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Abstract 

Background: Increasing evidence suggests that a substantial proportion of disease-
associated mutations occur in enhancers, regions of non-coding DNA essential to gene 
regulation. Understanding the structures and mechanisms of the regulatory programs 
this variation affects can shed light on the apparatuses of human diseases.

Results: We collect epigenetic and gene expression datasets from seven early time 
points during neural differentiation. Focusing on this model system, we construct 
networks of enhancer-promoter interactions, each at an individual stage of neural 
induction. These networks serve as the base for a rich series of analyses, through which 
we demonstrate their temporal dynamics and enrichment for various disease-associ-
ated variants. We apply the Girvan-Newman clustering algorithm to these networks 
to reveal biologically relevant substructures of regulation. Additionally, we demonstrate 
methods to validate predicted enhancer-promoter interactions using transcription fac-
tor overexpression and massively parallel reporter assays.

Conclusions: Our findings suggest a generalizable framework for exploring gene 
regulatory programs and their dynamics across developmental processes; this includes 
a comprehensive approach to studying the effects of disease-associated variation 
on transcriptional networks. The techniques applied to our networks have been pub-
lished alongside our findings as a computational tool, E-P-INAnalyzer. Our procedure 
can be utilized across different cellular contexts and disorders.

Keywords: Functional genomics, Gene regulation, Neural development, 
Computational genomics

Background
Enhancers are cis-regulatory elements (CREs) essential to gene regulation. Ranging 
between ten to 10,000 base pairs (bps) in length [1], these CREs contain motifs, clustered 
recognition sites for transcription factors (TFs) [2]. Enhancers have proven arduous 
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to locate despite their abundance in the non-coding genome. Enhancers interact with 
promoters to mediate their effects on transcription, often by regulating non-proximal 
genes from variable distances [3]; this contrasts with promoters, CREs that initiate tran-
scription from known locations [4]. Enhancers are highly cell-type-specific regulatory 
elements, which adds another barrier to their identification and validation [5]. There is 
an emerging consensus that mutations associated with human disease in genome-wide 
association studies (GWAS) are concentrated in these enhancer regions [6], highlighting 
their importance to understanding gene regulation and their applications in medicine.

Previously, we collected high-throughput assay for transposase-accessible chromatin 
(ATAC-seq), chromatin immunoprecipitation (ChIP-seq) for H3K27ac, massively paral-
lel reporter assay (MPRA), and RNA-seq datasets from seven time points during the dif-
ferentiation of human embryonic stem cells (hESCs) into neural progenitor cells (NPCs) 
[7]. This was within a 72-h window, with samples collected at hours 0, 3, 6, 12, 24, 48, 
and 72. Using these datasets, we assembled seven time point-specific enhancer-pro-
moter interaction networks (E-P-INs). ATAC-seq, indicating open chromatin regions, 
ChIP-seq for H3K27ac, acting as a marker for active enhancers, and RNA-seq, repre-
senting the transcriptome, combined with generalized Hi-C datasets, serve as the essen-
tial components for these networks. Input into the Activity-By-Contact (ABC) model, 
these datasets integrate to build networks of predicted enhancers and target promoters 
[8]. After constructing these networks, information about the enhancers within them 
was extracted using a series of novel methods: differential expression revealed time 
point specificity, Girvan–Newman clustering demonstrated the substructures through 
which enhancers regulate genes, variant analyses revealed enrichment for neurodevelop-
mental and neuropsychiatric disorders, and TF overexpression and MPRA datasets were 
used to validate our networks.

Overall, our analysis of these E-P-INs provides a framework for exploring gene regu-
latory programs and their dynamics across developmental processes, including a com-
prehensive approach for mapping disease-associated genetic variants to transcriptional 
networks.

Results
Reconstructing enhancer‑promoter interactions with multi‑omics datasets

Examining shifts in the intricate mechanisms of regulatory programs across seven stages 
of neural differentiation necessitated designing a systematic procedure to generate E-P-
INs. Our E-P-INs are highly modular bipartite graphs populated with communities of 
enhancers and promoters; edges represent interactions between these elements. These 
networks were designed for cross-condition comparability, referencing the same atlas of 
enhancers and promoters (see the “Methods” section). Our E-P-INs capture the tem-
poral programs of gene regulation within our seven time points exclusively. Ubiquitous 
CREs that are unchanging across time points were removed during filtration.

Eight E-P-INs were created using the ABC model: seven time point-specific net-
works and a single collapsed E-P-IN containing all edges found across these time points. 
Here, we report statistics from the collapsed network to summarize the structures of 
the seven time point-specific E-P-INs. Our E-P-INs contained 3,133 unique promoters 
and 1628 enhancers. This suggests that most interactions in these E-P-INs, consisting 
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of differentially active and temporal CREs, involve multiple genes regulated through 
a single enhancer, with an average of 1.92 genes regulated through a single enhancer. 
The mean length of enhancers in our E-P-INs was 1047.83 bps; this aligns with previ-
ous literature [1, 9]. Examining sample composition, we found consistent interactions 
within our time point-specific networks. The smallest E-P-IN (48  h) contained 2134 
interactions, totaling 13.02% of our collapsed network’s edges. The largest E-P-IN (24 h) 
included 15.68% of edges in the collapsed network, amounting to 2569 unique enhancer-
promoter links. Additional file 2: Tab. S1 in “Supplementary information” contains our 
time point-specific and collapsed E-P-INs.

Enrichment in neural differentiation signals

Initial investigations of our E-P-INs showed characteristics relevant to early neural dif-
ferentiation through enrichment and temporal analyses. Our E-P-INs demonstrated 
enrichment for biological processes pertinent to the cellular context and temporal 
changes from the start of neural induction to the 72-h time point.

Gene Set Enrichment Analysis (GSEA) was performed utilizing the 500 most fre-
quently occurring promoters from each E-P-IN [10]. The Genomic Regions Enrichment 
Annotations Tool (GREAT) was used to examine enrichment in our enhancer regions 
[11, 12]. See the “Methods” section for an in-depth explanation of GSEA and GREAT’s 
methodologies. We report the results from our collapsed E-P-IN for brevity; time point-
specific results are available in Additional file 3: Tab. S2 and Additional file 4: Tab. S3 
in “Supplementary information”. The most significant results from GSEA and GREAT 
are reported in Fig. 1A and B, respectively. “GOMF_TRANSCRIPTIONAL_REGULA-
TOR_ACTIVITY,” “primary neural tube formation,” and “ventral spinal cord interneuron 
specification” are examples relevant to neural differentiation. We note that GSEA results 
relate to transcription due to the number of promoters being tested and their recurrence 
across the networks. GREAT considers all enhancers in our E-P-INs. A concentrated 

Fig. 1 Enrichment analyses demonstrate the E-P-INs’ abilities to capture neural differentiation. A GSEA 
outcomes from the collapsed network’s 500 most occurring promoters reveal biological processes, cellular 
components, and molecular functions essential to transcriptional regulation. B GREAT outcomes detailing 
enhancer enrichment show biological processes related to cell differentiation and neural development



Page 4 of 17DeGroat et al. Genome Biology          (2024) 25:221 

GSEA testing set contributes to the difference in statistical magnitudes between GSEA 
and GREAT. These findings support our E-P-INs’ biological relevance.

Next, Jaccard similarities between the CREs (i.e., enhancers and promoters) and 
enhancer-promoter interactions (E-P-Is) were computed to compare our seven time 
point-specific E-P-INs. Figures 2A, B, and C present Jaccard similarities in enhancers, 
promoters, and E-P-Is, respectively. Here, we show that these networks become more 
dissimilar with time. Additionally, this analysis revealed that time points before 48  h 
show high similarity compared to our 48-h and 72-h E-P-INs; these latter networks also 
show close resemblance. These results indicate our E-P-INs exhibit temporal trends of 
neural differentiation.

Clustering reveals regulatory substructures

We identified four distinct substructures defining the modes through which enhancers 
regulate genes. Here, Girvan-Newman clustering was utilized to partition our bipar-
tite graph into distinct communities [13]. The highly modular nature of our E-P-INs 
informed this approach, as enhancers and promoters tied together through gene regula-
tion formed dense clusters in our networks. Figure 3 provides a graphical representation 
of our collapsed E-P-IN to illustrate the formations of these substructures. Substructures 
fall into two distinct classifications: redundant (R) and non-redundant (NR). The four 
substructures are a single enhancer regulating a single gene (1NR; Fig.  3A), multiple 
enhancers regulating a single gene (1R, Fig. 3B), a single enhancer regulating multiple 
genes (2NR; Fig.  3C), and multiple enhancers regulating multiple genes (2R; Fig.  3D). 
Additional file 1: Fig. S1 in “Supplementary information” contains a full view of our col-
lapsed E-P-IN [14].

We implemented this clustering approach for each of the seven time point-specific 
E-P-INs and the collapsed E-P-IN. Figure 4A shows the four distinct substructures as a 
legend, and Fig. 4B displays the substructure distribution in the seven time point-specific 
E-P-INs, calculated by dividing the total number of communities by the number of com-
munities allocated to each specific substructure. This distribution remains consistent, 
with slight fluctuations, across our seven time points. The 1NR and 2NR substructures 

Fig. 2 Temporal analysis revealed the E-P-INs exhibit changes related to neural differentiation. A Jaccard 
similarities detail the overlap between sets of promoters across our seven time point-specific networks, 
with clustered formation in the earliest five time points. B Jaccard similarities detailing differences in time 
point-specific sets of enhancers reveal temporal trends similar to those described for promoters. 2C) 
Jaccard similarities demonstrating changes in the E-P-Is across neural differentiation. Instances where an 
enhancer-promoter interaction changes across E-P-INs show more temporality than examining the presence/
absence of either enhancers or promoters deemed dynamic
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constitute the majority of our time point-specific networks, averaging 81.9% composi-
tion across the seven E-P-INs. This skew towards NR substructures stems from the 
dynamic and temporal filtering used to reconstruct the networks.

We calculated average counts of enhancers, promoters, and E-P-Is in these regula-
tory substructures using our collapsed E-P-IN. In 1R communities, an average of 2.16 
enhancers regulate a single gene; in 2NR communities, 3.29 genes, on average, are reg-
ulated through a single enhancer. Interestingly, the 2R substructure is denser, averag-
ing 2.55 enhancers, 4.57 genes, and 7.72 E-P-Is per community. Additional file 1: Fig. S2 
compiles histograms showing the distribution of these values. Our investigations could 

Fig. 3 Graphical representations demonstrate the composition of gene regulatory substructures. A offers an 
example of a 1NR substructure. B shows a community of E-P-Is characterized as 1R. C demonstrates the 2NR 
substructure. D depicts a cluster labeled as 2R

Fig. 4 Substructures across the seven time point-specific E-P-INs demonstrate minimal temporality. A 
is a legend that links substructures to their appropriate section on the chart. B shows the distribution of 
substructures across the seven time point-specific and collapsed E-P-INs. Redundant substructures comprise 
a smaller portion of these networks than those non-redundant
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not reveal significant links between gene expression and a promoter’s number of edges 
with enhancers.

Enrichment for disease‑associated variants

We hypothesized that our time point-specific E-P-INs would exhibit enrichments asso-
ciated with neurodevelopmental and neuropsychiatric disorders [15]. Utilizing datasets 
containing 250,000 de novo autism spectrum disorder (ASD) single nucleotide variants 
(SNVs) from both patients (cases) and healthy siblings (controls) [16], 817 ASD-asso-
ciated genes, 252 developmental delay-associated genes (DD) [17], and 34,914 GWAS-
sourced SNVs from neurological/neuropsychiatric disorders (i.e., schizophrenia (SCZ), 
bipolar disorder (BD), major depressive disorder (MDD), Parkinson’s disease (PD), and 
Alzheimer’s disease (AD)), we implemented a permutation test to quantify an empiri-
cal p-value signifying enrichment; our null distribution in these permutation tests was 
the ABC model’s unfiltered outputs. Eight tests were employed on each E-P-IN: ASD-
associated SNVs, ASD-associated genes, DD-associated genes, SCZ-associated SNVs 
[18], BD-associated SNVs [18], MDD-associated SNVs [19], PD-associated SNVs [20], 
and AD-associated SNVs [21].

With the significance threshold set at an empirical p-value = 0.05 and 1000 permuta-
tions ran, five of our eight categories demonstrated significant enrichment in our E-P-
INs: ASD-associated genes and SNVs, DD-associated genes, and SCZ-associated and 
BD-associated SNVs. Additional file  5: Tab. S4 in “Supplementary information” con-
tains a complete overview of the statistics for disease-associated variant enrichment. 
MDD-associated SNVs, PD-associated SNVs, and AD-associated SNVs were deemed 
non-significant. These findings suggest our E-P-INs capture enhancers relevant to neu-
ral differentiation; SCZ and BD are disorders with neurodevelopmental origins [22, 23]. 
Out of the 1592 enhancers considered in our collapsed E-P-IN, 140 contain either a case 
or control de novo variant for ASD, with case variants favored; 27 contain a GWAS-
sourced SNV for a neurological/neuropsychiatric disorder. Of 3133 genes, 208 are 
associated with ASD, and 41 are associated with DD. ASD was the most significantly 
enriched among diseases/disorders, with a p-value < 0.001 in examinations of associated 
SNVs and genes. Figure 5A depicts the results of the ASD-associated de novo SNV per-
mutation test, while Fig. 5B presents the ASD-associated gene permutation test results. 
Further confirming the enrichment of ASD, we devised an additional permutation test, 
utilizing the dynamic and temporal E-P-Is as the null distribution. We found that ASD-
associated genes demonstrate significant interaction with enhancers containing an ASD-
associated SNV, computed at an empirical p-value < 0.001. ASD enrichment arises from 
a common set of genes and SNVs across our seven time point-specific E-P-INs. Addi-
tional file 1: Fig. S3 in “Supplementary information” shows Jaccard similarities between 
sets of ASD-associated CREs in our networks.

We mapped our ASD-associated de novo SNVs to the communities created with the 
Girvan-Newman clustering algorithm [13]. The distribution of SNVs was consistent 
with that of substructures in our E-P-INs; 8.42% of 1NR communities contained vari-
ation, 10.34% of 1R communities, 10.15% of the 2NR communities, and 15.75% of 2R 
communities. Figure  5C details the number of communities in each substructure that 
contain ASD-associated variants. Prior research has suggested enhancer redundancy 
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as a counteracting mechanism to variation that would disrupt gene transcription [24]. 
Figure  5D gives an example of the susceptibility of non-redundant substructures, 
illustrating a case where an ASD-associated SNV fell within a predicted enhancer 
(chr14:21,993,966–21,995,169). Both TFs, ZNF219 [25] and CHD2 [26], have been pre-
viously found to be associated with ASD in transcriptional regulatory networks of neural 
differentiation through investigation of SNVs affecting the development of the disorder. 
ZNF219 and CHD2 were selected from a group of motif-predicted TFs. The enhancer 
regulates three genes (i.e., CHD8, SUPT16H, and RAB2B); these genes have been linked 
to ASD through differential expression, clinical variant analyses, and gene knockouts, 
respectively [27–29]. Mutations in chromosomal region 14q11.2, where the predicted 
enhancer is located, have been shown to involve these genes and cause ASD [30, 31].

Validating enhancers with transcription factor overexpression

Integration of TF data into our seven time point-specific networks enabled us to begin 
verification of E-P-Is and gain a more in-depth understanding of these enhancers’ role in 
gene regulation [32].

First, we used Find Individual Motif Occurrences (FIMO) [33] with motifs from 
ENCODE [34] and JASPAR [35] databases to find TFs predicted to bind to the sequences 
of our enhancers. Our p-value threshold for FIMO was 1e-5. Previous studies suggest 
that tens of TFs can bind to an enhancer [1]; this was in line with our findings. Enhanc-
ers in our E-P-INs averaged 12.30 unique TFs bound to them. Examining our original 
non-dynamic network, produced with the ABC model prior to the robust filtration pro-
cess reported in “Reconstructing Enhancer-Promoter Interactions with Multi-omics 

Fig. 5 ASD enrichment across E-P-INs is substantial. A demonstrates significant enrichment for 
ASD-associated de novo SNVs in the collapsed network. B details the enrichment of ASD-associated genes, 
showing permutation test outcomes. C displays the number of communities within each substructure 
containing ASD-associated variation. The communities with variants are shaded red at the start of each 
substructure’s bar. D provides an example of a predicted enhancer region, binding ASD-associated TFs CHD2 
and ZNF219, that regulated CHD8, SUPT16H, and RAB2B. Clinical reports provide cases where a mutation in 
chromosomal region 14q11.2, the location of this enhancer, involved these genes and caused ASD
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Datasets” used to generate E-P-INs, we found a decrease in the number of unique TFs 
per enhancer (7.33). In total, 1183 unique TFs were predicted in our E-P-INs using 
FIMO. Next, we examined which TFs were more commonly predicted to bind to our 
enhancers; returning to our ABC network prior to filtration, CTCF was predicted to 
bind to the largest number of enhancers. Differing in our dynamic E-P-INs, SP9, a TF 
necessary for neuronal development [36], was the most common. SP9 binds to 1222 of 
the 1628 enhancers in our time point-specific networks.

Previously, we overexpressed TFs (i.e., BARHL1, IRX3, LHX5, OTX1, OTX2, and 
PAX6) [7] followed by RNA-seq in later-stage hESC-derived NPCs to detect their tar-
get genes. Using DESeq2 for differential expression analysis [37], we determined which 
genes were significantly affected following a TF’s overexpression. Using these results, 
we investigated whether enhancers predicted to bind these TFs regulated the differen-
tially expressed genes (DEGs) downstream; downregulated DEGs were not considered 
in this analysis (see the “Methods” section). Using Fisher’s exact test, p-values were 
assigned to each TF-binding enhancer, quantifying their relation to the overexpressed 
TF’s regulon. We found enhancers predicted to bind each of the six overexpressed 
TFs where a substantial proportion of downstream promoters regulate DEGs. Here, 
the false discovery rate (FDR) values of the most significant enhancers are reported 
per TF: BARHL1 = 4.2e − 8, IRX3 = 1.8e − 4, LHX5 = 1.1e − 3, OTX1 = 4.9e − 2, 
OTX2 = 2.7e − 2, PAX6 = 1.0e − 6. A statically significant presence of downstream DEGs 
supports motif predictions from FIMO in these enhancers. In addition to this analysis, 
we designed a permutation test to determine if the proportion of downstream DEGs in 
enhancers predicted to bind overexpressed TFs was different than in enhancers that are 
not. Upregulated and downregulated DEGs were examined together. We found that all 
TFs scored an empirical p-value < 0.001.

PAX6 overexpression is sufficient to induce hESCs into neural lineage [38]. We report 
an additional enhancer (chr16:30,669,227–30670310) predicted to bind PAX6 here. This 
enhancer’s targets in our E-P-IN are enriched with DEGs downregulated during PAX6 
overexpression. Only PHKG2, one of nine targets for this enhancer, was upregulated 
during PAX6 overexpression. In the PAX6-binding enhancer found to have a signifi-
cant proportion of upregulated DEGs downstream (chr19:17438298–17439337), DDA1 
was the sole downregulated target DEG. This suggests a pattern of enhancers regulating 
directional gene sets and a possible method of examining TF antagonism [39]. Figure 6A 
details the permutation test outcomes from PAX6. Figure 6B illustrates the most signifi-
cant TF-binding enhancer predicted to bind PAX6 when examining upregulated DEGs.

Validating enhancers with massively parallel reporter assays

In MPRAs, a synthetic construct, each comprising a candidate regulatory DNA 
sequence, a minimal promoter, and a unique transcribable DNA barcode, is introduced 
into cells; these candidates are assumed to be able to regulate the transcription of these 
barcodes. Following this insert, RNA and DNA sequencing are performed to evaluate 
each barcode’s RNA-to-DNA ratio [40]. MPRAs allow us to measure the activity of thou-
sands of regulatory sequences at once. We used our previously collected perturbation 
MPRA datasets [7, 41, 42] to validate our predicted enhancers. Perturbation MPRA is a 
strategy for demonstrating the regulatory effects of TF-binding motifs. Here, nucleotides 
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in a motif are randomly scrambled. We then analyze the change in regulatory activity 
of the DNA sequence being tested to see the effects of TF binding [42]. As perturba-
tion MPRA facilitates the measurement of changes in transcriptional activity based on a 
sequence’s inclusion of a TFBS, we choose to use this dataset for this analysis. We exam-
ined E-P-IN enhancers for strict MPRA overlap, creating a subsetted network. This con-
solidated E-P-IN allowed for an in-depth investigation into TFs, as we computed a novel 
metric for TF × TF correlation using enhancer binding, genes regulated downstream, 
and time point-specific function.

Our subsetted MPRA-based E-P-IN had strict inclusion criteria for edges. A func-
tional MPRA-tested sequence had to intersect each included enhancer. Additionally, 
these sequences also needed to perturb a TF that matched a FIMO-predicted motif for 
that enhancer (see the “Methods” section). This E-P-IN contained 45 enhancers and 82 
promoters, a ratio comparable to the collapsed E-P-IN (1.82 to 1.92). Applicable edges 
matching the E-P-INs’ criteria were found more often at some time points. A total of 195 
edges in the 6-h network matched, while only 69 in the 72-h E-P-IN were found.

We devised a permutation test to investigate whether MPRA-validated enhancers 
were significantly enriched in our temporal, dynamic networks (see the “Methods” sec-
tion). Using the ABC model networks as the null distribution, we computed an empirical 
p-value < 0.001 from 1000 permutations, showing that proven enhancers are more com-
mon in networks of E-P-Is after our filtration methods are utilized.

We devised a TF × TF correlation metric, incorporating enhancers that these TFs are 
predicted to bind, genes they regulate downstream, and the time points at which the 
TFs are functional. The metric is based on Jaccard similarities; scores between 0.0 and 
1.0 are created for the three components that were previously mentioned. Additional 
file 6: Tab. S5 contains matrices for these component-specific scores and our TF × TF 
metric. Figure 7 shows a heatmap of similarity scores subjected to hierarchical cluster-
ing to reveal groups of correlated TFs. TF families, such as the NKX-homeodomain TFs 
[43] and IRF TFs [44], cluster together, supporting our approach’s ability to reveal TFs 
working in tandem. Analyses were performed on our MPRA-subset networks to provide 
interpretable results, detailing a group of enhancers binding TFs validated using experi-
mental methods.

Fig. 6 Enhancers predicted to bind PAX6 more commonly regulated DEGs when PAX6 is overexpressed. A 
shows outcomes from permutation testing supporting the claim that enhancers binding PAX6 regulate DEGs 
more often than enhancers without PAX6 motifs. B details an enhancer region predicted to bind PAX6 that 
regulates upregulated DEGs. Genes shown in lighter colors are DEGs when PAX6 is overexpressed
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Discussion
Understanding gene expression and the architecture of E-P-Is has the potential to trans-
form human health. Three distinct challenges confront researchers attempting to fill 
knowledge gaps regarding enhancers: locating enhancers, finding their target genes, 
and contextualizing their functions [45]. We present a comprehensive computational 
approach to navigate these questions.

The ABC model has proven to be a well-performing method for predicting E-P-Is, with 
standard use across the field. Additional layering with perturbation MPRAs allows for 
built-in motif and variant validation [41, 46]. Unraveling the TFs that bind enhancers is 
pivotal to their identification, as TF binding is linked to enhancer activity [1]. Developing 
models for E-P-I predictions using MPRA data to define candidate enhancers and score 
their activity could tremendously increase the strength of the E-P-I predictions, allowing 
for better capture of cell-type-specific elements. Our E-P-INs subset with MPRA data 
showed TF per enhancer counts, average bp lengths, and gene-to-enhancer counts in 
line with previous scientific findings. MPRA, paired with TF overexpression data and 
differential expression methods, offers a robust framework for the validation of E-P-Is, 
helping us understand concrete links between genes and these non-coding regions.

Contextualizing enhancer function is tied to temporal dynamics, shifting connec-
tions between enhancers and genes that remain dormant during specific stages in 

Fig. 7 TF × TF matrix, stylized as a heatmap and organized using hierarchical clustering, displays our 
Jaccard-based similarity metric for transcription factors in our subsetted E-PN derived from MPRA datasets
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development. Using E-P-INs, as we proposed, allows comparison of CREs between 
different stages of development to be done with ease. Variant information can also be 
mapped directly into these E-P-INs and their substructures, allowing us to mold disease 
networks from model systems. Assessing the deleteriousness of the SNVs mapped to R 
substructures compared to those in NR could elucidate enhancer redundancy’s role in 
disease and development. This framework is generalizable, and with sufficient datasets, 
our analysis can be repeated across biological systems.

E-P-INAnalyzer has been developed alongside our analysis as a computational tool 
that allows other scientific researchers to model biological networks, perform clustering 
to reveal substructures, integrate TFs and variants, and search for network enrichment 
[47, 48]. This tool has been made available on our GitHub, found in the “Availability 
of data and materials” section. With the same ATAC-Seq and ChIP-Seq for H3K27ac 
needed to run the ABC Model and RNA-seq, E-P-INAnalyzer performs these analyses, 
returning condition-specific networks. TF and variant datasets are optional for building 
networks.

Conclusion
In this study, we have provided a robust, generalizable framework for comparing E-P-
INs across multiple conditions and cellular contexts. We have developed techniques to 
verify computationally predicted enhancers using TF overexpression and MPRA. We 
have also demonstrated the use of these E-P-INs in understanding the mechanisms by 
which disease-associated variation perturbs regulatory networks. E-P-INAnalyzer, our 
computational tool, allows researchers to answer similar questions about their model 
system of interest; this tool creates E-P-INs and provides methods to understand them.

Methods
Reconstructing enhancer‑promoter interactions with multi‑omics datasets

Our E-P-INs’ architecture was composed using the Python [49] and R [50] programming 
languages. These languages enabled us to create comparable networks.

Assembling an E-P-IN is contingent on the ABC model [8], which uses epigenetic 
datasets to define candidate enhancers and predict their interactions with promoters. 
The ABC model relies on these straightforward biological notions: enhancers are dis-
tinguished through signals denoting potential for transcriptional regulation (ATAC-seq, 
ChIP-seq), and frequent promoter contact (Hi-C) indicates an edge. Here, we ran the 
ABC model using the authors’ recommended parameters. Peak-calling was performed 
using MACS2 on ATAC-seq [51]; these peaks were resized to 500 bps around their 
center. The 150,000 peaks containing the most read counts were maintained for down-
stream analysis. Hi-C data averaged from multiple cell types was utilized at a 5-Kb reso-
lution (ENCFF134PUN). At this stage, the ABC model filtered ubiquitously expressed 
genes regardless of cell type. We generated ABC networks for each of the seven time 
points we sequenced.

We reconstructed time point-specific E-P-INs. First, a consolidated atlas was gener-
ated, correcting for sequencing disparities across samples. Enhancers located less than 
100 bps away from each other were concatenated, leaving their time point-specific 
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programs of regulation intact. These enhancers were then assigned searchable refer-
ence labels. Enhancers in this atlas were filtered according to two non-exclusive criteria. 
Regions that showed significant differential expression (p-values = 0.05) and temporal 
expression (p-value = 0.01) in our ATAC-seq and ChIP-seq H3K27ac were included in 
our E-P-INs. DESeq2 conducted differential expression [37] across possible pairings of 
time points, and ImpulseDE2 was used to determine temporal expression [52]. Regions 
in the 95th percentile of both ATAC-seq and ChIP-seq for H3K27ac counts were 
included in our E-P-INs regardless of dynamic expression. Promoters were processed 
similarly using our RNA-seq datasets. DEGs (p-value = 0.05) that demonstrated tempo-
ral expression (p-value = 0.01) were included in our E-P-INs. Promoters not included 
using the earlier mentioned threshold in the highest 5% of TPM values were included. 
This was done to capture highly expressed cellular processes during neural differentia-
tion; 283 of the 19,825 candidate genes for our reconstructed E-P-INs are placed using 
the TPM threshold alone. Edges in our E-P-INs contain enhancers and promoters that 
both met the filtration criteria. Using this technique, we compiled our seven time point-
specific E-P-INs and the collapsed network. The package pandas was utilized to store 
and manipulate these networks [53].

Enrichment in neural differentiation signals

We characterized our E-P-INs using two distinct forms of investigation. Using GSEA 
and GREAT, we performed enrichment analyses of enhancers and promoters, respec-
tively [10–12]. We captured their biological processes, cellular components, and molec-
ular functions. Using Jaccard similarities, we observed our E-P-INs morph over time.

GSEA is a functional-class-scoring method for pathway analysis. In GSEA, a prede-
fined gene list is used to evaluate whether gene sets linked through shared biological 
functions are overrepresented in one of two compared conditions. It focuses on the 
collective patterns of these sets rather than changes in single genes. We used GSEA 
to examine the Gene Ontology (GO) collections; we provided the computational tool 
with the 500 most occurring promoters within our networks. Promoters with multiple 
predicted E-P-Is occurred more frequently in our E-P-INs. GREAT is an overrepresen-
tation-analysis method. GREAT provided GO enrichment for the nearest genes to our 
enhancer regions. GREAT compares the proportions of gene sets in these enhancers to 
those in a background model, in this case, the entire human genome, to evaluate enrich-
ment. In both cases, we report p-values from these tests. Visualizations are created 
using the Python packages Matplotlib [54] and Seaborn [55]. These visualizations use 
the − log(p-value) of GSEA and GREAT outcomes, positing the most significant GO in 
the chart’s longest and darkest bars.

Jaccard similarities are statistics used to measure overlaps between two sets. Jaccard 
similarities are a percentage of the intersection in two sets compared to the union. These 
scores serve as the foundation for our cross-network comparisons. All-inclusive sets of 
promoters, enhancers, and their edges from our E-P-INs are used to calculate Jaccard 
similarities, comparing the time point-specific E-P-INs across these three metrics.
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Clustering reveals regulatory substructures

Revealing substructures tied to an enhancer’s regulation of genes necessitated using an 
algorithm for clustering built around betweenness centrality. This metric divides graphs 
using a path of their shortest connections, separating dense clustering in communities 
[13]. This approach, combined with our bipartite graphs’ high modularity, creates sub-
networks between enhancers and promoters that we believe mimic regulatory profiles. 
Girvan-Newman clustering was employed using Python’s iGraph implementation [56].

After creating communities, we categorized them into four distinct categories: 1NR, 
1R, 2NR, and 2R substructures. These categories represent redundant and non-redun-
dant regulatory programs. 1NR entails a single gene regulated through a sole enhancer. 
1R substructures see a single gene regulated by multiple enhancers. 2NR substructures 
have one enhancer responsible for regulating multiple genes. 2R communities consist 
of promoters and enhancers, all with redundancies, interacting in a large network. Dis-
tributions reported are percentages of substructures over the total communities. We 
reported average enhancer, promoter, and E-P-Is per community in each substructure.

Enrichment for disease‑associated variants

Enrichment for disease-associated variation was assessed using in-house permutation 
testing and distinct sets of SNVs and genes. These permutation tests allowed for rand-
omizable attempts and performed 1,000 iterations. SNV tests are employed using the 
BedTools Suite [57].

ASD-associated genes and DD-associated genes [17] both had an empirical 
p-value < 0.001 in their respective permutation tests. These tests determine whether our 
E-P-INs, built using dynamic and temporal CREs, demonstrate enrichment for these dis-
ease-associated genes. Using the ABC Model promoters before differential and temporal 
filtration as our null distribution, we extract unique gene lists equal in size to those of the 
E-P-IN we are testing in each iteration. The empirical p-value increases as higher counts 
of disease-associated genes are found in randomized null lists than in the list sourced 
from our E-P-IN. An analogous test is conducted for enhancers, as randomized lists of 
enhancers from our ABC model networks serve as a null distribution, intersecting with 
variants. Each iteration that counts more variant hits than our target E-P-IN increased 
the empirical p-value.

Additionally, we examined ASD-associated SNV enrichment through two additional 
methods. First, we calculated the percentage of communities in each substructure that 
contained an AS-associated de novo mutation. Next, we devised a permutation test to 
evaluate if ASD-associated SNV-containing enhancers interact with ASD-associated 
promoters with significance. We shuffled edges between enhancers and promoters in our 
network using filtered E-P-Is as the null distribution. We calculated an empirical p-value, 
which increased when more E-P-Is in our null distribution contained an enhancer with 
an ASD-associated SNV regulating an ASD-associated promoter. The permutation test 
employs 1000 permutations.

Validating enhancers with transcription factor overexpression

TF binding was predicted in our enhancers using FIMO [33], a computational tool in 
ENCODE’s MEME suite. We sourced position weight matrices from ENCODE [34] and 
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JASPAR databases [35]. The consolidated atlas of enhancers was formatted as a BED file, 
converted to FASTA using the hg19 reference genome [58], and input into FIMO. Using 
a significance threshold of 1e − 5, we located TF binding sites (TFBSs) predicted to fall 
in our enhancers. TFs were then extrapolated from TFBSs.

We used Fisher’s exact test to measure the distribution of DEGs and non-DEGs in each 
enhancer that bound one of the six TFs for which we collected overexpression RNA-seq 
datasets. The Benjamini–Hochberg procedure was utilized for multiple testing correc-
tions. FDR values below 0.05 were deemed statistically significant. Here, DEGs found 
downregulated (log2 fold change > 0) were not considered [7, 59–63]; these TFs func-
tion primarily as transcriptional activators. The p-value generated was used to find the 
enhancers’ relation to the overexpressed TF. DEGs were found at a p-value below 0.01 in 
our DESeq2 analysis.

We developed a permutation test to examine if enhancers predicted to bind overex-
pressed TFs regulated DEGs more frequently than enhancers that did not. We calcu-
lated the promotion of DEGs in both TF-binding and non-binding enhancers. Next, the 
DEG label is shuffled across genes, and the proportions are recalculated. The empirical 
p-value denotes the number of occurrences where the shuffled DEGs are found down-
stream of predicted non-TF-binding enhancers more often than enhancers thought to 
bind the overexpressed TFs. The permutation test iterates 1000 times before generating 
an empirical p-value. Here, the directionality of differential expression was not utilized; 
our analysis is focused on examining how these TFs drive neural differentiation. Exam-
ining genes impacted by co-binding or antagonistic TFs contributes to a better under-
standing of TFs’ role in our model system.

Validating enhancers with massively parallel reporter assays

We recently published perturbation MPRA datasets [7, 41, 42], systematically perturbing 
binding motifs across hundreds of enhancers and validating their functionality at the same 
time points in early neural differentiation as our E-P-INs’ model. We used this data to vali-
date TFs predicted to bind by FIMO and enhancers in our networks [7]. This validation 
comes with stringent criteria, through which we validated a small subset of our E-P-INs.

Our MPRA-filtered E-P-INs overlap with perturbation-based datasets. MPRA-tested 
regions need to intersect with candidate enhancers included in assembled E-P-INs; this 
intersection needs to be in the proper context; the enhancer must have regulatory activ-
ity simultaneously when the MPRA is perturbing a motif. Finally, the perturbed motif 
also needs to be supported using our FIMO analysis.

We created a permutation test to investigate whether MPRA-validated enhancers were 
enriched in our filtered networks. We calculated the number of enhancers overlapping 
MPRA-tested sequences in 1000 random instances of our ABC model networks; we cal-
culated an empirical p-value to show the count of these permutations that surpassed the 
number of overlaps in our collapsed E-P-IN.

Using this smaller network, we derived a similarity metric that is Jaccard-based. We 
generated sets of enhancers, downstream genes, and time points that TFs bind to, 
regulate, and are functional. These sets create individual Jaccard scores between our 
TFs, which are averaged at equal weights < into a composite score. These scores are 
then hierarchically clustered with SciPy [64].
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