
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Inter-
national License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified 
the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The 
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a 
credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of 
this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

METHOD

Mizukoshi et al. Genome Biology          (2024) 25:229  
https://doi.org/10.1186/s13059-024-03367-8

Genome Biology

DeepKINET: a deep generative model 
for estimating single-cell RNA splicing 
and degradation rates
Chikara Mizukoshi1,2*, Yasuhiro Kojima3,4*, Satoshi Nomura1, Shuto Hayashi4, Ko Abe4 and Teppei Shimamura1,4* 

Abstract 

Messenger RNA splicing and degradation are critical for gene expression regulation, 
the abnormality of which leads to diseases. Previous methods for estimating kinetic 
rates have limitations, assuming uniform rates across cells. DeepKINET is a deep 
generative model that estimates splicing and degradation rates at single-cell resolu-
tion from scRNA-seq data. DeepKINET outperforms existing methods on simulated 
and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identi-
fies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes 
the effects of splicing factor mutations on target genes in erythroid lineage cells. Deep-
KINET effectively reveals cellular heterogeneity in post-transcriptional regulation.

Keywords: Single-cell RNA sequencing (scRNA-seq), RNA splicing, RNA degradation, 
Splicing kinetics, Transcriptome dynamics, RNA-binding proteins, RNA velocity, Neural 
network, Variational autoencoder (VAE), Deep generative model, Dimensionality 
reduction, Cell differentiation, Metabolic labeling

Background
Messenger RNA (mRNA) splicing and degradation play essential roles in precise gene 
expression regulation. These processes are vital for accurate utilization of genetic infor-
mation within cells. Inappropriate splicing can lead to production of dysfunctional pro-
teins, potentially resulting in severe implications for fundamental cellular functions. 
Recent studies have established that abnormal mRNA splicing and degradation are 
closely associated with development and progression of diseases such as cancer [1, 2].

Several methodologies are available to estimate mRNA splicing and degradation 
rates, each with its own limitations and challenges. Metabolic labeling methods [3, 4] 
are used to estimate the synthesis and degradation rates in genome-wide RNA metabo-
lism by integrating RNA metabolic labeling with cell-specific splicing kinetics. However, 
owing to the necessity of specific metabolic labeling, this approach is limited and can-
not be applied as readily as conventional scRNA-seq data. Combination of scRNA-seq 
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data with the RNA velocity theory [5] was introduced to model the dynamic processes 
of mRNA in individual cells. However, this approach has been criticized for assuming 
uniform kinetic rates across cells, which may cause misrepresentation of true biological 
variation. While transcription rates have been modeled to account for cell-to-cell vari-
ability, methods such as scVelo [6] and VeloVI [7] have assumed uniform splicing and 
degradation rates for each gene. A novel relay velocity model [8] utilizes neighboring cell 
information and leverages deep neural networks to estimate cell-specific kinetic rates. 
However, its primary intention is to refine the RNA velocity, leaving questions regarding 
the accuracy of the kinetic rates for each cell.

In light of these challenges, we introduced DeepKINET (a deep generative model with 
single-cell RNA kinetics), an advanced analysis framework based on deep generative 
modeling. This framework uses deep generative model-driven cell states in scRNA-seq 
data to accurately estimate single-cell splicing and degradation kinetics. Our method 
aims to reveal the heterogeneity in splicing and degradation rates across cells, enabling 
to elucidate post-transcriptional regulatory mechanisms mediated by factors such as 
RNA-binding proteins.

We demonstrate that DeepKINET can estimate mRNA splicing and degradation rates 
with greater precision than existing methods, as evidenced by simulated and metabolic 
labeling experimental data. Moreover, we demonstrate its robustness against dropouts. 
By applying DeepKINET to a forebrain dataset, we analyzed whether genes governed by 
the same RNA-binding proteins have equivalent trends in their splicing and degradation 
rates, and we identified the biological functions of these RNA-binding proteins. Further-
more, when applied to breast cancer data, DeepKINET revealed splicing and degrada-
tion anomalies related to cancer metastasis; we provide specific examples. In addition, 
we analyzed the effects of mutations in a splicing factor on the target genes in erythroid 
lineage cells. The results enhance our understanding of mRNA splicing and degradation 
processes and help to elucidate underlying molecular mechanisms and potential thera-
peutic targets.

Results
Conceptual view of DeepKINET

Figure  1 presents a clear overview of the conceptual framework of DeepKINET. This 
method processes both spliced and unspliced mRNA counts from scRNA-seq data and 
subsequently generates comprehensive kinetic rates across genes, including splicing 
and degradation rates, at single-cell resolution. DeepKINET addresses heterogeneity in 
kinetic rates spanning genes and cells, which is ignored by existing methods [5, 6].

DeepKINET uses a deep generative model of mature and immature transcripts based 
on an RNA velocity equation. This enables optimization in which the splicing and deg-
radation rates are adjusted according to the cell state. First, we use a variational autoen-
coder (VAE) to model stochastic transitions within the latent cell state space, similar to 
that in our previous study [9]. DeepKINET assumes that the kinetic parameters for each 
cell are obtained from transformation of the latent cell state by the neural network. We 
optimized both cell state dynamics and kinetic parameters to align with the observed 
mature and immature transcript levels, following the RNA velocity equation.
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Beyond kinetic rate heterogeneity estimation across genes and cells, DeepKINET 
offers the following: (1) gene clustering based on kinetic rates, which enables identifi-
cation of genes with analogous rate patterns; (2) identification of genes exhibiting sig-
nificant rate variations by comparing different cell populations; and (3) detection of 
RNA-binding proteins that influence splicing and degradation rates of their associated 
targets.

DeepKINET not only delivers refined insights into RNA kinetics but also serves as 
a springboard for in-depth molecular studies, promising deeper comprehension and 
demystification of the complex regulatory mechanisms guiding cellular kinetics. It is 
accessible as a user-friendly open-source Python package with comprehensive docu-
mentation at https:// github. com/ 3254c/ DeepK INET.

Simulated data to demonstrate accuracy and superiority of DeepKINET

We used simulated data to evaluate the accuracy of the kinetic rates estimated using the 
DeepKINET software. Simulated data were generated using SERGIO [11], which uses 
gene regulatory networks and RNA velocity equations to generate the scRNA-seq data. 
We generated scRNA-seq count data for each cell cluster with different splicing and deg-
radation rates.

We applied DeepKINET to each simulated dataset and confirmed that it predicted 
the correct direction of differentiation (Additional file 1: Fig. S1a). We then estimated 
the kinetic rates for each single cell (Fig.  2a), averaged them over each cell cluster, 
and calculated the correlation coefficient using the set value (Fig.  2b). We found 
positive correlations across various dropout scenarios. Therefore, we concluded that 

Fig. 1 Overview of DeepKINET. a Overview of our method for estimating single-cell transcriptome 
dynamics from latent variables. DeepKINET receives scRNA-seq data that have unspliced and spliced counts 
and outputs kinetic rates at the single-cell level. DeepKINET provides biologically meaningful insights by 
accounting for cellular heterogeneity in kinetic rates, which is ignored by existing methods. For example, 
DeepKINET can be used to classify genes by their kinetic rates, find genes that show significant rate variation 
among cell populations, and identify RNA-binding proteins involved in splicing and degradation. b Estimated 
RNA velocity by DeepKINET in the mouse pancreas dataset visualized on Uniform Manifold Approximation 
and Projection (UMAP) embedding. The direction of transition in latent space is plotted in 2D coordinates 
in the same way as scvelo. Trajectory inference by PAGA [10] was performed using RNA velocity from 
DeepKINET. c Expression, splicing rate, and degradation rate at the single-cell level projected on UMAP 
embedding. DeepKINET estimates splicing and degradation rates for each cell based on the RNA velocity 
equation and cell states. The colors of the points indicate the gene expression, the splicing rate, and the 
degradation rate per cell

https://github.com/3254c/DeepKINET
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our method is robust against data sparsity. In addition, we compared the accuracy 
of our method with that of cellDancer [8] and DeepVelo [12], existing methods for 
estimating kinetic rates at the single-cell level. Although Velocyto [5] and scVelo [6] 
are widely used in RNA velocity analysis, we did not include them in our comparison 

Fig. 2 DeepKINET is robust to dropout rates and cell numbers in simulated data, and its performance 
exceeds that of cellDancer and DeepVelo. a Visualization of the UMAP embedding of the expression, set 
kinetic rates, and estimated kinetic rates. The gene with the highest correlation in splicing rate and the gene 
with the highest correlation in degradation rate are shown. To prevent extreme values from affecting the 
visualization, the minimum or maximum value of the top 1% was forced to the 1% and 99% quantile values. 
b Scatter plot of correlation coefficient averages of splicing rates and degradation rates for each dataset. 
Ten datasets were generated for each of the 20 different generation conditions. We applied DeepKINET, 
cellDancer and DeepVelo once to each dataset and calculated the correlation coefficient between the 
set rates and the estimated rates by each method. DeepKINET’s accuracy exceeds that of cellDancer and 
DeepVelo. c Box plot of correlation coefficient averages when varying the number of cells in a cluster. Ten 
datasets were generated for each of the 14 different generation conditions. DeepKINET always had a positive 
correlation coefficient and outperformed cellDancer and DeepVelo
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as these methods assume uniform kinetic rates across cells. cellDancer showed posi-
tive correlations in splicing rates, whereas DeepVelo showed negative correlations in 
splicing rates. Both methods were less accurate than DeepKINET. Furthermore, cell-
Dancer showed negative correlations in degradation rates. DeepVelo showed positive 
correlations with respect to degradation rates, but DeepKINET had higher correla-
tions. Subsequent simulations were conducted using varying numbers of cells. For 
these simulations, we used the default dropout rates. We applied DeepKINET to each 
simulated dataset and computed correlation coefficients for the set values. Deep-
KINET could accurately estimate the kinetic rates, even for small numbers of cells 
(Fig. 2c). On the other hand, cellDancer also showed positive correlations in splicing 
rate estimation accuracy, but it was less accurate than DeepKINET and required more 
cells until the estimation accuracy stabilized. Furthermore, DeepVelo was unable to 
make accurate estimates even when the number of cells was increased. In degrada-
tion rates, cellDancer consistently failed to make correct estimates, and the accuracy 
decreased as the number of cells increased. DeepVelo showed positive correlations, 
but the estimation precision was still lower than DeepKINET.

These validations confirmed the accuracy of the splicing and degradation rates esti-
mated by DeepKINET, marking a clear advancement over the kinetic parameter esti-
mation capabilities of cellDancer and DeepVelo. Notably, the accuracy of splicing rate 
estimation by cellDancer appeared to increase slowly as the number of cells increased, 
implying a requirement for larger datasets than those required by DeepKINET for accu-
rate predictions. A detailed exposition of genes that were successfully estimated and 
those that were not is shown in Additional file 1: Fig. S1b, S1c.

Due to the presence of multiple unknowns in the RNA velocity equation for spliced 
mRNA, the solution of the splicing and degradation rates for each cell may be underde-
termined, which could lead to correlation between the estimated kinetic rates. To assess 
whether each method can estimate these parameters independently, we investigated the 
correlation between the estimated splicing rates and degradation rates in each simula-
tion dataset. We observed that the correlation between splicing and degradation rates 
estimated by DeepKINET was lower than that of cellDancer and DeepVelo (Additional 
file 1: Fig. S1d). This suggests that DeepKINET can estimate splicing and degradation 
rates more independently compared to other methods. In contrast, cellDancer and 
DeepVelo exhibited relatively high correlations, indicating that these methods have dif-
ficulty in separately considering splicing and degradation processes.

Accuracy of DeepKINET for real data evaluated using metabolic labeling data

We next evaluated the accuracy of DeepKINET for real data using multicellular-level 
kinetic rates derived from metabolic labeling experimental data. The values obtained 
from the metabolic labeling experiments depended on the assumptions of the mathe-
matical model used and did not represent the perfect ground truth. Nevertheless, the 
temporal resolution inherent in the metabolic experimental data lost in scRNA-seq 
provides a benchmark from which to assess the similarity to extrapolated kinetic rates. 
Li et al. [8] used single-cell EU-labeled RNA sequencing (scEU-seq) [3] to qualitatively 
assess the accuracy of cellDancer, which is limited to cell cycle genes.
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Using the same scEU-seq cell cycle dataset, we evaluated the accuracy of DeepKI-
NET. scEU-seq methodology can be used to estimate multicellular-level kinetic rates 
by observing temporal variations in the fraction of 5-ethynyl-uridine(EU)-labeled 
mRNA. Battich et  al. did not differentiate between unspliced and spliced mRNAs 
when modeling mRNA metabolism. Conversely, Dynamo [13] can estimate kinetic 
rates, including splicing rates, by accounting for splicing events in the scEU-seq 
data. We partitioned the cell cycle dataset into PULSE and CHASE experimental 
categories, each distinctly modeling mRNA metabolism. In the Pulse experiment, 
the EU incubation time differs for each cell. In the Chase experiment, EU incuba-
tion is performed under the same conditions, followed by washing time with uridine, 
which varies depending on the cells. We divided the cells into six to thirty clusters, 
each containing an equal number of cells across the cell cycle trajectory. Dynamo 
was used to determine the splicing and degradation rates for each cluster.

Next, we estimated the RNA velocity using DeepKINET and confirmed that the 
estimated future states of individual cells followed the order of the cell cycle (Fig. 3a, 
Additional file  1: S2a). We then estimated the single-cell splicing and degradation 
rates, averaged them across clusters and calculated the correlation coefficient using 
the kinetic rates determined using Dynamo. Our method showed positive cor-
relations in both PULSE and CHASE experiments, outperformed cellDancer and 
DeepVelo in terms of accuracy in degradation rates, and demonstrated comparable 
performance in accuracy in splicing rates (Fig.  3b, Additional file  1: S2b). Notably, 
the PULSE experimental data were considered more reliable because the propor-
tion of cells in different cell cycles was constant. Regarding the degradation rates, 
cellDancer showed negative correlation in both experiments, and DeepVelo showed 
negative correlation in the CHASE experiment. DeepKINET showed no negative 
correlation in any setting.

Using the PULSE experimental data, we estimated the splicing and degradation rates 
for each cell and clustered the genes using these rates (Fig. 3c). We then derived the cor-
relation coefficients between the splicing and degradation rates. Genes related to the 
cell cycle were concentrated in one cluster, and related terms were detected using Gene 
Ontology (GO) analysis (Fig.  3d). Finally, we classified the genes using the correlation 
coefficients between splicing and degradation rates (Fig. 3e).

Additionally, we evaluated the accuracy of DeepKINET using another metabolic 
labeling dataset. Single-cell metabolically labeled new RNA tagging sequencing 
(scNT-seq) [4] enables the estimation of transcription and degradation rates by dis-
tinguishing between old and new transcriptomes in the same cell. We applied Deep-
KINET and other methods to the hematopoiesis dataset [13]. DeepKINET estimated 
the differentiation trajectory of hematopoietic cells, which was consistent with the 
results in the Dynamo paper (Additional file 1: Fig. S3a). We applied Dynamo to esti-
mate the degradation rates of two cell populations (Additional file 1: Fig. S3b) and 
compared these estimates with those obtained from other methods. The degradation 
rates estimated by DeepKINET correlated with the values estimated by Dynamo and 
demonstrated superior performance compared to cellDancer and DeepVelo (Addi-
tional file  1: Fig. S3c). These results further support the accuracy of DeepKINET’s 
estimations.
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DeepKINET to investigate functions of RNA‑binding proteins and RNA‑binding proteins 

that regulate gene clusters

We applied DeepKINET to a forebrain dataset [5] to examine the functions of RNA-
binding proteins. DeepKINET can classify genes based on their kinetic rates and identify 
RNA-binding proteins that govern these clusters. Additionally, DeepKINET can deter-
mine whether an RNA-binding protein regulates the splicing or degradation of its target 
genes.

First, we confirmed that the direction of RNA velocity estimated by DeepKINET 
was consistent with the known trajectories of cell differentiation (Fig.  4a). We then 
used DeepKINET to estimate the single-cell splicing and degradation rates and used 
these rates separately to cluster the genes. By clustering genes using either splicing 

Fig. 3 DeepKINET is also accurate for real data and outperforms cellDancer and DeepVelo. a The clusters and 
velocities of the PULSE data were visualized on the pre-defined embedding based on the Geminin-GFP and 
Cdt1-RFP signals. Geminin-GFP and Cdt1-RFP signals were used in Battich et al.’s paper [3] to estimate cell 
cycle score. The cells were divided into cell clusters based on cell cycle position. The PULSE data showed an 
even distribution of cells with respect to cell cycle positions compared to the CHASE data (S2a). DeepKINET 
is able to estimate the correct direction along the cell cycle. b Box plot of correlation coefficient averages 
between estimated rates by Dynamo and estimated rates by DeepKINET, cellDancer, and DeepVelo using 
the PULSE experimental data. A total of 100 estimations were performed by each of DeepKINET, cellDancer, 
and DeepVelo. DeepKINET showed positive correlations, outperformed cellDancer and DeepVelo in terms 
of accuracy in degradation rates, and demonstrated comparable performance in accuracy in splicing 
rates. cellDancer showed negative correlations in degradation rates. c Heatmaps of splicing rates (left) 
and degradation rates (right). To prevent extreme values from affecting the visualization, the minimum or 
maximum value of the top 1% was forced to the 1% and 99% quantile values. The genes were clustered 
by splicing and degradation rates and sorted by their clusters. The cells were sorted by cell cycle positions. 
The correlation coefficients between splicing and degradation rates for each gene are indicated by colored 
bars. The genes related to the cell cycle [14] are also shown in white color. Cluster 9 has a large number of 
genes related to the cell cycle. d Gene Ontology (GO) terms enriched in the gene list belonging to cluster 9 
obtained by g:Profiler. One-thousand genes in this analysis were used as background. e Genes with different 
correlations between splicing and degradation rates. DeepKINET can extract genes by the value of the 
correlation between splicing and degradation rates. The minimum or maximum value of the top 1% was 
forced to the 1% and 99% quantile values
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rates or degradation rates independently, it becomes possible to discern which pro-
cess an RNA-binding protein contributes to, thereby providing insights into its func-
tional role in post-transcriptional regulation. We examined whether the gene clusters 
by kinetic rates matched the gene list of RNA-binding protein targets using Fisher’s 
exact test (Fig. 4b). We found clusters that matched the target gene lists, indicating 
that genes regulated by the same RNA-binding protein have similar splicing and deg-
radation rate changes.

Next, we examined the relationship between the expression levels of each RNA-
binding protein and the splicing and degradation rates of the target genes. We cal-
culated the average correlation coefficients for both target and non-target genes for 
all remaining RNA-binding proteins from expression preprocessing and the observed 

Fig. 4 RNA-binding protein analysis of the forebrain dataset by DeepKINET. a PAGA trajectory inference of 
forebrain dataset using DeepKINET’s velocity estimates. b Dot heatmap showing the association of each 
RNA-binding protein (RBP) targets with each gene cluster. The genes were clustered using splicing and 
degradation rates separately, and Fisher’s exact test was used to determine if a list of RNA-binding protein 
target genes were enriched in a particular cluster. The colors indicate the corrected p-values for Fisher’s 
exact test. The circle size indicates the ratio of the proportion of RNA-binding protein targets in the cluster 
to the proportion of RNA-binding protein targets in all genes. c Joint plot of the mean correlation coefficient 
between RNA-binding protein expression levels and the splicing and degradation rates of each target or 
non-target. Compared with non-target genes, target genes have higher correlations with the expression 
of RNA-binding proteins. A significant difference was indicated by the Levene’s test. d Box plots show 
correlation coefficients between RBFOX1 and RBFOX2 expression and the splicing rates of each target or 
non-target gene. The green dot represents the average value. A significant difference was indicated by the 
one-sided unpaired t-test. e Visualization of the UMAP embedding of the expression of RBFOX1 and RBFOX2 
and the splicing rates of target genes that are highly correlated with RBFOX1 and RBFOX2 expression
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absolute values of correlation coefficients of target genes were significantly greater 
than those of non-target genes (Fig.  4c). This suggests that DeepKINET accurately 
reflects the regulatory roles of RNA-binding proteins with respect to their tar-
get genes. Further analysis of the highly variable genes that substantially affected 
the kinetic rates of their targets revealed that the expression levels of RBFOX1 and 
RBFOX2 correlated with the target splicing rates (Fig. 4d), which is in agreement with 
established research identifying RBFOX1 and RBFOX2 as regulators of mRNA splic-
ing [15]. Therefore, DeepKINET demonstrated proficiency in deducing the contribu-
tions of RNA-binding proteins to splicing and degradation within the dataset, as well 
as in identifying genes that are potentially regulated by specific RNA-binding proteins 
(Fig. 4e).

DeepKINET reveals heterogeneity in cancer cell populations

Next, we applied DeepKINET to breast cancer data to identify genes with significant 
changes in kinetic rates and RNA-binding proteins that exhibit distinct functions across 
different cell populations. Previous studies have highlighted the critical roles of splicing 
and degradation abnormalities in cancer development and progression [1, 2]. Addition-
ally, the significant involvement of RNA-binding proteins in cancer has been well docu-
mented [16, 17]. Cell Ranger [18] and Velocyto [5] were used to create matrices of the 
spliced and unspliced breast cancer data [19].

We applied DeepKINET to malignant epithelial cells from the breast cancer data 
(Fig. 5a) and confirmed that the estimated velocities were in the direction from primary 
cells to metastatic cells (Additional file  1: Fig. S4a). We then estimated the single-cell 
kinetic rates and identified genes that exhibited marked differences in their splicing or 
degradation rates when primary cells were compared with metastatic cells (Fig. 5b, c). 
Among these, KDM6A [20], PGR [21], PIK3CA [22], PRKAA1 [23], TPM2 [24], TP63 
[25], USP9X [26], and TIMP2 [27] have been implicated in breast cancer metastasis. 
These variations in the kinetic rates may play a pivotal role in metastasis.

Furthermore, we explored the correlation coefficients between the expression of 
highly variable RNA-binding proteins and the kinetic rates of their target genes. Within 
this dataset, the effect of RBM47 on the splicing rate of its target genes was significant 
(Additional file 1: Fig. S4b, S4c). Because RBM47 is involved in RNA splicing and metas-
tasis, including that of breast cancer [28–30], this result indicates the capacity of Deep-
KINET to accurately reflect authentic biological processes. We also investigated whether 
the relationship between RBM47 and its target genes differed significantly between pri-
mary and metastatic cells. We performed linear regression on the expression of RBM47 
and the splicing rates of its targets, and examined whether the slope of the regression 
varied significantly between primary and metastatic cells. We corrected the p-values 
using multiple testing corrections and extracted significantly altered genes (Fig. 5d, e). 
Among these genes, CTSC [31], PSD3 [32], TGFBR3 [33], and USP53 [34] are involved 
in breast cancer metastasis. CD2AP [35], GFRA1 [36], and EPB41 [37] are implicated in 
the metastasis of other cancers, but no findings on breast cancer metastasis have been 
reported. These findings imply that changes in the effect of RBM47 expression on the 
splicing rates of its target genes are associated with cellular transitions critical for cancer 
metastasis.
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DeepKINET reveals changes in splicing due to mutations in splicing factors

Finally, we investigated changes in target splicing rates due to mutations in a splicing 
factor using erythroid lineage cells. The subtype of myelodysplastic syndrome (MDS), 
MDS-RS (MDS with ringed sideroblasts), has mutations in the splicing factor SF3B1 and 
is characterized by severe anemia and the accumulation of erythrocyte progenitor cells 
in the bone marrow. SF3B1 is responsible for connecting immature mRNAs to splice-
osomes, and mutations in it lead to aberrant splicing, particularly the use of alternative 
3′ splice sites [38], resulting in reduced standard transcripts [39].

We extended our model using the conditional VAE framework [40] to integrate and 
analyze multiple samples (see more details in the “Methods” section). We used data from 
Adema et al.’s [41] bone marrow mononuclear cells from seven MDS-RS patients with 
SF3B1 mutations and two age-matched healthy donors. We analyzed erythroid lineage 
cells, which are known to be damaged by MDS-RS (Fig.  6a). The results of trajectory 
inference were consistent with the known erythroid differentiation process (Fig. 6b).

Fig. 5 DeepKINET can identify kinetics changes involved in metastasis using breast cancer data. a 
Visualization of UMAP embedding of the velocities estimated by DeepKINET and pre-defined classifications 
for malignant epithelial cells of breast cancer. There are 15,269 primary cells and 642 metastatic cells. The 
velocities indicate the direction from the primary cancer to the metastatic cancer. b Genes with large 
changes in their splicing rates (left) and degradation rates (right) between primary and metastatic cells 
as determined using t-test. These genes include those involved in cancer metastasis and breast cancer. c 
Visualization of UMAP embedding of expression levels and kinetic rates of the genes with the largest changes 
in their splicing or degradation rates. These genes are involved in breast cancer metastasis. To prevent the 
effect of extreme values in the visualization, the minimum or maximum value of the top 1% was forced to the 
1% and 99% quantile values. d Bar plot of corrected p-values for genes whose slopes changed significantly 
between primary and metastatic cells when linear regression was performed using RBM47 expression levels 
and target splicing rates. Several of these genes are involved in breast cancer metastasis and metastasis of 
other cancers. e Scatter plot of RBM47 expression and splicing rates of CD2AP, the gene with the most slope 
change
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Our analysis revealed that the splicing rate of SF3B1 target genes in SF3B1 mutant 
cells was significantly lower than in healthy cells (Fig. 6d). This result suggests that Deep-
KINET effectively captures the changes in splicing kinetics caused by SF3B1 mutations. 
It should be noted that in the RNA velocity model, the splicing rate is defined as the 
amount of change from unspliced mRNA to spliced mRNA per unit time. In the stand-
ard quantification method such as Velocyto [5], reads are annotated as spliced mRNA if 
they map only to exon regions, and even if only a small amount maps to intron regions, 
they are annotated as unspliced mRNA. It is known that in the case of SF3B1 muta-
tions, the usage of alternative 3′ splice sites results in the shifting of splicing sites tens 
of base pairs upstream compared to the canonical 3′ splice sites, causing an insertion 
of intronic sequence at the authentic exon junction [39]. From these considerations, it 
can be inferred that the use of alternative 3′ splicing sites in SF3B1 mutants reduces the 
amount of transcripts classified as spliced mRNA, which in turn leads to decreases the 
splicing rates in the RNA velocity model. The results from DeepKINET suggest that this 
model captures the changes in kinetics underlying these biological processes.

Additionally, the genes that show a large reduction in splicing rate due to the SF3B1 
mutation included WAS, APOE, and CHAC1. It has been suggested that the deficiency 
of WAS, whose splicing rate was most substantially decreased by SF3B1 mutation, pro-
motes the development of hematopoietic malignancies including MDS [42, 43]. APOE is 
involved in both tumor promotion and suppression [44], and CHAC1 exerts antitumor 
effects when its expression is increased [45]. The results from DeepKINET suggest that 

Fig. 6 Analysis of a mutated splicing factor by DeepKINET. a Patient label (left) and SF3B1 mutation status 
(right) on the UMAP embedding from the low-dimensional latent cell state estimated by DeepKINET. b 
PAGA trajectory inference using DeepKINET’s velocity estimates. DeepKINET can accurately estimate the 
differentiation pathway of erythroid lineage cells. c UMAP coordinates colored by the expression of SF3B1. 
d Scatter plot of the average splicing rate by SF3B1 mutation status (wild-type on the x-axis and mutant on 
the y-axis) for each gene. The p-values shown in the figure are derived from a one-sided paired t-test, which 
shows that cells with the SF3B1 mutation have significantly lower target splicing rates compared to cells 
without the mutation. The top three genes with the smallest ratio of splicing rates in SF3B1 mutated cells 
compared to wild-type cells (WAS, APOE, and CHAC1) were highlighted. e Box plot showing the correlation 
between SF3B1 expression and target or non-target gene splicing rates. In the target genes, the correlation 
value were significantly higher than those of the non-target genes. f Box plot showing the correlation 
between SF3B1 expression and target gene splicing rate. In cells with SF3B1 mutations, the correlation value 
was significantly lower than in cells without mutations
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SF3B1 mutations may decrease the expression of these genes through the reduction of 
the splicing rates, potentially contributing to the development of MDS.

Furthermore, the average correlation between the expression of SF3B1 and the splicing 
rates of target genes was significantly higher than the average correlation between the 
expression of SF3B1 and the splicing rates of non-target genes (Fig. 6e), consistent with 
the functional characteristics of SF3B1. In addition, the average correlation between the 
expression of SF3B1 and the splicing rates of target genes in SF3B1 mutant cells was sig-
nificantly lower than that in SF3B1 non-mutant cells (Fig. 6f ). This results suggests that 
mutations in SF3B1 make it difficult to produce the target standard spliced mRNA and 
that the mutated SF3B1 does not contribute to normal splicing. These findings demon-
strate that DeepKINET can capture changes in splicing of targets due to mutations in 
splicing factors.

Discussion
In this study, we introduced DeepKINET, a groundbreaking method for accurately esti-
mating splicing and degradation rates at single-cell resolution. By harnessing cell state 
information and RNA velocity, DeepKINET advances beyond conventional models that 
assign static splicing and degradation rates to genes, offering dynamic and cell-specific 
analysis. This innovation marks the first instance in which such kinetic rates have been 
estimated and validated for accuracy at the single-cell level using both simulated and 
metabolic labeling data, thereby enabling a more nuanced understanding of gene expres-
sion regulation. Our approach facilitates a variety of biological analyses, including clus-
tering by the kinetic rate, identifying genes with highly variable kinetics across cell types, 
and detecting RNA-binding proteins that influence splicing and degradation processes. 
Importantly, DeepKINET utilizes readily available scRNA-seq data, avoids the need for 
complex metabolic labeling, and paves the way for novel investigations of gene expres-
sion kinetics. Using this method, one can gain insights into the regulatory mechanisms 
of gene expression and uncover potential therapeutic targets for diseases in which splic-
ing and degradation are dysregulated, such as cancer. These insights will be critical in 
elucidating variations in gene expression among cells and populations, bringing to light 
complex regulatory networks.

Despite its advantages, DeepKINET has several inherent limitations. It employs a 
unified model to estimate splicing and degradation rates, which can lead to correlation 
trends among these rates (Additional file  1: Fig. S1d, S2c, S5). Nonetheless, the fidel-
ity of our estimates was supported by simulated and metabolic labeling data. In addi-
tion, the correlation between splicing and degradation rates estimated by DeepKINET 
was the lowest among the three methods, while cellDancer and DeepVelo exhibited high 
correlations. These high correlations suggest that cellDancer and DeepVelo may have 
limited ability to disentangle the effects of splicing and degradation. While kinetic rate 
estimation at the single-cell level improves the details of RNA velocity calculations [8], 
the simultaneous estimation of RNA velocity and kinetic rates presents a challenge, indi-
cating the need for further methodological enhancements and additional constraints for 
improved accuracy in estimating kinetic rates.

It is worth noting that by extending DeepKINET, the assumption of fixed transcription 
rates for each gene can also be eliminated. However, this would increase the number of 
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parameters, and further investigation is required to determine whether the estimation of 
the transcription, splicing, and degradation rates would all remain stable in such a setting. 
An existing method MultiVelo [46] uses multi-omics data (gene expression and chromatin 
accessibility) as input and assumes that transcription rates are determined based on chro-
matin accessibility near the gene. Considering the fact that transcription factors bind almost 
exclusively to open chromatin and provide dynamic regulation of transcription [47], Multi-
Velo’s modeling is more realistic than estimating transcription rates using only scRNA-seq 
data and may allow for more accurate estimation of transcription rates.

A notable challenge lies in the current limitations of RNA velocity analysis in distinguish-
ing mRNA isoforms [48], with implications particularly relevant to diseases such as cancer, 
where alternative splicing is prevalent. Addressing this issue in future versions of DeepKI-
NET could provide deeper biological insights and a more authentic portrayal of variations 
in mRNA splicing.

In summary, DeepKINET is a significant contributor to the field of single-cell biology, 
offering a novel analytical framework that not only advances the current understanding but 
also sets the stage for future innovations that will further elucidate the complexities of cel-
lular kinetics.

Methods
In DeepKINET, the cell states and RNA velocity were first estimated, as in VICDYF [9], 
and the learned parameters of the encoders and decoders were fixed. Subsequently, decod-
ers are created that take the cell states as the input and output the splicing and degrada-
tion rates at the single-cell level. These decoders are trained to better reconstruct unspliced 
mRNA amounts.

Derivation of single‑cell splicing and degradation rates

The cell state and RNA velocity were estimated as described in the previous VICDYF 
method. The standard normal distribution is used as a prior for the low-dimensional latent 
cell state zn ∈ RD of cell n and the direction of small change dn ∈ RD on the low-dimen-
sional latent cell space. D is the dimension of the latent cell space and the default value is 20.

where ρ is a scaling factor, and I is the identity matrix. The direction of the small change 
dn needs to have a small scale with respect to zn ; thus, we set ρ = 0.01 to be the same 
as in VICDYF. Unspliced and spliced transcriptomes of a single cell are indicated by 
un ∈ Rg and sn ∈ Rg , where g is the number of genes. Poisson or negative binomial dis-
tributions were assumed for the distributions of un and the distribution of sn given zn . A 
Poisson distribution was assumed for all analyses in this research.

p(zn) = N (0, I),

p(dn) = N (0, ρI)

sn = lsn�θ (zn),

p(sn|zn) = Poisson(s̃n)
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where lsn ∈ Rg is the mean of spliced counts across all genes in the single cell, and 
�θ (zn) ∈ Rg is the decoding neural network of the latent cell states with 100 hidden units, 
one hidden layer, and layer normalization. s̃n is the reconstructed spliced mRNA counts. 
We derived the approximate time change in the mean parameter of the spliced tran-
scriptome by decoding a small change in the latent cell state. In VICDYF, only s is used 
as input for the VAE to quantify the uncertainty of u given s. However, in DeepKINET, 
both u and s are used as inputs because we do not focus on the uncertainty of u. Moreo-
ver, to determine the small change in s, we differentiate the decoder transformation from 
z to s̃  by z using a functorch instead of using the central difference approximation in 
VICDYF.

Here, we assumed that the mean parameter of the abundance of spliced and unspliced 
transcriptomes was represented by the differential equation of splicing kinetics as an 
RNA velocity estimation.

where β ∈ Rg is a vector of gene-specific splicing rates of unspliced transcripts and 
γ ∈ Rg is a vector of gene-specific degradation rates of spliced transcripts. Here, β and γ 
are the same value for each cell. lun ∈ Rg is the mean of unspliced counts across all genes 
in the single cell. ũn is the reconstructed unspliced mRNA counts. By combining (1) and 
(2), we can approximate the mean parameter of the abundance of unspliced transcripts 
as follows:

We assumed that the abundance of unspliced transcriptomes u has a Poisson distribu-
tion, as follows: where dt is the small interval and is set to 1.

We assume the variational posterior distribution of zn is a Gaussian distribution that 
depends on the raw counts of spliced and unspliced mRNA and the variational posterior 
distribution of dn is a Gaussian distribution that depends on zn.

where µφ() and σφ() are the encoding neural networks with 100 hidden units, two hid-
den layers, and layer normalization [49]. µ′

φ(sn,un) and σ ′
φ(sn,un) are the encoding neu-

ral network with 100 hidden units, one hidden layers, and layer normalization.
The generative model and variational posterior distribution were optimized by 

minimizing the following loss function: Minimizing this loss function is equivalent to 

(1)vn =
∂�θ (zn)

∂zn
dn.

(2)ũn ≈ lun
vn + dtγ s̃n

dtβ
.

ũn ≈ lun

∂�θ (zn)
∂zn

dn + dtγ s̃n

dtβ

p(un|zn, dn) = Poisson(ũn)

q(zn|sn,un) = N (µφ(sn,un), diag(σφ(sn,un)))

q(dn|zn) = N (µ′
φ(zn), diag(σ

′
φ(zn)))
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maximizing the variational lower bound (ELBO) of transcriptome distribution. This 
minimization allowed us to learn about the variational autoencoder of the spliced tran-
scriptome, RNA velocity, and the reconstruction of the unspliced transcriptome.

where zn′ and dn′ are derived through reparametrized sampling from q(zn|sn,un) and 
q(dn|zn

′) , and Ep(x)[f (x)] represents the expectation of f(x) given x ∼ p(x) . To minimize 
the loss function, the Adam W optimizer was used with a learning rate of 0.001 and a 
mini-batch size of 100. Learning ended when the average loss of the 10 epochs was not 
been updated for 10 epochs.

After learning the VAE and RNA velocity, and reconstructing the unspliced transcripts 
as described above, all encoder and decoder parameters were fixed. Next, we create 
decoders that take latent variables as inputs and output splicing rate βn and degrada-
tion rate γn at the single cell level. When reconstructing unspliced transcripts, they were 
substituted for the previous splicing and degradation rates. By estimating the splicing 
and degradation rates as cell-state-dependent values, the rates for cells with similar cell 
states will be similar, weakening the indeterminacy of the solution.

The same loss function described above was used to learn the splicing and degradation 
rates at the single-cell level.

Conditional model that handles multiple samples

To address data with multiple samples, we extended DeepKINET with a conditional VAE 
framework [40]. The prior distribution of zn and dn is assumed to be the same distribu-
tion as in the previous model. We assume a variational posterior distribution of cell state 
zn with raw mRNA counts sn , un and batches bn ∈ {0, 1}B as inputs. B is the total number 
of the experimental batches and bn,k = 1 denote cell n belongs to experimental batch k.

We then reconstruct spliced mRNA as follows.

The rest of the model is the same as the model described in the previous section. After 
training the VAE and RNA velocity, we fix encoders and decoders and use the latent 
state and batch information of each cell as input to estimate the splicing rate and degra-
dation rate of each cell.

Creating simulated datasets

We used SERGIO (version 1.0.0) to generate the scRNA-seq count data with varying 
splicing and degradation rates per cluster. We used the DS6 differentiation process and 

L(θ ,φ) = −Eq(zn,dn|sn,un)

[
log

p(sn,un, zn, dn)

q(zn, dn|sn,un)

]

≥ − log p(sn|zn
′)− log p(un|zn

′, dn
′)+ DKL(q(zn|sn,un)�p(zn))+ DKL(q(dn|zn

′)�p(dn))

ũn ≈ lun

∂�θ (zn)
∂zn

dn + dtγns̃n

dtβn

q(zn|sn,un, bn) = N (µφ(sn,un, bn), diag(σφ(sn,un, bn)))

s̃n = lsn�θ (zn, bn)
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the gene network from SERGIO. The SERGIO source code was rewritten to allow the 
splicing and degradation rates to change on a cluster-by-cluster basis. The base rate for 
each cell cluster was set by multiplying the SERGIO default splicing and degradation 
rate values by values sampled from a uniform distribution of 0.5 to 1.5. The base kinetic 
rates were then multiplied by values sampled from a uniform distribution of 0.75 to 1.25 
for each cluster to establish different rates for each cluster. Each cluster contained 100 
cells. In experiments with varying dropout rates, the dropout indicator dynam-
ics function was used. Twenty dropout rate conditions were set with shape=1 and five 
increments from percentile=0 to percentile=95. For the experiments in which 
the number of cells was varied, 13 conditions were set for the number of cells using a 
default dropout rate of shape=1 and percentile=65. Ten datasets were created 
for each condition using different splicing and degradation rates. DeepKINET and cell-
Dancer were used once for each dataset.

Validation using metabolic labeling experimental dataset

Using the scEU-seq cell cycle dataset, we determined the splicing and degradation 
rates for each cluster using Dynamo [13] and compared the estimates with those from 
DeepKINET and cellDancer. We split the cell cycle into PULSE and CHASE data and 
performed default gene filtering using Dynamo to extract 1000 genes. We divided each 
dataset into cell clusters based on the cell cycle position, with each cluster containing the 
same number of cells. We then modified the dynamo.tl.recipe_kin_data and 
dynamo.tl.recipe_deg_data functions to calculate the kinetic rates for each clus-
ter. Using other parameters and following the default values of Dynamo, we derived the 
splicing and degradation rates for each cluster. We then applied DeepKINET, cellDancer, 
and DeepVelo to the PULSE and CHASE data 100 times each and derived the correla-
tion coefficients each time. In cellDancer, the seed value used for training was fixed in 
the source code, so the estimation was performed without setting this seed value.

For the scNT-seq hematopoietic dataset, we estimated the kinetic rates in two sepa-
rate batches, each containing cells collected at different time points, as in the Dynamo 
tutorial. We filtered out genes exhibiting a high correlation (> 0.7, 75 genes) between 
the moments of unspliced and spliced mRNA. We then compared the ratio of degrada-
tion rates between the two batches between the estimated values of Dynamo and the 
estimated values of DeepKINET, cellDancer, and DeepVelo. In DeepKINET, we used a 
conditional VAE framework to address batch effects by using the time batches as batch 
labels.

Clustering by kinetic rates

The splicing and degradation rates of each cell were estimated using DeepKINET and 
Z-transformation. Principal component analysis was then performed using the rates. 
Leiden clustering was performed on the principal components to cluster the genes 
(Fig. 3c).

Functional enrichment analysis

We performed gene clustering using kinetic rates on the cell cycle PULSE data. GO 
analysis was performed on each gene cluster (Fig.  3d). We used g:Profiler [50] for the 
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analysis. When conducting GO term analysis, we used all genes used to estimate splicing 
and degradation rates as the background.

Enrichment test of RNA‑binding protein targets

Using the forebrain dataset, we performed gene clustering based on the kinetic rates. We 
examined whether the genes in each cluster were enriched for RNA-binding protein tar-
gets (Fig. 4b). We selected RNA-binding proteins that were included in the 1000 highly 
variable genes selected by preprocessing, for which eCLIP data were available in the 
CLIPdb [51]. Genes with at least one binding site in the eCLIP data were considered as 
targets. After performing Fisher’s exact test, we used the Benjamini-Hochberg method 
for multiple testing correction.

Analysis of the relationship between expression of RNA‑binding proteins and kinetic rates 

of their targets

As a preprocessing step, we used scvelo.pp.filter_and_normalize() with 
min_shared_counts = 20 for the forebrain dataset and min_shared_counts 
= 100 for the breast cancer dataset. To ensure accuracy, we estimated the kinetic rates 
of genes with high variability. When all the remaining RNA-binding proteins from the 
expression preprocessing were used in the analysis, the expression was averaged over the 
neighborhoods. For the forebrain dataset, we used n_neighbors=30. When analyz-
ing only the RNA-binding proteins in the highly variable genes, we used the expression 
reconstructed from the latent variables. The top 1000 genes in the forebrain dataset and 
the top 2000 genes in the breast cancer dataset were used as highly variable genes. When 
comparing the expression of a specific RNA-binding protein to its target or non-target 
kinetic rates, we used a t-test to determine any significant difference in the correlation 
coefficients between targets and non-targets.

Preparation of breast cancer data

We downloaded the FASTQ files from the public data of Liu et  al. We then created 
BAM files using Cell Ranger [18]. Next, Velocyto [5] was used to create count matrices 
for unspliced and spliced mRNA. We used EPCAM and KRT19 as markers of epithe-
lial cells, following the method described by Liu et al. We used inferCNVpy to extract 
the cancer cells. Among the seven patients, cells from patient 5 were selected and used 
for further analysis because the other patients contained few metastatic cells or, con-
versely, too many metastatic cells or a low number of breast cancer epithelial cells. 
Because tumor epithelial cells are highly heterogeneous from patient to patient [52], we 
did not perform an integrated analysis. Cells with at least 100 expressed genes and at 
least 500 unique molecular identifier counts were used. As a preprocessing step, we used 
scvelo.pp.filter_and_normalize() with min_shared_counts = 100 and 
n_top_genes = 2000 to extract genes with high expression variability.

Preparation of bone marrow mononuclear cell data

We downloaded the FASTQ files from the public data of Adema et  al. [41]. We then 
created BAM files using Cell Ranger [18]. Next, we used Velocyto [5] to create count 
matrices for unspliced and spliced mRNA. As in the original paper, cells with at least 
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100 expressed genes and at least 500 unique molecular identifier counts were used. We 
annotated cells using CellTypist [53]. Then, we extracted erythroid lineage cells. As a 
preprocessing step, we used scvelo.pp.filter_and_normalize() with min_
shared_counts = 20 and n_top_genes = 1000 to extract genes with high 
expression variability.

Identification of targets differentially regulated by different cell populations

We performed the following linear regression using the expression levels of RNA-bind-
ing proteins and the kinetic rates of their targets. We then examined whether the slope 
of the regression line differed significantly among the cell populations.

where x0 is the label of the cell population, 0 for primary cells and 1 for metastatic cells, 
x1 is the expression of a RNA-binding protein, and β0 to β3 are the regression coeffi-
cients. We set β2 = 0 as the null hypothesis and used statsmodels.regression.
linear_model.OLS() to perform regression and testing. We corrected the p-values 
using the Benjamini-Hochberg method.

Two‑dimensional embedding of velocity

We projected the transitions in the latent space onto two-dimensional coordinates fol-
lowing the method described by Bergen et al. [6]. We used zj − zi as the change in the 
latent space of cell i to cell j and di as the velocity in the latent space of cell i. We com-
puted a neighborhood graph, calculated the transition probabilities, and projected them 
onto two-dimensional coordinates using Scvelo’s functions.
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