dropout layers in between to avoid over-fitting and ensure 
stability. This component of MTtrans is called “shared encoder” and is followed by two 
bidirectional gated recurrent unit (GRU) [60] layers and two dense layers to make the 
final prediction. GRUs are quite similar to LSTMs, but they do not feature an output-
gate [25, 60] and therefore have fewer weights to adjust than LSTM layers. This second 
component of MTtrans is called “task-specific tower,” because it is re-trained for each 
data set (task), while the encoder is shared across all tasks. By training the encoder on 
data sets of different organisms and cells, the authors aim to capture general features of 
translation that apply to all of the studied systems. This is an example of transfer learn-
ing, hence the “trans” in the name MTtrans. MTtrans appears to be considerably bigger 
than its two predecessors, with ∼ 2, 100, 000 parameters. A re-evaluation of the results 
in [17] was unfortunately not possible since the code in the provided github repository 
was still work in progress. Therefore, we attempted reconstructing MTtrans in our own 
ML framework, but will quote the numbers reported in [17], wherever available.

TranslateLSTM

The start of the coding region has a biased nucleotide composition that also plays a role 
in translation initiation (c.f. [61]). Putting the first 100 nts into another bidirectional 
LSTM model therefore provides additional information about initiation likelihood. 
These three models, bidirectional LSTM for 5′UTRs, bidirectional LSTM for beginning 
of ORF, and non-sequential features, can now be concatenated into a big model. There 
is, of course, a lot of redundance in these inputs, as the folding energy of the 5′UTR 
is determined by its nucleotide sequence, GC-content, and length of the 5′UTR. One 
way to mitigate this redundance is to use high dropout rates after the final bidirectional 
LSTM layer of both RNNs (5′UTR and ORF). For training from scratch, we used drop-
out rates of 0.8 for the 5′UTR model and 0.2 for the CDS model. After concatenating the 
numerical input data with the two bidirectional LSTMs, a final dense layer computes a 
single number, the logarithm of the translation efficiency, scaled to a Gaussian distri-
bution with unit variance and expectation value 0. The network was implemented in 
python, using the keras API with a tensorflow backend [62, 63]. We used the adam algo-
rithm [64] for training, with the default learning rate of 0.001 that proved to superior 
even to more sophisticated learning rate schedules. Beyond dropout layers, overfitting is 
prevented by imposing an early stopping criterion. To this end, we used a keras callback 



Page 22 of 25Schlusser et al. Genome Biology          (2024) 25:227 

object. This object monitors the validation loss an terminates training once it sees a con-
sistent increase in the validation loss over a given number of epochs (“patience” param-
eter). We set the patience to 10 epochs and restored the best weights within these 10 
epochs after termination. Of the randomly reshuffled training data, 20% serve valida-
tion purposes. To further improve the performance of the model, we pretrained it on 
the variable-length Optimus100 data set before training on the endogenous data. In that 
scenario, we used slightly lower dropout rates for the 5′UTR LSTM of 0.5.

Linear models

As the translation initiation efficiency was reported to be explained, to a large extent, 
by a small number of mRNA features [6], we have included in our study two variants of 
a small linear model. The features were as follows. First, upstream open reading frames 
(uORFs) were reported in many studies to reduce the initiation of translation at the main 
ORF [65]. The effect was found to be largely due to uORFs that are in a different frame 
than the main ORF, which we have referred to as “out-of-frame ORFs” or “out-of-frame 
AUGs,” because the presence and position of stop codons matching these ORFs is not 
generally considered. Thus, one of the linear models included the numbers of out-of-
frame and in-frame AUGs, while the other only the former. The secondary structure 
of 5′ cap-proximal region of the mRNA is known to interfere with the binding of the 
eIF4F cap-binding-complex [5], and thus a weak positive correlation has been observed 
between the free energy of folding of the first 80 5′UTR nts and the translation initia-
tion efficiency of yeast mRNAs [6–8]. A more minor impact on yeast translation has also 
been attributed to the ORF length (negative correlation with TIE) [6, 66], 5′UTR length, 
and G/C content [6]. For human cells, the number of exon-exon junctions has also been 
linked to TIE [23]. Additional file  1: Fig.  S6 shows density plots of these parameters, 
comparing the major data sets we used, i.e., the three MPRA data sets, DART, and the 
two endogenous ones.

The linear models are of compelling simplicity: they only have as many parameters as 
features they cover, plus a single global bias term. For instance, the linear model describ-
ing the Optimus50 data set consists of weights multiplying the normalized 5′UTR fold-
ing energy, the G/C-content, the number of IF and OOF upstream AUGs, and the bias 
term, totaling to 5 parameters.
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