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Abstract 

Background:  Spatial transcriptomics (ST) is advancing our understanding of complex 
tissues and organisms. However, building a robust clustering algorithm to define spa-
tially coherent regions in a single tissue slice and aligning or integrating multiple tissue 
slices originating from diverse sources for essential downstream analyses remains 
challenging. Numerous clustering, alignment, and integration methods have been 
specifically designed for ST data by leveraging its spatial information. The absence 
of comprehensive benchmark studies complicates the selection of methods and future 
method development.

Results:  In this study, we systematically benchmark a variety of state-of-the-art algo-
rithms with a wide range of real and simulated datasets of varying sizes, technologies, 
species, and complexity. We analyze the strengths and weaknesses of each method 
using diverse quantitative and qualitative metrics and analyses, including eight met-
rics for spatial clustering accuracy and contiguity, uniform manifold approximation 
and projection visualization, layer-wise and spot-to-spot alignment accuracy, and 3D 
reconstruction, which are designed to assess method performance as well as data 
quality. The code used for evaluation is available on our GitHub. Additionally, we pro-
vide online notebook tutorials and documentation to facilitate the reproduction of all 
benchmarking results and to support the study of new methods and new datasets.

Conclusions:  Our analyses lead to comprehensive recommendations that cover mul-
tiple aspects, helping users to select optimal tools for their specific needs and guide 
future method development.
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Background
Spatial transcriptomics (ST) technology, emerging as a complementary approach to 
scRNA-seq, facilitates comprehensive gene expression profiling in tissue samples while 
preserving the spatial information of every cell or spot analyzed [1, 2]. ST techniques 
have significantly enhanced our understanding of cellular heterogeneity and tissue 
organization, offering insights into developmental processes, disease mechanisms, and 
potential therapeutic strategies [3–6]. ST technologies are commonly categorized into 
two groups: imaging-based and sequencing-based methods [7–13]. Advancements in 
spatial resolution, capture capabilities, and computational methods are continuously 
enhancing their potential applications and capabilities.

An essential initial step in ST research is to cluster the spots and define spatially coher-
ent regions in terms of expression data and location adjacency [14, 15]. This process 
essentially entails classical unsupervised clustering of spots into groups according to the 
similarity of their gene expression profiles and spatial locations, subsequently assigning 
labels to each cluster. To date, existing clustering methods in ST can be broadly catego-
rized into two groups: statistical methods and graph-based deep learning methods [16].

Representative methods for statistical models are BayesSpace [17], BASS [18], Spatial-
PCA [19], DR.SC [20], and BANSKY [21]. BayesSpace performs spatial clustering at the 
spot level, utilizing a t-distributed error model to identify clusters, along with employing 
Markov chain Monte Carlo (MCMC) for estimating model parameters. BASS detects 
spatial domains and clusters cell types within a tissue section simultaneously by utilizing 
a hierarchical Bayesian model framework. BASS can also be applied to perform multi-
slice clustering. SpatialPCA is a dimension reduction method aimed at extracting a 
low-dimensional representation of ST data using spatial correlation information. DR.SC 
employs a two-layer hierarchical model that simultaneously performs dimension reduc-
tion and spatial clustering, optimizing the extraction of low-dimensional features as well 
as the identification of spatial clusters. The BANSKY algorithm clusters cells using an 
azimuthal Gabor filter (AGF)-inspired kernel to capture gene expression variations. It 
constructs a neighborhood graph, computes z-scaled average neighborhood expression 
and AGF matrices, and combines these with the original gene expression data. This is 
followed by dimension reduction and graph-based clustering to determine cell types and 
domains.

Recent trends indicate a growing momentum toward utilizing graph-based deep learn-
ing backbones, attributed to their ability for graphing cell relations and capturing rep-
resentative features. Representative methods are SpaGCN [22], SEDR [23], CCST [24], 
STAGATE [3], conST [25], ConGI [26], SpaceFlow [27], GraphST [4], and ADEPT [28]. 
These methods predominantly employ graph neural network models to extract latent 
spot features prior to clustering, albeit with variations in network architectures and 
design strategies. SpaGCN has a unique design of building an adjacency matrix while 
considering histology image pixel values. SEDR employs multiple variation autoencod-
ers to handle data from different modalities. CCST is based on a graph convolutional 
network to improve cell clustering and discover novel cell types. STAGATE learns low-
dimensional latent embeddings with both spatial information and gene expressions 
via a graph attention auto-encoder. conST, ConGI, and GraphST all rely on a contras-
tive learning strategy [29]. conST adopts a two-phase training strategy incorporating 
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self-supervised contrastive learning at three levels: local-local, local-global, and local-
context. ConGI utilizes three different contrastive learning losses to integrate informa-
tion from both the histology images as well as the gene expression profiles. GraphST 
utilizes representations of both normal graphs and corrupted graphs to construct posi-
tive and negative spot pairs for contrastive training. SpaceFlow uses spatially regular-
ized deep graph networks to create spatially-consistent low-dimensional embeddings. 
This framework introduces a pseudo-spatiotemporal map to integrate pseudotime with 
spatial locations. ADEPT employs differentially expressed gene selection and imputation 
procedures to minimize the variations in prediction.

In contrast to merely identifying spatial domains or cell types within a single slice, 
there is an increasing acknowledgment of the importance of integrative and compara-
tive analyses of multiple ST slices [30]. Thus, ST analysis tools might integrate samples 
originating from diverse sources, encompassing various individual samples, biological 
conditions, technological platforms, and developmental stages. Nonetheless, ST slices 
may exhibit significant “batch effects” [15], which refer to technical biases such as une-
ven amplification during PCR [31], variations in cell lysis [32], or differences in reverse 
transcriptase enzyme efficiency during sequencing. These factors have the potential 
to obscure genuine biological signals, thereby complicating data interpretation and 
integration.

To analyze multiple ST slices by minimizing batch effects, different alignment and 
integration methods have been introduced. Alignment methods are designed to align 
or match spots or cells from different ST sections or datasets to a common spatial or 
anatomical reference. These methods are critical for correcting distortions or differences 
in tissue sections, ensuring consistency across samples. Integration methods primar-
ily merge data from various sources or conditions to create a comprehensive dataset, 
enhancing data robustness and revealing broader patterns not apparent in individual 
datasets. These techniques excel at adjusting for batch effects and normalizing data. 
Some tools can perform both alignment and integration tasks. Representative align-
ment methods include PASTE [33], PASTE2 [34], SPACEL [35], STalign [36], and GPSA 
[37]. PASTE utilizes the Gromov-Wasserstein optimal transport (OT) algorithm [38] for 
aligning adjacent consecutive ST data. PASTE2, an extension of PASTE, allows partial 
alignment, accommodating partial overlap between aligned slices and/or slice-specific 
cell types. Both PASTE and PASTE2 output a mapping matrix for every pair of con-
secutive ST slices, facilitating the reconstruction of the tissue’s 3D architecture through 
multi-slice alignment. SPACEL combines a multi-layer perceptron and a probabilistic 
model for deconvolution. It subsequently employs a graph convolutional network with 
adversarial learning to identify spatial domains across multiple ST slices and finally con-
structs the 3D tissue architecture by transforming and stacking the spatial coordinate 
systems of consecutive slices. STalign aligns ST datasets across sections, samples, and 
technologies by using diffeomorphic metric mapping to account for partially matched 
tissue sections and local non-linear distortions. GPSA is a probabilistic model that 
employs a two-layer Gaussian process where the first layer maps observed spatial loca-
tions to a common coordinate system (CCS), and the second layer maps from the CCS 
to the observed phenotypic readouts, such as gene expression.
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Several integration methods have also been introduced. Notable examples include 
STAligner [39], DeepST [40], PRECAST [41], and SPIRAL [42]. These tools do not 
directly align slices; instead, they learn shared latent spot embeddings after jointly train-
ing on multiple slices. STAligner, built on the STAGATE model, introduces triplet loss 
by utilizing mutual nearest neighbors between spots from consecutive slices to exploit 
the contrastive learning strategy for enhancing inter-slice connection. DeepST consists 
of a graph neural network autoencoder and a denoising autoencoder to generate a rep-
resentation of the augmented ST data as well as domain adversarial neural networks to 
integrate ST data. DeepST is also applicable to individual slices for spatial clustering. 
PRECAST leverages a unified model including a hidden Markov random field model and 
a Gaussian mixture model to simultaneously tackle low-dimensional embedding estima-
tion, spatial clustering, and alignment embedding across multiple ST datasets. SPIRAL 
employs a graph autoencoder backbone with an OT-based discriminator and a classi-
fier to remove the batch effect, align coordinates, and enhance gene expression. BASS 
applies a hierarchical Bayesian model framework for multi-slice clustering and outputs 
clustering labels.

The dichotomization of alignment and integration methods is not absolute. PASTE 
also outputs an integrated center slice, so it can also be classified as an integration tool. 
STAligner and SPIRAL are also capable of aligning multiple adjacent slices to construct a 
3D architecture. For simplicity, we classified each tool into either the alignment or inte-
gration category.

Although clustering, alignment, and integration methods have enhanced our under-
standing of ST data and their practical applications, the lack of comprehensive bench-
marking constrains comparison and hampers further algorithm development. It is 
common for a method to demonstrate excellent performance on well-studied, com-
monly used datasets; however, its performance may vary significantly when applied to 
brand-new data. In this work, we systematically analyze and evaluate the performance 
of 16 state-of-the-art clustering methods, five alignment methods, and five integration 
methods on a multitude of simulated and real ST datasets. We design a comprehensive 
benchmark framework in Fig. 1 and evaluate the clustering performance, overall robust-
ness, layer-wise and spot-to-spot alignment accuracy, integration performance, 3D 
reconstruction, and computing time of each method. We consolidate these findings into 
a comprehensive recommendation spanning multiple aspects for the users, while also 
spotlighting potential areas in need of further research.

Results
ST datasets examined and data preprocessing

We collected 10 ST datasets with a total of 68 slices for benchmarking, which had cor-
responding manual annotations shown in Table  1. These datasets were produced by 
several ST protocols, including 10x Visium, ST, Slide-seq v2, Stereo-seq, STARmap, 
and MERFISH. We broadly categorized them into two groups based on the methodol-
ogy employed-sequencing-based or imaging-based. The datasets varied in size, with 
the number of spots ranging from approximately 200 to over 50,000 and the number of 
genes from 150 to approximately 36,000.
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Fig. 1  Benchmarking framework for clustering, alignment, and integration methods on different real and 
simulated datasets. Top, illustration of the set of methods benchmarked, which includes 16 clustering 
methods, five alignment methods, and five integration methods. Bottom, overview of the benchmarking 
analysis, in terms of different metrics (1–7). Different experimental metrics and analyses, Adjusted Rand 
Index (ARI), Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI), Homogeneity (HOM), 
Average Silhouette Width (ASW), CHAOS, Percentage of Abnormal Spots (PAS), Spatial Coherence Score (SCS), 
uniform manifold approximation and projection (UMAP) visualization, layer-wise and spot-to-spot alignment 
accuracy, 3D reconstruction, and runtime, are designed to quantitatively and qualitatively assess method 
performance as well as data quality. Additional details are provided in the “Results” section
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Specifically, (1) the DLPFC dataset, generated with 10x Visium, includes 12 human 
DLPFC sections with manual annotation, indicating cortical layers 1 to 6 and white mat-
ter (WM), taken from three individual samples [51]. Each sample contains four consecu-
tive slices (for example, slice A, B, C, and D in order). In each sample, the initial pair of 
slices, AB, and the final pair, CD, are directly adjacent (10 µm apart), whereas the inter-
mediate pair, BC, is situated 300 µm apart.

(2) The HBCA1 dataset, generated with 10x Visium, includes a single slice of human 
breast cancer, which is open-sourced from 10x genomics [23].

(3) The MB2SA&P dataset, generated with 10x Visium, includes two slices of the ante-
rior and posterior mouse brain. Only the anterior section includes annotation [12, 26].

(4) The HER2BT dataset [46] by spatial transcriptomics contains HER2-positive 
tumors from eight individuals (patients A–H). Each slice contains between 177 and 692 
spots and was examined and annotated by a pathologist based on morphology. Regions 
were labeled as either: cancer in situ, invasive cancer, adipose tissue, immune infiltrate, 
breast glands, or connective tissue.

(5) The MHPC dataset [19] by Slide-seq v2 is the largest slice used in our study with 
over 40,000 spots and 23,000 genes. The Allen Mouse Brain Atlas [52] was used as 
ground truth to identify seven key anatomical regions of the hippocampus, namely CA1, 
CA2, CA3, dentate gyrus (DG), third ventricle (V3), medial habenula (MH), and lateral 
habenula (LH). The cell-type annotations were provided by Goeva and Macosko [53].

(6) The Embryo dataset by Stereo-seq has over 50 slices, and the slices at two differ-
ent time points E11.5 and E12.5 were used in our experiments. These datasets are from 
a large stereo-seq project called MOSTA [48]: Mouse Organogenesis Spatiotemporal 
Transcriptomic Atlas by BGI.

(7) The MVC dataset [9] by STARmap contains one slice and was generated from the 
mouse visual cortex. It extends from the hippocampus (HPC) to the corpus callosum 
(CC) and includes the six neocortical layers.

(8) The MPFC dataset [9] of the mouse prefrontal cortex, annotated by BASS [18], was 
sequenced with the STARmap protocol. This dataset includes expression values for 166 
genes measured across 1049 to 1088 single cells, along with their centroid coordinates 
on the tissue. Spatial domains, such as cortical layers L1, L2/3, L5, and L6, have been 
assigned based on the spatial expression patterns of marker genes, including Bgn for L1, 
Cux2 for L2/3, Tcerg1l for L5, and Pcp4 for L6. Three slices in this dataset are not cat-
egorized as consecutive.

(9) The MHypo dataset by MERFISH contains five manually annotated consecutive 
slices [18] labeled Bregma -0.04 mm (5488 cells), Bregma -0.09 mm (5557 cells), Bregma 
-0.14 mm (5926 cells), Bregma -0.19 mm (5803 cells), and Bregma -0.24 mm (5543 cells). 
Expression measurements were taken for a common set of 155 genes. Each tissue slice 
includes a detailed cell annotation, identifying eight structures: third ventricle (V3), 
bed nuclei of the stria terminalis (BST), columns of the fornix (fx), medial preoptic area 
(MPA), medial preoptic nucleus (MPN), periventricular hypothalamic nucleus (PV), 
paraventricular hypothalamic nucleus (PVH), and paraventricular nucleus of the thala-
mus (PVT).

Finally, (10) the MB dataset [35, 50] by MERFISH has 33 consecutive mouse primary 
motor cortex tissue slices with similar shapes, which can be used for 3D reconstruction. 
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Region annotation includes the six layers (L1-L6) and white matter (WM). Further 
details about the ground truth for each dataset are outlined in Additional file 1: Table S1. 
All except the MB dataset were used for benchmarking clustering tools. Five datasets, 
DLPFC, MB2SA&P, Embryo, MHypo, and MB, were used for benchmarking alignment 
and integration tools. Utilizing the evaluation framework illustrated in Fig. 1, we con-
ducted benchmarking of various clustering, alignment, and integration methods across 
all ST datasets.

All methods employ customized and often inconsistent preprocessing strategies, 
which might significantly impact their performance. The preprocessing of ST data typi-
cally encompasses four essential steps: quality control, normalization, feature selection, 
and/or dimension reduction. Each method may employ one or more of these steps. 
The scanpy package is commonly used to eliminate low-quality cells that lack sufficient 
expressed transcripts or low-quality genes that are rarely observed across the data slice, 
thereby mitigating the impact of noise. Subsequently, the expression matrix is normal-
ized within each cell and log-transformed to further suppress potential extreme values. 
Feature selection involves any form of expression profile dimension reduction or sub-
setting steps. Due to the variability in preprocessing steps across different methods, it 
is challenging to draw a simple conclusion. Therefore, we have summarized the param-
eter settings and descriptions used in the preprocessing steps when benchmarking each 
method in Additional file 1: Table S2. For instance, STAGATE selects only highly variable 
genes (HVGs), while CCST and conST calculate principal components (PCAs) to reduce 
the input feature dimensions. SpaceFlow and ADEPT utilize HVGs but also emphasize 
input feature quality control by removing noisy genes and samples. Regarding alignment 
and integration methods, for example, STAligner, SPIRAL, and GPSA incorporate pre-
processing in their workflows. All three select HVGs, but only GPSA also controls data 
quality by removing low-quality genes and cells. We also provided the specific pipeline 
of data preprocessing for each method in our GitHub.

PCA is commonly used for dimensionality reduction in clustering methods. GLM-
PCA [54] is believed to improve low-dimensional representation compared to PCA. As 
detailed in Additional file  2: Supplementary results and Fig. S1, we analyzed whether 
replacing principal components (PCs) with GLM-PCs enhances performance.

Performance comparison of 16 clustering methods

We first performed a comprehensive benchmarking analysis for 16 different clustering 
methods aimed at assessing their performance in accurately identifying spatial domains. 
The two heatmaps of Fig.  2a, b illustrated the average Adjusted Rand Index (ARI) for 
each method across 33 slices from eight ST datasets, along with the corresponding rank 
scores for each tool. We ranked the tools in descending order based on their average 
rank of ARI. Details for computing ARI values and rank score are included in the “Meth-
ods” section. The ARI and rank results revealed that BASS, GraphST, ADEPT, BANKSY, 
and STAGATE emerged as top-tier tools, followed by SpatialPCA and CCST. Notably, 
BASS attained the highest average and sum rank, followed by GraphST, ADEPT, and 
BANKSY. BASS achieved a much higher ARI than other methods on the MHypo data-
sets. Most methods struggled to give reasonable predictions on the HER2BT datasets 
since the annotated regions by ground truth were less coherent and the data more noisy. 



Page 10 of 46Hu et al. Genome Biology          (2024) 25:212 

This comprehensive evaluation shed light on the relative strengths of these methods in 
the context of spatial domain identification within each ST slice.

In Fig. 2c, we further present a holistic assessment of the overall robustness of each 
clustering method by aggregating the average ARI across slices within each of the eight 
datasets and depict the results in a line chart. Notably, lower variances were exhibited 
in the DLPFC, MB2SA (the anterior section of MB2SA&P), HER2BT, and Embryo data-
sets across all clustering methods, albeit for different reasons. BASS, in alignment with 
previous analyses, emerged as the best clustering tool for four datasets. Nevertheless, 
it exhibited comparatively poorer performance on the HBCA1 dataset. ADEPT and 
BANKSY consistently secured the second and third positions, respectively, across most 
datasets, while GraphST led in the DLPFC and MB2SA datasets. The two slices from 
the Embryo dataset, each containing approximately 30,000 and 50,000 cells, respectively, 
were used to investigate the scalability of various methods. GraphST, CCST, and DeepST 
were not applicable to either slice due to memory constraints. ADEPT, SpaGCN, SEDR, 
and conST were not applicable to one of the slices (Embryo E12.5) for the same reason. 
Among all the tools, STAGATE achieved the highest overall performance in terms of 
ARI across both Embryo slices.

Although we have highlighted top tools based on overall performance across all slices 
and datasets, certain tools may perform exceptionally well or experience performance 
degradation in datasets for specific ST protocols or tissue types. For instance, GraphST 
performed best in 10x Visium datasets but experienced a decline in performance 
with the STARmap and MERFISH datasets, which were not specialized data types for 
GraphST (Fig. 2c, dark green line). STAGATE (Fig. 2c, purple line) performed the best 
for the Stereo-seq Embryo dataset, but its accuracy ranking was not at the top for other 
protocol datasets. SpaceFlow ranked third for the MERFISH (imaging-based) dataset 
but did not perform well for other sequencing-based datasets (Fig. 2c, olive line). ConGI 
achieved top accuracy in both tumor slice datasets (HBCA1 and HER2BT), but did not 
perform well in brain slice datasets (Fig. 2c, orange line).

Random seed analysis

Since the mean ARI does not capture the variance of each method, we also plotted box 
plots and ground truth visualization plots on all slices from each dataset (Fig. 2d–k and 
Additional file  2: Fig. S2-S3). All six statistical methods, namely BASS, BayesSpace, 
DR.SC, PRECAST, SpatialPCA, and BANKSY, exhibited no variance as they set fixed 
seed for the initialization of parameters inside their functions. The remaining methods 
primarily relied on graph-based deep learning techniques, leading to potential varia-
tions in their predictions owing to random seeds. However, GraphST, ConGI, SpaGCN, 
and SpaceFlow also fixed their seeds to be identical for each run. In contrast, some deep 
learning-based methods do not adhere to this practice. To investigate the impact of 
random seeds and the corresponding loss function or objective function values on the 
clustering accuracy of these methods, we selected deep learning-based methods (CCST, 
ADEPT, and STAGATE) and statistical methods (BayesSpace and BASS) for additional 
analysis. The plots of ARI versus loss value, ARI versus seed, and loss value versus seed 
for the three deep learning-based methods indicated that clustering performance, meas-
ured by ARI, was randomly associated with both the loss value and the selected seed 



Page 11 of 46Hu et al. Genome Biology          (2024) 25:212 	

Fig. 2  Clustering performance over 16 methods on 33 ST slices of eight datasets. a ARI heatmap. Each 
average ARI value is based on 20 runs. Empty entries for specific tools indicate either that the tool is not 
optimized for those use cases or that technical issues prevent the tool from completing its execution. 
b Ranking heatmap. This ranking heatmap is created by normalizing all results within the same slice by 
dividing them by the maximum ARI value (representing the best performance) among all methods, thus 
standardizing all ARI values to 1. For each method, the best ranking for the sum result is 33, and the best 
ranking for the average result is 1. The two heatmaps in (a, b) share a color bar ranging from 0 to 1. c Line 
plots illustrating the overall robustness of all methods across eight datasets in terms of ARI. d–k Ground truth 
visualization plots and box plots depicting ARI values from 20 runs of all tools on selected data slices from 
each dataset. The box plots illustrate the variability in the ARI on individual slices for certain tools since they 
do not use a fixed seed. In the box plots, the center line, box limits, and whiskers denote the median, upper 
and lower quartiles, and 1.5× interquartile range, respectively. Certain tools were not applicable to specific 
datasets, so for the purpose of ordering, their ARI values in the box plots were assigned a value of 0



Page 12 of 46Hu et al. Genome Biology          (2024) 25:212 

for each deep learning method (Additional file 2: Fig. S4-S6), making it challenging to 
select a particular result. However, these findings suggested that all three tools exhibited 
variance in ARI across various individual DLPFC slices, consistent with previous box 
plots for all slices (Fig. 2d–k and Additional file 2: Fig. S2). A similar analysis on random 
seed, objective function value, and ARI for the statistical methods BayesSpace and BASS 
yielded the same result: clustering performance, in terms of ARI, was randomly associ-
ated with both the objective function value and the selected seed (Additional file 2: Fig. 
S7-S8). For BASS, we did not use the objective function value since it does not have one, 
but only the random seed and performance.

Clustering performance comparison using NMI, AMI and HOM

We also utilized three additional metrics-Normalized Mutual Information (NMI), 
Adjusted Mutual Information (AMI), and Homogeneity (HOM)-to further evaluate the 
clustering performance of all 16 methods. Similar to the ARI evaluation, we plotted two 
heatmaps for each of these metrics. Details for computing the NMI, AMI, and HOM val-
ues, as well as each rank score, are provided in the “Methods” section. The ranking order 
using these metrics was highly consistent with that obtained using ARI, with only a few 
exceptions (Fig.  3a–f). BASS, GraphST, BANKSY, SpatialPCA, and ADEPT remained 
the top tools across the three metrics followed by CCST, and STAGATE, while Space-
Flow achieved the best HOM, indicating the highest cluster purity (Fig. 3e, f ).

To investigate the overall robustness of each method, we aggregated the average values 
of these three metrics across slices within each dataset (Fig. 3g–i). The observed patterns 
were similar to those seen with ARI. BASS achieved the best performance in five out 
of eight datasets for these three metrics. STAGATE continued to perform well for the 
Stereo-seq Embryo dataset in terms of NMI and AMI. SpaceFlow and ConGI performed 
well for the MERFISH and tumor datasets, respectively.

Qualitative and quantitative benchmarking of a Slide‑seq v2 dataset

So far, we quantitatively evaluated all clustering methods by ARI and other metrics. For 
the MHPC data using the Slide-seq v2 protocol (Fig. 4a), where the spots were labeled by 
cell types, visual comparison with the ground truth was more effective than calculating 
ARIs. Additionally, we employed the Allen Brain Atlas as a ground truth for the ana-
tomical regions (Fig. 4b). The ground truth comprised four key distinguished anatomi-
cal regions, CA1, CA2, CA3, and dentate gyrus (DG), which displayed curved shapes. 
For better visualization, we have extracted clusters from each method to match these 
key distinguished anatomical regions. Our results demonstrated that all methods suc-
cessfully recovered this feature; however, DR.SC and BASS failed to identify them as 
separate regions (Fig. 4c). Moreover, ADEPT, GraphST, STAGATE, and BANKSY could 
further differentiate CA1 and CA3 (Fig. 4c). Notably, no method delineated a separate 
CA2 region, merging it with CA3 instead. To quantitatively evaluate all methods for 
these regions, we conducted a manual region-based annotation of “CA1_CA2_CA3” and 
DG regions based on existing cell type annotations. This manual annotation (shown in 
Fig. 4d) served as the ground truth for calculating clustering performance, measured by 
ARI, NMI, AMI, and HOM. Our results indicated that PRECAST exhibited the highest 
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overall performance across all four metrics, followed sequentially by GraphST, Space-
Flow, ADEPT, STAGATE, and BANKSY (Fig. 4e).

We further investigated three other key anatomical regions-third ventricle (V3), 
medial habenula (MH), and lateral habenula (LH). BASS, ADEPT, STAGATE, Space-
Flow, and BANKSY could successfully delineate these three regions. In conclusion, 
ADEPT, STAGATE, BANKSY, SpaceFlow, and GraphST were effective tools for delin-
eating all seven key regions.

Spatial continuity analysis for clustering methods

Continuity is a key metric in spatial clustering, as it captures spatial coherence and well-
defined interfaces between predicted spatial domains. To assess continuity by different 
methods, we utilized three widely recognized metrics: average silhouette width (ASW) 
[55], CHAOS [19], and percentage of abnormal spots (PAS) [19]. The methods are 
described in detail in the “Methods” section. Similar to the ARI evaluation, we plotted 
two heatmaps for each of these metrics. Details for computing the ASW, CHAOS, and 
PAS values, as well as each rank score, are provided in the “Methods” section. Unlike 
ASW, where a higher value indicates higher spatial continuity, lower CHAOS and PAS 
values indicate higher spatial continuity. Considering all three metrics together, we 
observed that SpaceFlow, BANKSY, and CCST achieved the best spatial continuity, fol-
lowed by BASS and GraphST (Fig.  5a–f). SpatialPCA and ADEPT had similar overall 
rankings, with SpatialPCA demonstrating better spatial continuity in terms of CHAOS 
and PAS.

All clustering methods exhibited performance that varied considerably  across data-
sets. To reveal the effect of data complexity on performance, we plotted the average 
ARI by all methods for each slice as a function of data complexity. (Fig. 5g–j). To quan-
tify data complexity, we utilized ASW, CHAOS, and PAS as metrics to measure spatial 
continuity for each slice based on the ground truth labels. Additionally, we introduced 
another metric, the Spatial Coherence Score (SCS), to quantify data complexity. Details 
are described in the “Methods” section. The overall trend of the average ARI across 
all methods, represented by each regression line, indicated that clustering accuracy 
decreased as data complexity increased. All Pearson correlation values between ARI and 
each data complexity metric were significant (p = 0.0036, p = 0.0002, p = 0.0027, and 
p = 0.0015 for ASW, CHAOS, PAS, and SCS, respectively). Since a higher ASW and 
SCS value indicates higher spatial continuity and lower data complexity, their Pearson 
correlation coefficient was positive (R = 0.49 for ASW and R = 0.55 for SCS) in Fig. 5g 
and j. Conversely, higher CHAOS and PAS values indicate lower spatial continuity and 
higher data complexity, resulting in negative Pearson correlation coefficients (Fig. 5h, i; 
R = − 0.61 for CHAOS and R = − 0.51 for PAS). However, an intriguing observation 
emerged: the average ARIs for well-studied datasets were mostly above the regression 
line, whereas for less-studied datasets, average ARIs were below the regression line. This 
outcome indicated that the designs of most current algorithms favored the commonly 
used datasets and were not generally effective for all datasets. Though this phenomenon 
was due to the scarcity of available ST datasets with high-quality ground truth, it did 
exhibit a potential issue of algorithm overfitting, which should be noted and prevented 
in future studies.
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Runtime analysis for clustering methods

Finally, we benchmarked the runtime of each method on seven selected ST slices (Fig. 6). 
The MVC slice has the smallest number of spots (1207). The MB2SA, DLPFC 151673, 
HBCA1, and MHypo Bregma -0.19 slices have 2695, 3611, 3798, and 5803 spots, respec-
tively. The two largest Embryo slices have 30,124 and 51,365 spots, respectively. We 

Fig. 3  Clustering performance in terms of NMI, AMI, and HOM. a NMI heatmap. Each average NMI value 
is based on 20 runs. b Ranking heatmap. This ranking heatmap is created by normalizing all results within 
the same slice by dividing them by the maximum NMI value (representing the best performance) among 
all methods, thus standardizing all NMI values to 1. For each method, the best ranking for the sum result is 
33, and the best ranking for the average result is 1. c, d Equivalent heatmaps as shown in (a, b) for AMI. e, f 
Equivalent heatmaps as shown in (a, b) for HOM. All heatmaps in (a–f) share a color bar ranging from 0 to 
1. g–i Line plots illustrating the overall robustness of all methods across eight datasets in terms of NMI (g), 
AMI (h), and HOM (i)
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plotted the runtime by arranging the datasets in ascending order based on the number 
of spots and sorted the tools in ascending order based on the runtime of the first MVC 
dataset. Overall, for the first five data slices, four tools-SpaGCN, BANKSY, GraphST, and 
STAGATE-demonstrated advantages in terms of runtime, as they could analyze each 
slice within a minute. Six tools, including SpatialPCA, DR.SC, SEDR, conST, DeepST, 
and SpaceFlow, exhibited comparably slower speeds but still completed execution within 
5 mins per slice. In contrast, six tools-PRECAST, CCST, BASS, ADEPT, BayesSpace, 
and ConGI-lacked scalability and were significantly impacted by both the number of 
spots and genes, with their runtime increasing drastically as the data size grew. Regard-
ing the two largest Embryo slices, STAGATE, BANKSY, and DR.SC demonstrated good 
scalability, processing both slices within 2–12 mins. SpaGCN and SEDR processed the 

Fig. 4  Clustering performance on the MHPC dataset. a Ground truth (GT) annotation for the MHPC dataset. 
b The Allen Brain Atlas. c Comparisons of the predicted clusters generated by different clustering methods. 
d Customized GT annotation only for CA1_CA2_CA3 and Dentate Gyrus for the MHPC dataset. e Box plots of 
ARI, NMI, AMI, and HOM for all tools based on customized GT annotation only for CA1_CA2_CA3 and Dentate 
Gyrus
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Embryo E11.5 slice within 7–15 mins but could not process the Embryo E12.5 slice due 
to memory constraints on our computation platform, as described in the “Methods” sec-
tion. conST, ADEPT, BASS, BayesSpace, PRECAST, SpaceFlow, and SpatialPCA could 
handle one or both slices, but their processing times increased significantly, ranging 
from 18 mins to 3.5 h. GraphST, DeepST, and CCST could not process either slice due 
to memory constraints. ConGI was also not applicable to either slice due to the absence 
of a histology image. Overall, STAGATE achieved the best runtime and scalability across 
all slices, followed by BANKSY and DR.SC.

Assessing the characteristics of joint spot embedding with pairwise two‑slice joint analysis

In contrast to the conventional approach of ST focusing on spatial domain distribution 
in a single slice, there is a growing recognition of the value of integrative and compara-
tive analyses of ST datasets. In our pairwise two-slice joint analysis, we started by using 
nine pairs of DLPFC slices to explore whether integration could improve joint spot 
embeddings by leveraging adjacent consecutive slices. Evaluation experiments were con-
ducted by introducing layer-wise alignment accuracy. The fundamental idea behind this 
analysis is based on the hypothesis that aligned spots across consecutive slices are more 
likely to belong to the same spatial domain or cell type. The detailed method for defining 
layer-wise alignment accuracy is outlined in the “Methods” section.

In Fig. 7a, we compared the layer-wise alignment accuracy of all nine methods on nine 
DLPFC slice pairs. Given the unique layered structure of DLPFC data, we designed this 
evaluation metric to assess whether “anchor” spots from the first slice and “aligned” 
spots from the second slice belong to the same layer (layer shift = 0) or different lay-
ers (layer shift = 1 to 6). The expectation was that a good integration or alignment tool 
would show high accuracy for anchor and aligned spots belonging to the same layer 
(layer shift = 0), and this accuracy should decrease when the number of layer shift 
increases. We plotted the layer-wise alignment accuracy and sorted the tools in descend-
ing order based on the accuracy for layer shift of 0. In seven out of nine DLPFC slice 
pairs, SPACEL demonstrated the highest layer-wise alignment accuracy, while PASTE 
and STalign led in the remaining two pairs (Fig.  7a). A similar experiment was con-
ducted on four pairs drawn from the MHypo dataset (Fig. 7b), but layer-wise alignment 
accuracy was only plotted for a layer shift of 0 due to the nature of the data. SPACEL still 
exhibited the best performance, followed by PASTE and STalign in the second position. 
It was not surprising that the two alignment tools, SPACEL and PASTE, exhibited the 
highest accuracy in layer-wise alignment across most pairs, which was expected as their 
primary objective was the direct alignment of spots across slices, rather than relying on 
joint spot embeddings for integration analysis. Conversely, tools like STAligner, PRE-
CAST, DeepST, and SPIRAL, which leverage joint spot embeddings for indirect align-
ment across slices, demonstrated slightly lower but still satisfactory layer-wise alignment 
accuracy. Among these tools, STAligner achieved the highest accuracy, followed by 
DeepST, while PRECAST and SPRIAL performed the least accurately. These results 
highlighted, to some extent, the inherent qualities of joint spot embeddings by these 
integration tools. PASTE2, an extension version of PASTE, exhibited poor performance 
in this scenario because it primarily addresses the partial overlap alignment problem, 
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where only partial overlap occurs between two slices or slice-specific cell types. Notably, 
the other two alignment tools, STalign and GPSA, lacked in robust and accurate align-
ment performance compared to SPACEL and PASTE.

Fig. 5  Clustering performance in terms of ASW, CHAOS, PAS, and SCS for spatial continuity. a ASW heatmap. 
Each average ASW value is based on 20 runs. b Ranking heatmap. This ranking heatmap is created by 
normalizing all results within the same slice by dividing them by the maximum ASW value (representing the 
best performance) among all methods, thus standardizing all ASW values to 1. A higher ASW value indicates 
greater spatial continuity. For each method, the best ranking for the sum result for ASW is 33, and the best 
ranking for the average result is 1. c, d Equivalent heatmaps as shown in a, b for CHAOS. e, f Equivalent 
heatmaps as shown in (a, b) for PAS. The ranking heatmaps were created by normalizing all results within 
the same slice by dividing them by the maximum CHAOS/PAS value (representing the worst performance) 
among all methods, thus standardizing all CHAOS/PAS values to 1. Lower CHAOS and PAS values indicate 
greater spatial continuity. For each method, the worst ranking for the sum result for CHAOS and PAS is 33, and 
the worst ranking for the average result is 1. All heatmaps in (a–f) share a color bar ranging from 0 to 1. g–j 
Average ARI values across all methods as a function of data slice complexity quantified by ASW (g), CHAOS 
(h), PAS (i), and SCS (j). Two Embryo slices were excluded in (j) for better visualization. Pearson correlation 
coefficients and p-values are indicated within the plots
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While layer-wise alignment accuracy provides insight into spot-to-layer alignment, 
it is crucial to evaluate the spot-to-spot matching ratio to further evaluate joint spot 
embeddings. In Fig. 8a, b, we marked “anchor” and “aligned” spots on both slices using 
three different colors, further classifying them into aligned (orange), misaligned (blue), 
and unaligned (green) spots based on ground truth layer labels, as described in the 
“Methods” section. Notably, for the DLPFC 151507-151508 pair, STAligner, GPSA, SPI-
RAL, DeepST, PASTE2, and PRECAST showed a notable proportion of unaligned spots 
on the second slice. This suggested a bias in these six tools, aligning multiple “anchor” 
spots from the first slice to the same “aligned” spot on the second slice, thereby leav-
ing a significant number of spots unaligned on the second slice. The spot-to-spot map-
ping ratio further corroborated this observation, with PASTE demonstrating the lowest 
ratio (1.00), followed by STalign (1.01), SPACEL (1.24), PASTE2 (1.42), PRECAST (1.85), 
DeepST (2.13), SPIRAL (2.41), GPSA (2.59), and STAligner (2.78). Averaging this ratio 
across all nine pairs for each tool revealed a similar pattern (Fig. 8c), except that GPSA 
achieved a better overall ratio, while PASTE2 had a worse overall ratio. Moreover, across 
all nine pairs, it was observed that misaligned spots (Fig. 8a and Additional file 2: Fig. 
S9-S12) on the first slice tended to aggregate along the layer boundaries in PASTE, STa-
lign, and SPACEL. In contrast, the other rest tools exhibited a dispersion of these mis-
aligned spots within the layers. The high spot-to-spot mapping ratio and the dispersed 
pattern of misaligned spots in all integration tools suggested a shared trade-off, wherein 
the learned low-dimensional embeddings sacrifice certain local geometric informa-
tion in the process of optimization and training. SPACEL, the alignment tool, exhibited 
coherent regions of unaligned spots (illustrated in green) outside the matched regions.

We further performed this evaluation analysis in four pairs of MHypo slices and 
observed a similar trend for spot-to-spot mapping ratio and a similar dispersed pat-
tern of misaligned spots in all tools (Fig. 8b and Additional file 2: Fig. S13-S14). Specifi-
cally, SPIRAL had the worst average spot-to-spot mapping ratio, followed by STAligner, 
DeepST, and PRECAST (Fig. 8d). PASTE2 and PASTE achieved a ratio of approximately 
1. STalign and SPACEL demonstrated a less favorable average ratio (1.55 for STalign; 
1.58 for SPACEL) for the MHypo data in comparison to the DLPFC data (1.09 for STa-
lign; 1.30 for SPACEL).

Fig. 6  Runtime comparison of clustering methods. Runtime analysis of all 16 clustering methods on seven 
ST slices. The runtime is plotted by arranging the datasets in ascending order based on the number of spots 
and tools are sorted in ascending order based on the runtime of the first MVC dataset



Page 19 of 46Hu et al. Genome Biology          (2024) 25:212 	

Alignment accuracy on simulated datasets

While real datasets enabled us to assess alignment accuracy to some extent, they lacked 
precise spot-to-spot alignment ground truth. To comprehensively investigate alignment 
accuracy, we simulated datasets with the gold standard for different scenarios to demon-
strate the robustness of all alignment and integration methods.

We first used one DLPFC slice as the reference and simulated another slice with 
different overlap ratios (20%, 40%, 60%, 80%, and 100%) in comparison to the refer-
ence slice (Fig.  9a). In this simulation scenario, the pseudocount (gene expression) 
perturbation was fixed at 1.0 for all simulated slices. The detailed simulation method 
is outlined in the “Methods” section. In Fig. 9b, c, the layer-wise alignment accuracy 
for a layer shift of 0 and spot-to-spot alignment accuracy are shown in bar plots. We 

Fig. 7  Bar plots for layer-wise alignment accuracy. a Bar plots depicting the layer-wise alignment accuracy for 
a layer shift from 0 to 6 for different methods on nine DLPFC slice pairs. b Bar plots depicting the layer-wise 
alignment accuracy for a layer shift of 0 for different methods on four MHypo slice pairs. GPSA could not be 
applied to the MHypo dataset. Tools are sorted in descending order based on the accuracy for layer shift of 0 
in (a, b)
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observed that all five alignment methods achieved superior layer-wise alignment 
accuracy for a layer shift of 0 in comparison to the four integration methods. Further-
more, for each tool, accuracy tended to decline as the overlapping ratio between two 
slices diminished. Nevertheless, in terms of spot-to-spot alignment accuracy, all four 
integration methods-STAligner, PRECAST, DeepST, and SPIRAL-failed to achieve 
even a marginal value, which was consistent with the earlier conclusion that these 
tools exhibit relatively high spot-to-spot mapping ratios. On the other hand, three 
alignment tools-SPACEL, PASTE2, and PASTE-achieved relatively better spot-to-
spot alignment accuracy. Among them, PASTE2 achieved a near-perfect accuracy at 
the 100% overlapping ratio and consistently maintained approximately 60% accuracy 
at lower overlapping ratios. SPACEL exhibited slightly better accuracy than PASTE2 
when the overlapping ratio was lower than 100%. However, its accuracy decreased to 
approximately 40% at the 100% overlapping ratio. PASTE, on the other hand, failed 
to achieve satisfactory accuracy when the overlapping ratio was lower than 100%. For 
the other two alignment tools, STalign and GPSA, the spot-to-spot alignment accu-
racy was unexpectedly low, comparable to that of the four integration tools.

In the second simulation scenario, we simulated the slice with different pseudocounts 
(0–3.0 with a step size of 0.5) to represent perturbation on gene expression while keep-
ing the overlapping ratio fixed at 100%. In Fig. 9d, the bar plots demonstrated that the 
layer-wise alignment accuracy for a layer shift of 0 of four integration tools−DeepST, 
SPIRAL, PRECAST, and STAligner−decreased when pseudocount perturbation 
increased. This result suggested that all integration methods were sensitive to perturba-
tion on the expression profiles, as they utilized gene expression profiles as spot (node) 
features when constructing a graph model for training. Conversely, five alignment tools-
PASTE, SPACEL, STalign, GPSA, and PASTE2-exhibited significantly greater resilience 
to perturbations in gene expression. This resilience stems from their objective functions 
for alignment, which allowed for a more pronounced emphasis on spatial coordinates 
when gene expression varied across slices. Regarding spot-to-spot alignment accuracy in 
Fig. 9e, three alignment tools (PASTE, PASTE2, and SPACEL) consistently maintained 
similar accuracy across various pseudocount perturbations. PASTE2 demonstrated the 
highest accuracy when pseudocount perturbation ranged from 0.5 to 3.0. The other 
two alignment tools (STalign and GPSA) still demonstrated low spot-to-spot alignment 
accuracy across all scenarios. Notably, when pseudocount perturbation was set to 0, 
indicating identical gene expression levels for each spot across slices, all four integration 
tools achieved better accuracy.

Integration methods improve integration of consecutive slices with batch correction

Once joint spot embeddings for each integration method were generated, we further 
visually evaluated the “batch-corrected” joint embeddings for the integration of con-
secutive slices using two components from uniform manifold approximation (UMAP). 
Alignment tools, PASTE, PASTE2, and SPACEL, were excluded from this analysis as 
they did not generate latent embeddings.

For the DLPFC 151507 and 151508 pair (Fig.  10a), the UMAP plots for PRECAST, 
STAligner, DeepST, and SPIRAL showed that spots from two different slices were 
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Fig. 8  Visualization plots for alignment-misalignment-unalignment and spot-to-spot mapping ratio. a, b 
Visualization plots showing aligned spots, misaligned spots, and unaligned spots when aligning the anchor 
spot from the first (top) slice to the aligned spots on the second (bottom) slice on DLPFC 151507-151508 (a) 
and MHypo Bregma -0.04 - -0.09 pair (b). Values below each plot represent the spot-to-spot matching ratio. 
c, d Bar plots representing the average spot-to-spot mapping ratio of each tool on two datasets: DLPFC (c) 
and MHypo (d). GPSA could not be applied to the MHypo dataset
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evenly mixed to some extent (Fig.  10a, right panel), and their predicted domain clus-
ters were well segregated (Fig. 10, middle panel). Specifically, PRECAST tended to gen-
erate embeddings in a pattern with separated clusters, with some predicted clusters 
encompassing spots from different domains, a pattern that did not entirely align with 
the ground truth (Fig.  10a, left panel). STAligner, DeepST, and SPIRAL maintained 
the hierarchical connections of the seven layers in the latent embedding space to some 
degree. However, there were instances where predicted spatial domains included spots 
from nearby domains, or one spatial domain was predicted to be two adjacent domains. 
STAligner achieved better UMAP visualization than DeepST and SPIRAL. Among all 
tools, PRECAST lost more geometry information than the other three tools since it 
prominently separated spatial domains in the latent space. We further demonstrated 
this UMAP analysis for all the rest DLPFC pairs and plotted annotations by ground 
truth, method prediction, and slice index (Additional file 2: Fig. S15-S16). All remain-
ing UMAP results exhibited consistent patterns and further affirmed that all four meth-
ods were capable of generating “batch-corrected” joint embeddings for the integration of 

Fig. 9  Alignment accuracy in simulation Data. a DLPFC 151673 slice, consisting of seven layers, along with its 
simulated consecutive slices featuring overlapping ratios of 20%, 40%, 60%, 80%, and 100% with respect to 
DLPFC 151673 slice. b Layer-wise alignment accuracy for a layer shift of 0 across different tools, as a function 
of increased overlapping ratio. Tools are sorted in descending order based on the layer-wise alignment 
accuracy for layer shift of 0 on the left dataset (with 100% overlapping percentage). c Spot-to-spot alignment 
accuracy across different tools as a function of increased overlapping ratio. Tools are sorted in descending 
order based on the spot-to-spot alignment accuracy on the left dataset (with 100% overlapping percentage). 
d Layer-wise alignment accuracy for a layer shift of 0 across different tools, as a function of increased 
pseudocount perturbation. Tools are sorted in descending order based on the layer-wise alignment accuracy 
for layer shift of 0 on the left dataset (with pseudocount perturbation = 0.0). e Spot-to-spot alignment 
accuracy across different tools as a function of increased pseudocount perturbation. Tools are sorted in 
descending order based on the spot-to-spot alignment accuracy on the left dataset (with pseudocount 
perturbation = 0.0)
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consecutive slices. However, the integrated spatial domains were not highly concordant 
with the ground truth.

We extended this analysis to four pairs of the MHypo data (Fig. 10b and Additional 
file 2: Fig. S17). The joint embeddings generated by PRECAST, STAligner, and DeepST 
somewhat facilitated integration across consecutive slices, although this effect was much 
inferior compared to the results of the DLPFC data. These three tools exhibited several 
connected small clusters or a single large cluster which were hard to differentiate based 
on the annotation by ground truth. The other tool, SPIRAL, experienced a significant 
batch effect as its joint embeddings across slices were unevenly mixed and experienced 
substantial separation. This result was in agreement with the least favorable spot-to-spot 
mapping ratio (4.01) by SPRIAL.

In addition to benchmarking on the integration of slice pairs, we further demonstrated 
the performance of each method on multi-slice ( > 2 ) integration. All UMAP plots for 
PRECAST, STAligner, DeepST, and SPIRAL indicated a relatively even mixture of spots 
from four distinct slices provided by three samples (DLPFC 151507-151510, 151669-
151672, 151673-151676) (Fig. 10c and Additional file 2: Fig. S18). Consistent with obser-
vations in paired settings, the embeddings generated by PRECAST continued to exhibit 
a pattern characterized by separated clusters. On the other hand, STAligner, DeepST, 
and SPIRAL still maintained hierarchical connections across seven layers in the latent 
embedding space. STAligner demonstrated slightly better UMAP visualization than 
DeepST and SPIRAL. As for the integration of the five slices of the MHypo dataset 
(Fig. 10d), all tools still displayed several small connected clusters or a single large cluster 
that was challenging to differentiate based on the annotation by ground truth. However, 
SPIRAL mixed the spots across five slices evenly and did not display any batch effect, 
which indicated SPIRAL could use adequate data to remove the batch effect for its latent 
embeddings. In summary, there is still a need for an optimal and robust tool for integra-
tion. While existing tools have shown efficacy to some extent in well-studied datasets, 
their performance has not consistently generalized to diverse datasets.

Integration methods enhance domain identification through joint embedding

Integrating data from multiple ST slices can allow us to estimate joint embeddings of 
expressions representing variations between cell or domain types across slices, which 
has the potential to better detect spatial domains or cell types, compared to single slice 
analysis [33]. To further quantitatively compare the effectiveness of these methods in 
capturing spatial domains via joint embeddings, we employed joint embeddings from 
each pair of slices in the MHypo and DLPFC datasets to perform clustering together 
using the clustering method mclust [56]. We then computed ARI as an evaluation metric 
to compare the clustering results of each tool with the ground truth in each slice, with 
higher ARI scores indicating better domain identification.

In Fig. 11a, b, we plotted the average ARI results under two scenarios. BASS, PRE-
CAST, and DeepST supported both single-slice and multi-slice joint (integration) 
analyses. Accordingly, we utilized blue bars to depict the results before integration 
(single-slice mode) and orange bars to represent the results after integration. How-
ever, since STAligner and SPIRAL only have a multi-slice joint analysis mode, the 
blue bars for these methods were left unpopulated. It was difficult to conclude which 
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tool had the overall best performance in all pairs after integration. In nine pairs of 
DLPFC data (Fig.  11a), DeepST and STAligner exhibited the most variance across 
all runs. SPIRAL demonstrated the best performance on DLPFC 151509-151510 and 
151669-151670 pairs. STAligner led the performance on DLPFC 151673-151674, 
151674-151675, and 151675-151676 pairs, albeit marginally. Notably, the DLPFC 
151670-151671 pair, characterized by a large spatial distance along the z-axis (300 

Fig. 10  UMAP plots of low dimensional joint embedding distribution for batch correction. a–d These UMAP 
plots depicting the 2D distribution of latent joint embeddings after integration with batch correction by 
different methods on the DLPFC 151507-151508 pair (a), the MHypo Bregma -0.04 - -0.09 pair (b), the DLPFC 
151507-151510 four consecutive slices (c), and the MHypo Bregma -0.04 - -0.24 five consecutive slices. Each 
UMAP contains colored spots labeled by three different setups: ground truth (GT), method prediction, and 
slice index
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µm apart) within the tissue between two slices, presented challenges for all methods. 
These tools either exhibited a significant performance discrepancy in two slices or 
failed to perform well in both slices. A similar observation has been spotted on the 
151508-151509 distant pair as well. In the DLPFC 151671-151672 pair, SPIRAL and 
STAligner demonstrated better performance. Most methods performed similarly on 
the DLPFC 151507-151508 pair. Results were comparatively simpler on the four pairs 
of the MHypo dataset (Fig. 11b). BASS demonstrated superior performance in all four 
pairs, followed by STAligner. However, the remaining three methods failed to pro-
duce reasonable results. To compute an overall ranking based on ARI for each tool 
across all slice pairs from the DLPFC and MHypo datasets, we generated ARI value 
and rank heatmaps after integration. Our results demonstrated that BASS achieved 
the best average and sum rank after integration, followed by STAligner and SPIRAL 
(Additional file 2: Fig. S19).

We investigated every adjacent consecutive slice pair before and after integration anal-
ysis. The distant DLPFC slice pairs such as 151670-151671 and 151508-151509 posed 
challenges for all methods to improve clustering accuracy after integration. To explore 
how the physical distance between slices affects integration, we analyzed the ARI of all 
tools at four distances from the Bregma in the MHypo dataset. Specifically, we examined 
distances of 0.05 mm, 0.1 mm, 0.15 mm, and 0.2 mm, using slices at Bregma -0.04 and 
-0.24 as fixed anchor points. This analysis included comparisons across seven distinct 
pairings from Bregma -0.04 to -0.24, helping to discern the impact of slice distance on 
integration effectiveness. We plotted the ARI of two anchor slices against the increasing 
distance between slices, observing two different outcomes (Fig. 11c): (1) for BASS and 
DeepST, integration led to an improvement in the ARI of both anchor slices (surpassing 
the dashed line that represents the ARI for a single anchor slice before integration) when 
the distance between the slices was small. However, the ARI of the anchor slices declined 
as the distance between the slices increased. This indicated that integration could 
reduce the clustering accuracy of the anchor slice if the slice distance was sufficiently 
large (dropping below the corresponding dashed line). (2) For PRECAST, STAligner, and 
SPRIAL, integrating with slices that were either close or distant did not impact the clus-
tering accuracy of the anchor slices. In conclusion, integration can enhance clustering 
for individual slices, but the effectiveness of this improvement depends on the distance 
between slices for each specific dataset.

Although no clear overall winner emerged after integration, integration analysis 
produced some improvement in clustering accuracy compared to single-slice analy-
sis within certain tools. Specifically, both PRECAST and DeepST exhibited enhanced 
clustering accuracy after integration (Fig.  11d). Across a total of 26 before-and-after 
pair conditions for two datasets, PRECAST’s average ARI increased from 0.363 before 
integration to 0.411 after, though this change was not statistically significant (p = 0.3). 
In contrast, DeepST exhibited a notable increase in clustering accuracy, with the aver-
age ARI improving from 0.285 before integration to 0.395 after, which was statistically 
significant (p = 0.0006). BASS did not show any significant improvement in clustering 
accuracy through integration, with its average ARI slightly changing from 0.517 before 
to 0.532 after integration (p = 0.5).
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Integration methods align samples across different anatomical regions and development 

stages

So far, our benchmarking has focused on evaluating the integration capabilities of meth-
ods across adjacent consecutive sample slices. In this section, we delved deeper into its 
efficacy for integrating non-consecutive slices. We employed a 10x Visium dataset repre-
senting mouse brain sagittal sections, divided into posterior and anterior. We employed 
the Allen Brain Atlas as a reference (Fig.  12a) and visually compared the clustering 
results of all methods (Fig.  12b–f). Among all methods, PRECAST demonstrated the 
least effective performance and failed to detect and connect common spatial domains. 

Fig. 11  ARI plots before and after integration for domain identification in DLPFC and MHypo datasets. a, b 
ARI bar plots for nine DLPFC pairs (a) and four MHypo pairs (b) using different methods. Blue bars represent 
the average ARI values for 20 runs before integration (in single-slice mode), and orange bars represent the 
average ARI values for 20 runs after integration. Error bars represent standard deviations calculated from 
20 runs. Note that the blue bars for STAligner and SPIRAL remain unpopulated since they do not support 
single-slice clustering. c ARI plots for anchor slices as a function of increased slice distance for different 
methods. Dashed lines indicate the ARI of anchor slices before integration (in single-slice mode). d Paired 
ARI plots comparing values before and after integration for three methods. Solid lines indicate that ARI after 
integration is higher than before integration. Dashed lines indicate that ARI after integration is lower than 
before integration. Statistical significance between the before and after integration values is assessed using 
a paired t-test and indicated as follows: nsp ≥ 0.05 and ∗∗∗p < 0.001 . The average ARI across before and after 
integration conditions is marked with a bar and the respective value
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In contrast, BASS, STAligner, DeepST, and SPIRAL were better able to identify and con-
nect common spatial domains along this shared boundary. Specifically, only STAligner 
identified and aligned six distinct layers in the cerebral cortex (CTX) across the anterior 
and posterior sections. On the other hand, BASS and SPRIAL only managed to iden-
tify four distinct layers in CTX. Additionally, STAligner and SPRIAL performed well in 
distinguishing layers within the cerebellar cortex (CBX). However, none of them identi-
fied a coherent arc across two sections for CA1, CA2, and CA3. In summary, STAligner 
showed capacity in integration for adjacent slices across different anatomical regions.

Next, we investigated the ability of all methods to integrate two slices from different 
development stages, to study the spatiotemporal development in tissue structures during 
mouse organogenesis. Only STAligner has scalability in processing this big benchmark-
ing dataset (over 50k spots for each slice), so other tools were excluded from this analy-
sis. In Fig. 12g, the two mouse embryo slices were acquired at two different time points 
(E11.5 and E12.5) with region-based manual annotations for different organs and tissues. 
We observed that STAligner successfully retrieved several shared structures such as dor-
sal root ganglion, brain, heart, and liver in both slices (Fig. 12h). We also observed that 
at developmental stage E11.5, structures like the ovary and kidney were less developed 
compared to E12.5. These results facilitated the reconstruction of the developmental 
progression of each tissue structure throughout organogenesis.

Reconstruction of 3D architecture from consecutive 2D slices

Initially, 2D slices were produced from 3D tissue, and alignment or integration tools, 
specifically designed for pairwise or all-to-all alignments using multiple adjacent con-
secutive slices, can then reconstruct the 3D architecture. 3D architecture allows users 
to explore the dynamics of transcript distributions from any direction, so reconstruct-
ing an effective 3D architecture of complex tissues or organs is essential. In Fig. 13, we 
provided 3D reconstruction visualization results from three different samples using four 
methods, SPACEL, PASTE, SPIRAL, and STAligner. The methods are described in detail 
in the “Methods” section. All four tools achieved consistent and satisfactory 3D visuali-
zation results on DLPFC sample 3, encompassing four adjacent consecutive slices num-
bered 151673-151674-151675-151676 (Fig. 13b). For the MHypo sample which contains 
five consecutive slices, SPACEL and PASTE demonstrated comparable and effective 3D 
visualizations (Fig. 13c). In contrast, SPIRAL exhibited misaligned scatter spots begin-
ning from the second slice, and the occurrence of these misalignments increased with 
the addition of more stacks of slices. Starting from the third slice, STAligner exhibited 
rotational distortions in the slices, leading to a discordant 3D architecture. The underly-
ing reason could be that SPIRAL performed all-to-all alignments, whereas SPACEL and 
PASTE performed pairwise alignments between each pair of adjacent consecutive slices 
sequentially. All-to-all alignments have the potential to introduce more false alignment, 
particularly when two slices are not closely positioned along the z-axis. GPSA can recon-
struct the 3D architecture using DLPFC slices; however, the original shape of the DLPFC 
slice is distorted after alignment (Additional file 2: Fig. S20).

In terms of the MB sample, which contains 33 adjacent consecutive mouse brain tissue 
(Fig. 13a), only SPACEL and PASTE proved suitable for reconstructing the 3D architec-
ture with this substantial number of slices. We selected a similar orientation of the 3D 



Page 28 of 46Hu et al. Genome Biology          (2024) 25:212 

architecture for comparison purposes. The final module, Scube in SPACEL, successfully 
generated an effective 3D visualization by incorporating manual annotation labels. How-
ever, both SPACEL (without manual annotation labels) and PASTE produced a discord-
ant 3D architecture, particularly noticeable from the second half of the slices onward. 
Combining pairwise alignments from multiple adjacent slices into a stacked 3D align-
ment of tissue led to the propagation of errors, resulting in the observation of two dis-
jointed 3D architectures.

Runtime analysis for alignment and integration methods

Finally, we benchmarked the average runtime of each alignment and integration 
method on five selected datasets (Fig. 14). The DLPFC and the MB2SA&P datasets were 
medium-sized, with approximately 3-4k spots and 30k genes. Though each slice of the 
MHypo dataset has approximately 5k spots, each spot only contains 155 genes. The 
Embryo dataset is the largest in terms of the number of spots and genes. Lastly, the MB 
dataset has 33 slices in total for alignment and 3D reconstruction. We plotted the runt-
ime and sorted the tools in ascending order based on the runtime of the first DLPFC 
dataset. The plot of Fig. 14a illustrates the average runtime when aligning or integrat-
ing two slices. Empty columns indicate scenarios where either the algorithm is not opti-
mized for such use cases, or where memory consumption is excessively high, leading to 
the tool’s inability to complete execution. Overall, methods such as STAligner, BASS, 
PRECAST, PASTE, and PASTE2 finished integration within 10 mins and exhibited rea-
sonable scalability. Their time consumption was only marginally affected by increases 
in both the number of spots and genes. In contrast, scalability issues were more pro-
nounced with methods like GPSA, SPACEL, SPIRAL, DeepST, and STalign, where inte-
gration tasks might take hours or even days to complete. STAligner stands out as the 

Fig. 12  Visualization plots for integration with batch correction in MB2SA&P dataset and mouse Embryo 
dataset. a The Allen Brain atlas serving as the ground truth. b–f Domain identification by five methods in 
the MB2SA&P dataset. g Domain identification by the ground truth in the mouse Embryo dataset. h Domain 
identification by STAligner in the mouse Embryo dataset
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sole tool capable of completing analysis on the Embryo dataset without encountering 
any memory constraints thus far.

In Fig. 14b, we further compared the runtime of each tool when aligning or integrat-
ing multiple (> 2) slices. STAligner, PRECAST, and PASTE continued to exhibit promis-
ing scalability under these conditions. GPSA, SPACEL, SPIRAL, and DeepST showed 
significantly slower performance, typically being 100x to 1000x slower than the afore-
mentioned methods when integrating more than two slices. PASTE and SPACEL took 
32 mins and 5 h, respectively, to complete 3D alignment and reconstruction for the MB 
dataset.

Discussion
In this study, we conducted comprehensive benchmark analyses covering different clus-
tering, alignment, and integration tasks. We assessed 16 clustering methods, five align-
ment methods, and five integration methods across 68 slices of 10 publicly available ST 
datasets. We provide a user recommendation table (Table 2) for users to choose an opti-
mal tool to conduct the corresponding analysis. For the majority of our recommenda-
tions, we based our conclusions on overall rankings derived from multiple metrics and 

Fig. 13  Reconstruction of 3D architecture of three different datasets. a 3D architecture reconstructed from 
33 slices of MB data using SPACEL (with and without manual annotation labels) and PASTE. b 3D architecture 
reconstructed from four slices (DLPFC 151673-151676) of DLPFC Sample 3 using SPACEL, PASTE, SPIRAL, and 
STAligner. c 3D architecture reconstructed from five slices of MHypo data using SPACEL, PASTE, SPIRAL, and 
STAligner
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various datasets. Our study revealed that BASS, GraphST, BANKSY, ADEPT, Spatial-
PCA, STAGATE, and CCST outperformed the other ten clustering methods in terms 
of overall clustering accuracy, robustness, and continuity, as evaluated by seven metrics: 
ARI, NMI, AMI, HOM, ASW, CHAOS, and PAS. Despite these findings, identifying a 
definitive best-performing tool was challenging. For example, while BASS achieved the 
best overall accuracy, it did not excel in clustering continuity. Additionally, certain other 
tools exhibited their peak performance within specific ST protocols or tissue types. 
Notably, the overall performance trend for all methods decreased as the data complex-
ity increased. All methods potentially suffer from algorithm overfitting, as indicated by 
their performance exceeding expectations on well-studied datasets but underperforming 
on less-studied ones. In terms of runtime and scalability, STAGATE, BANKSY, DR.SC, 
SpatialPCA, SpaceFlow, and PRECAST demonstrated the best scalability across datasets 
of varying sizes.

Alignment vs. integration methods

While alignment and integration methods are capable of conducting multi-slice analysis, 
alignment methods such as PASTE, PASTE2, SPACEL, STalign, and GPSA typically pro-
duce spot-to-spot alignment matrices or transformed spot coordinates based on align-
ment. In contrast, integration methods using deep learning backbones often generate 
joint spot embeddings for subsequent integration analyses. Therefore, it was not surpris-
ing to see that SPACEL and PASTE exhibited higher accuracy in layer-wise alignment 
compared to all integration tools as the primary objective of alignment methods was the 
direct alignment of spots across slices, rather than relying on joint spot embeddings for 
integration analysis. Relying on the joint spot embeddings to align spots across slices, 
STAligner achieved the highest layer-wise alignment accuracy among all integration 
methods, followed by DeepST, while PRECAST performed the least accurately. These 
results highlighted, to some extent, the inherent qualities of their learned joint spot 

Fig. 14  Comparison of runtime bar plots for different integration methods across five datasets. a Runtime 
for aligning or integrating two slices across four datasets. b Runtime for aligning or integrating multiple (> 
2) slices across three datasets. Empty columns for specific tools indicate scenarios where either the tool is 
not optimized for such cases, or where the memory consumption is excessively high, resulting in the tool’s 
inability to complete execution
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embeddings. Our additional visualization plots for alignment-misalignment-unalign-
ment analysis and spot-to-spot mapping ratios revealed that integration tools such as 
STAligner, SPIRAL, DeepST, and PRECAST produced joint spot embeddings capable 
of capturing global features for coarse layer-wise alignment and integration. Neverthe-
less, they might not suffice for capturing the local geometry necessary for spot-to-spot 
alignment. Our simulation experiments provided further validation for this observation. 
Notably, among all tools, PASTE2 and SPACEL achieved better spot-to-spot alignment 
accuracy when slices partially overlapped. The performance of all integration methods 
was highly sensitive to perturbation on the expression profiles. Notably, PASTE2 exhib-
ited the greatest robustness to these perturbations, followed by PASTE, SPACEL, and 
GPSA.

Most integration methods were initially designed to learn joint spot embeddings 
across multiple slices. UMAP plots, projecting embeddings into two components, can 
to some extent reflect integration performance. Among these methods, STAligner stood 
out with better UMAP visualization, demonstrating integration with batch correction. 
However, its performance degraded for the MHypo dataset compared to the DLPFC 
dataset. SPIRAL, on the other hand, suffered from a significant batch effect due to une-
ven mixing of joint embeddings across slices, leading to notable separation issues across 
slices for the MHypo dataset, consistent with its least favorable and super high spot-to-
spot mapping ratio. PRECAST tended to lose substantial geometry information, result-
ing in a more noticeable segregation of spatial domains in the latent space compared to 
the other tools. Although joint spot embeddings learned by multi-slice analysis have the 
potential to provide us a way to better detect spatial domains or cell types compared to 
single-slice analysis, and certain tools demonstrated this potential improvement, it was 
difficult to conclude which tool had the overall best clustering performance in all pairs 
after integration. In summary, there is still a need for more robust integration tools. 
Integration methods could also align samples across different anatomic regions or devel-
opment stages. We found STAligner outperformed other tools and had the scalability to 
process big datasets (over 50k spots).

As for the reconstruction of 3D architecture from multiple adjacent consecutive 2D 
slices, alignment tools such as PASTE and SPACEL outperformed integration tools like 
STAligner, SPIRAL, and GPSA. Specifically, when aligning a significant number of adja-
cent consecutive slices, SPACEL with manual annotation labels outperformed SPACEL 
without manual annotation labels and PASTE. This is because an erroneous alignment 
can trigger a cascade of errors in subsequent slices in SPACEL and PASTE. It is also 
worth noting that the 3D reconstruction by SPACEL is not deterministic and exhibits 
variance. Finally, in terms of runtime for alignment and integration, STAligner, PRE-
CAST, and PASTE demonstrated good scalability for large datasets.

Comparison with existing benchmarks

To date, two other benchmarking studies [57, 58] have been conducted for ST cluster-
ing methods. However, unlike the methods in these studies, which focused primarily 
on identifying spatial domains within a single slice, there is a growing recognition of 
the importance of integrative and comparative analyses across multiple ST slices. Inte-
gration analysis with adjacent slices also has the potential to enhance the detection of 
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Table 2  User recommendation table

This table ranks the top 5 most recommended tools for each analysis conducted. Clustering accuracy is evaluated using 
four metrics: Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI), and 
Homogeneity (HOM). Clustering continuity is assessed with three metrics: Average Silhouette Width (ASW), CHAOS, and 
Percentage of Abnormal Spots (PAS)

Analysis Top 1 Top 2 Top 3 Top 4 Top 5

Clustering accuracy 
(Generic)

BASS GraphST BANKSY/ADEPT SpatialPCA STAGATE/CCST

Clustering accuracy 
(Tumor tissue)

ConGI DeepST SpatialPCA BASS SpaceFlow

Clustering accuracy 
(Brain tissue)

BASS BANKSY STAGATE ADEPT/
GraphST/Spa-
tialPCA

-

Clustering accuracy 
(10x Visium)

GraphST ADEPT STAGATE BASS -

Clustering accuracy 
(Spatial Transcrip-
tomics)

ConGI DeepST/SpatialPCA BASS SpaceFlow -

Clustering accuracy 
(Stereo-seq)

STAGATE SpatialPCA BANKSY SpaceFLow PRECAST

Clustering accuracy 
(STARmap)

BASS ADEPT BANKSY SpaceFlow GraphST

Clustering accuracy 
(MERFISH)

BASS BANKSY SpaceFlow STAGATE GraphST

Clustering accuracy 
(Slide-seq v2)

ADEPT/
STAGATE/
BANKSY

SpaceFlow/
GraphST

- - -

Clustering robust-
ness (across various 
data)

BASS BANKSY GraphST/ADEPT SpatialPCA -

Clustering continu-
ity

SpaceFlow CCST BANKSY BASS GraphST

Clustering runtime 
and scalability

STAGATE BANKSY DR.SC SpatialPCA SpaceFlow/PRECAST

Integration (layer-
wise alignment 
accuracy)

SPACEL PASTE STAligner DeepST SPIRAL

Integration (spot-
to-spot mapping 
ratio)

PASTE STalign SPACEL PRECAST -

Integration on 
simulated data 
(spot-to-spot align-
ment accuracy)

PASTE2 PASTE SPACEL - -

Integration with 
batch correction 
(by joint embed-
dings)

STAligner DeepST PRECAST - -

Clustering accuracy 
(by joint embed-
dings)

BASS STAligner - - -

Integration (across 
conditions)

STAligner BASS - - -

3D reconstruction SPACEL PASTE - - -

Integration runtime 
and scalability

STAligner PRECAST PASTE - -
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spatial domains compared to single-slice analysis. Therefore, in terms of the evaluation 
scope, our work provides a more comprehensive benchmarking study encompassing 
various types of methods, including clustering, alignment, and integration algorithms, 
evaluated on both real and simulated datasets. Our study includes the most extensive 
collection of clustering tools to date and also offers a pair-wise evaluation of clustering 
performance both before and after integration, with a focus on tools such as BASS, PRE-
CAST, and DeepST. For alignment and integration analyses, we have designed several 
specific qualitative and quantitative metrics, including layer-wise and spot-to-spot align-
ment accuracy, visualization for alignment-misalignment-unalignment, and spot-to-spot 
mapping ratio. These metrics are designed to enhance our understanding of the joint 
embeddings generated by integration methods and to highlight the significant perfor-
mance differences between alignment and integration methods.

While it is challenging to identify a single best tool, we have summarized results and 
offered a comprehensive recommendation based on a broad range of metrics and sce-
narios, enabling users to select the most suitable tools for their needs. Notably, there 
are common and important recommendations for clustering tools benchmarked in our 
work and others. For instance, BASS demonstrated the best clustering accuracy and 
generalizability across different datasets. While SpaceFlow and CCST did not achieve 
the highest overall clustering accuracy, they excelled in contiguity. Certain tools, like 
GraphST, exhibited technology-biased performance. While it performed well in 10x 
Visium datasets, its performance declined with STARmap and MERFISH datasets, 
which were not specialized data types for GraphST. STATAGE had the best runtime 
and scalability for big datasets. However, there are also some important recommenda-
tions for tools like ConGI, BANKSY, SpatialPCA, and ADEPT, which were never bench-
marked in other work. ConGI is the most effective tool for tumor datasets, although its 
performance declines with non-tumor datasets. BANKSY, ADEPT, and SpatialPCA are 
top tools across most recommendation scenarios.

Conclusions
As spatial transcriptomic data become more widely used in studying complex tissues, 
numerous methods for clustering, alignment, and integration are developed each year. 
In this benchmark study, we highlight several essential aspects to guide further method 
development. (1) Robust clustering methods: it is crucial to build robust clustering 
methods that excel in terms of both clustering accuracy and continuity and are capable 
of handling large-scale spatial omics datasets efficiently, thereby reducing analysis time 
and resources. (2) Avoid overfitting: minimize excessive parameter tuning on well-stud-
ied datasets to ensure that models generalize effectively across diverse datasets. (3) Joint 
embedding learning: developing methods to learn and utilize joint embedding for inte-
gration and spatial domain identification while capturing the data geometry for better 
alignment. (4) 3D visualization: creating tools for the 3D visualization of spatial omics 
data is necessary to better represent complex tissue architectures. (5) Incorporation of 
advanced spatial data types: many current methods primarily focus on transcriptom-
ics data, often overlooking other advanced spatial data types like spatial proteomics and 
metabolomics, which could offer complementary insights. To address these limitations, 
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future research should aim to incorporate spatial multi-omics data and design sophis-
ticated computational methods, such as multi-model deep learning networks or multi-
model statistical approaches for heterogeneous data integration and joint learning.

Methods
Clustering methods overview

BANKSY

BANKSY [21] utilizes a spatial feature augmentation strategy to cluster spatial 
omics data. It enhances each cell’s features with the average features of its neighbor-
ing cells and gradients of features across neighborhoods. By integrating neighbor-
hood details into clustering, BANKSY can detect spatial domains that share similar 
microenvironments.

ADEPT

ADEPT [28] relies on a graph autoencoder backbone and performs an iterative cluster-
ing on imputed, differentially expressed genes-based matrices to minimize the variance 
of clustering results. The learned representations are suitable for subsequent clustering 
analyses.

GraphST

GraphST [4] enhances ST analysis in terms of spatial clustering, multisample integra-
tion, and cell-type deconvolution by combining graph neural networks with self-super-
vised contrastive learning. The learned spot representations are suitable for clustering 
analyses.

SpaceFlow

SpaceFlow [27] employs spatially regularized deep graph networks to combine gene 
expression similarities with spatial information. This process generates spatially-consist-
ent low-dimensional embeddings that are suitable for subsequent clustering analyses.

conST

conST [25] is a versatile SRT data analysis framework employing contrastive learning 
techniques. conST integrates multi-modal ST data-gene expression, spatial information, 
and morphology (if applicable)-to learn low-dimensional embeddings. These embed-
dings are suitable for various downstream analyses.

ConGI

ConGI [26] detects spatial domains by integrating gene expression and histopathologi-
cal images, adapting gene expression to image information via contrastive learning. The 
learned representations are valuable for various downstream analyses.
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SpatialPCA

SpatialPCA [19], a spatially aware dimension reduction method for ST data, extracts a 
low-dimensional representation of gene expression. It enhances the probabilistic version 
of PCA with localization information, employing a kernel matrix to model spatial cor-
relation across tissue locations. The resulting components are termed spatial principal 
components (PCs).

DR.SC

DR.SC [20] employs a two-layer hierarchical model that simultaneously performs 
dimension reduction via a probabilistic PCA model and enhances spatial clustering 
using an HMRF based on empirical Bayes. DR.SC is characterized by automatical deter-
mination of the optimal number of clusters.

STAGATE

STAGATE [3] leverages a graph attention auto-encoder architecture for spatial cluster-
ing by integrating spatial information and gene expression profiles to derive low-dimen-
sional embeddings. The learned embeddings are suitable for subsequent clustering 
analyses.

CCST

CCST [24] utilizes an extended Deep Graph Informax (DGI) framework by incorporat-
ing a hybrid adjacent matrix for gene expression and spatial data. It encodes cell embed-
dings and then employs PCA for dimension reduction. k-means++ was applied for 
clustering to identify novel cell groups or subpopulations.

SEDR

SEDR [23] learns low-dimensional representations of gene expression data with spatial 
information. It uses deep autoencoder networks and variational graph encoders for spa-
tial embeddings. SEDR is proficient in handling high-resolution ST data.

SpaGCN

SpaGCN [22] utilizes a graph convolutional network to unify gene expression, spatial 
location, and histology data to identify spatial domains with coherent expression and 
histology. Subsequently, SpaGCN conducts domain-guided differential expression anal-
ysis to detect genes exhibiting enriched expression within identified domains across var-
ious ST studies.

BayesSpace

BayesSpace [17], a fully Bayesian method, enhances resolution in ST data by integrat-
ing spatial neighborhood information for clustering analysis. It employs a t-distributed 
error model and Markov chain Monte Carlo (MCMC) for spot-level clustering, promot-
ing neighboring cells to share clusters. It refines cell clustering by dividing spots into 
subspots with their neighbors.
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Alignment and integration methods overview

STalign

STalign [36] utilizes diffeomorphic metric mapping to align ST datasets, accommo-
dating partially matched tissue sections and local non-linear distortions. It effectively 
aligns ST datasets within and across technologies, as well as to a 3D common coordinate 
framework.

GPSA

GPSA [37] employs a Bayesian model to align spatially-resolved samples to a common 
coordinate system (CCS) based on phenotypic readouts like gene expression. It involves 
a two-layer Gaussian process. The first layer maps the spatial locations of observed sam-
ples to the CCS, while the second layer maps from the CCS to the observed readouts.

SPIRAL

SPIRAL [42] performs the integration task and the alignment task through two consecu-
tive modules: SPIRAL-integration, focusing on data integration using graph domain 
adaptation, and SPIRAL-alignment, centered around alignment using cluster-aware 
optimal transport coordination.

STAligner

STAligner [39] employs a graph attention auto-encoder neural network to extract spa-
tially aware embeddings and constructs the spot triplets based on embeddings to guide 
different slices’ integration and alignment process.

PRECAST

PRECAST [41], an integration method, takes normalized gene expression matrices from 
multiple tissue slides as input. It factorizes each matrix into latent factors shared within 
cell/domain clusters, while performing spatial dimension reduction and clustering. It 
also aligns and estimates joint embeddings for biological effects between cell/domain 
types across the slides.

SPACEL

SPACEL [35] includes three modules: Spoint deconvolutes cell type composition per 
spot using a probabilistic multiple-layer perceptron in a single ST slice; Splane identi-
fies coherent spatial domains across multiple slices via a graph convolutional network 
and adversarial learning; Scube constructs a 3D tissue architecture by transforming and 
stacking consecutive slices.

One important note for SPACEL in this benchmark work is that only the Scube mod-
ule is utilized for alignment and 3D reconstruction for the MHypo and simulated data-
sets. This is achieved by incorporating manual annotation labels, as single-cell reference 
is not available for the initial Spoint module to perform deconvolution.
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PASTE

PASTE [33] employs an fused Gromov-Wasserstein optimal transport formulation to 
compute pairwise alignments of slices, integrating both transcriptional similarity and 
physical distances between spots. Moreover, PASTE aggregates these pairwise align-
ments to create a stacked 3D alignment of a tissue.

PASTE2

PASTE2 [34] introduces a novel formulation of the partial fused Gromov-Wasserstein 
optimal transport problem to addresses partial alignment and 3D reconstruction 
of multi-slice ST datasets. It accommodates scenarios wit partial overlap between 
aligned slices and/or slice-specific cell types.

BASS

BASS [18] detects spatial domains and clusters cell types simultaneously using a hier-
archical Bayesian model. BASS performs well in identifying rare cell types and spatial 
patterns, showing robustness in handling multiple dominant cell types within spatial 
domains.

DeepST

DeepST [40] uses neural networks, including a graph autoencoder and a denoising 
autoencoder, to jointly process the data and generate latent representations. Addi-
tionally, DeepST incorporates domain adversarial neural networks to integrate the ST 
data effectively.

Quantitative analysis for clustering

Benchmark metrics

 

•	 Adjusted Rand Index (ARI) [59]: ARI is a measure of the similarity between two 
data clusterings. It is a correction of the Rand Index, which evaluates the concord-
ance between pairs of data points, determining whether they are grouped together 
or separated in two different clusterings. The ARI value is calculated using Eqs. 1 
and 2. a is the number of pairs of elements that are in the same cluster in both the 
ground true and predicted clusterings, b is the number of pairs of elements that 
are in different clusters in both the ground true and predicted clusterings, c is the 
number of pairs of elements that are in the same cluster in the true clustering but 
in different clusters in the predicted clustering, and d is the number of pairs of ele-
ments that are in different clusters in the true clustering but in the same cluster in 
the predicted clustering. E(RI) is the expected value of the Rand Index under the 
assumption of independence between the true and predicted clusterings. max(RI) 
is the maximum possible Rand Index. The ARI value ranges from − 1 to 1, where 
1 indicates perfect agreement between the clusterings, 0 indicates random cluster-
ing and negative values indicate clustering that is worse than random.
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•	 Normalized Mutual Information (NMI) [59]: NMI is another measure commonly 
used to evaluate the similarity between two clusterings. It normalizes the Mutual 
Information (MI) score, evaluating the agreement between ground truth and pre-
dicted clusterings while considering both intra-cluster homogeneity and inter-
cluster completeness. It ranges from 0 to 1: 0 signifies no mutual information (ran-
dom clustering), while 1 indicates perfect agreement. The NMI value is calculated 
using Eqs. 3 and 4. H(U) and H(V) represent the entropy of the clustering U and V, 
respectively, while MI(U, V) denotes the MI between U and V.

•	 Adjusted Mutual Information (AMI) [59]: AMI is a measure commonly used 
to evaluate the similarity between two clusterings as NMI. It adjusts for chance 
agreement by considering the expected mutual information under random clus-
tering. The AMI value ranges from − 1 to 1, where 1 signifies a perfect agreement 
between the clusterings, 0 indicates agreement expected purely by chance, and 
negative values indicate worse than chance agreement. To calculate AMI, Eqs. 5 
and 4 are used.

•	 Homogeneity (HOM) [59]: HOM is a metric commonly used in clustering analysis 
to evaluate the quality of clusters produced by a clustering algorithm. Homogene-
ity score measures the purity of clusters (Eq. 6), indicating whether each cluster 
contains predominantly data points from a single group or if it contains a mixture 
of different groups. A high homogeneity score suggests that the clustering algo-
rithm has successfully identified distinct and homogeneous clusters, while a low 
score indicates that the clusters are more heterogeneous and less well-defined.

•	 Average Silhouette Width (ASW) [55]: The ASW score is utilized to evaluate the 
spatial coherence of predicted domains concerning physical space in the ST field. 
ASW values range from − 1 to 1 (rescaled from 0 to 1), with higher values indicat-
ing better performance. To compute ASW, the silhouette width (SW) must first 
be defined, followed by averaging SWs across all cells. SW for a cell, described in 
Eq. 7, is calculated based on the mean distance to all other cells in the same spatial 
domain a and the mean distance to all other cells in the next nearest cluster b.

•	 CHAOS [19]: The CHAOS score is used to measure the spatial continuity of the 
detected spatial domains in the ST field, as described in Eqs. 8 and 9. CHAO val-
ues range from 0 to N/A. Lower CHAOS value indicates higher spatial continuity 
and better performance.

•	 Percentage of Abnormal Spots (PAS) [19]: The PAS score assesses the spatial 
homogeneity of spatial domain identification algorithms in the ST field. It is com-
puted by determining the proportion of spots with a cluster label different from at 
least six out of their neighboring ten spots. A low PAS score suggests homogeneity 
of spots within spatial clusters. PAS values range from 0 to 1.

•	 Spatial Coherence Score (SCS): A spatial coherence score of the cluster labels is 
computed based on O’Neill’s spatial entropy. A high spatial (more negative from the 
entropy) coherence score indicates that the cluster labels of adjacent spots are fre-
quently identical, while a low spatial coherence score (less negative for the entropy) 
suggests that cluster labels of adjacent spots are more chaotic and less coherent. This 
score serves as an indicator of data quality. Specifically, let G = (V ,E) be a graph 
where V  is the set of spots, and edges (i, j) ∈ E connect every pair (i, j) of adjacent 
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spots. Let K = {1, 2, . . . , k} be a set of k cluster labels, and let L = [l(i)] be a set of 
labelings of spots, where l(i) ∈ K  is the cluster label of spot i . The spatial entropy 
H(G, L) is defined in Eq. 10, where P({a, b}|E) = na,b

|E|  , and na,b is the number of edges 
(i, j) ∈ E such that l(i) = a and l(j) = b . The spatial coherence score is defined as a 
normalized form of spatial entropy, using the value of the Z score of spatial entropy 
over random permutations of the labels of spots in a slice [33].

•	 Runtime: We collected the average runtimes from 20 iterations for each clustering 
method across all benchmarking datasets to assess their scalability. 

Domain identification performance across 33 ST slices

Given that spatial domain or cell type identification is the primary objective of cluster-
ing methods, we aim to conduct a thorough performance comparison using ARI when 
manual annotation serving as ground truth is available. Some deep learning-based 

(1)ARI =
RI− E(RI)

max(RI)− E(RI)

(2)RI =
a+ b

a+ b+ c + d

(3)NMI(U ,V ) =
MI(U ,V )

√
H(U)×H(V )

(4)MI(U ,V ) =

|U |

i=1

|V |

j=1

|Ui ∩ Vj|

N
log

N |Ui ∩ Vj|

|Ui||Vj|

(5)AMI(U ,V ) =
MI(U ,V )− E(MI(U ,V ))

avg(H(U),H(V ))− E(MI(U ,V ))

(6)HOM(U ,V ) =
MI(U ,V )

H(U)

(7)SW =
b− a

max(a, b)

(8)CHAOS =

∑K
k=1

∑nk
i,j wkij

N

(9)wkij =

{

dij if connected in the kth 1NN graph
0 otherwise

(10)H(G, L) = −

∑

a,b∈K
P({a, b}|E) log(P({a, b}|E))



Page 40 of 46Hu et al. Genome Biology          (2024) 25:212 

methods and all statistical methods fix the seed to produce deterministic output, some 
deep learning-based methods do not fix the seed in the practice. To address the vari-
ances in performance, we computed the average ARI from 20 runs on each dataset and 
displayed these results using box plots and a heatmap plot to enhance comparison and 
visualization. Additionally, since there are 33 ST slices across eight different datasets, it 
is challenging to rank the overall performance solely based on the average ARI heatmap 
plot. Therefore, we also provided another heatmap for the overall ranking. This ranking 
heatmap was generated by normalizing all results within the same slice by dividing them 
by the maximum ARI value (representing the best performance) among all methods, 
thereby standardizing all ARI values to 1. With 33 data slices in total, for each method, 
the best ranking for the sum result is 33, while the best ranking for the average result is 
1. To ensure fairness, the rank scores were averaged exclusively over feasible ST data, 
excluding instances with NaN values. We performed the same analysis based on the 
NMI, AMI, and HOM metrics.

Overall robustness across seven ST datasets

To assess the robustness of methods on each dataset, the clustering results across dif-
ferent ST slices within the same dataset were averaged. A robust method is expected to 
demonstrate the highest overall ARI, NMI, AMI, or HOM value across all datasets, even 
if it may encounter challenges in predicting a few individual slices.

Data complexity effect on method performance

Data complexity is recognized to have an impact on method performance. Although 
different methods are often fine-tuned on different datasets to demonstrate superior-
ity in specific contexts, our objective is to identify a general trend wherein methods 
exhibit diminished performance as data complexity increases. In this context, the Aver-
age Silhouette Width (ASW), CHAOS, Percentage of Abnormal Spots (PAS), and Spatial 
Coherence Score (SCS) are introduced as metrics for quantifying data complexity. The 
underlying assumption is that data with more coherent regions, indicated by a higher 
ASW/SCS (or lower CHAOS/PAS), are easier for domain identification.

Qualitative analysis for clustering

Clustering evaluation by visualization

For MHPC data without region-based annotation, the evaluation is constrained to com-
paring the clustering results with the cell type annotation through visualization, supple-
mented by reference to the Mouse Allen Brain atlas.

Quantitative analysis for alignment and integration

Benchmark metrics

 

•	 Adjusted Rand Index: As illustrated in the clustering metrics section.
•	 Layer-wise alignment accuracy: This metric relies on an important hypothesis that 

aligned spots from adjacent consecutive slices within a dataset are more likely to per-
tain to the same spatial domain or cell type. Joint spot embeddings learned from each 
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method are utilized to align (anchor) spots from the first slice to (aligned) spots on 
the second slice for each slice pair. This alignment accuracy is defined as the ratio 
of the number of anchor spots to the total number of spots within the first slice 
when anchor spots and aligned spots belong to the same spatial domain or cell type. 
Euclidean distance is employed to define the closeness of spots to be aligned. A good 
integration tool is expected to demonstrate high accuracy for anchor and aligned 
spots belonging to the same spatial domain or cell type. For DLPFC data which has 
a unique layered structure, this metric is also meticulously designed to demonstrate 
whether anchor and aligned spots belong to the same layer (layer shift = 0) or they 
belong to different layers (layer shift = 1 to 6).

•	 Spot-to-spot matching ratio: This metric further evaluates whether joint embed-
dings’ quality captures the data geometry. The ratio is defined as the ratio of the total 
number of anchor spots from the first slice to the number of aligned spots from the 
second slice. For two adjacent consecutive slices, a nearly 1:1 ratio is expected for an 
optimal tool.

•	 Spot-to-spot alignment accuracy: This metric is used to evaluate joint embeddings 
for simulated datasets since the ground truth for spot-to-spot alignment relationship 
is available. This spot-wise alignment accuracy is defined as the percentage of anchor 
spots from the first slice that match correctly to aligned spots on the second slice.

Comparison of clustering performance before and after integration

A good practice that connects integration and clustering tasks is multi-slice joint clus-
tering. To determine if incorporating information from adjacent consecutive slices 
enhances domain or cell type identification, we used batch-corrected joint embeddings 
to evaluate clustering results on each single slice based on ARI values. We plotted ARI 
for clustering results before and after the integration. However, some integration meth-
ods do not support single-slice clustering. We thus only plotted ARI after the integration 
of these methods.

Simulated data for alignment and integration

Given the scarcity of benchmark datasets available for integration tasks to evaluate spot-
to-spot alignment accuracy, we modified the simulation method proposed in PASTE 
[33] and generated 11 simulated 10x Visium datasets for this evaluation. We first used 
one DLPFC slice (151673) as the reference and simulated additional slices with differ-
ent overlapping ratios (20%, 40%, 60%, 80%, and 100%) in comparison to the reference 
slice. In this simulation scenario, the pseudocount perturbation was fixed at 1.0 for all 
simulated slices. Next, we simulated additional slices with different pseudocounts (0–3.0 
with a step size of 0.5) to represent perturbation on gene expression while keeping the 
overlapping ratio fixed at 100%. Specifically, by taking the DLPFC 151673 slice as the 
reference, we altered the spatial coordinates in the new slice by rotating this reference 
slice, perturbed the gene expression by adding pseudocounts, and adjusted the number 
of spots by removing some spots that did not align with the grid coordinates following 
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the rotation. To keep fidelity with the real 10x Visium data, the spots within the tissue in 
our simulation are arranged in a hexagonal grid rather than in a rectangular grid pattern. 
Additionally, we utilized the minimal distance between adjacent spots on the DLPFC 
151673 slice as the distance between any two adjacent simulated spots on the grid, rather 
than arbitrarily setting it to 1.

More detailed procedures to generate simulated datasets are described as follows.

•	 Create a hexagonal grid G. Let g.i and z.k denote the 2D coordinates of spot 
i on grid G and spot k on the reference slice DLPFC 151673, respectively. 
dij = ||g.i − g.j|| = minkl ||z.k − z.l || for any two adjacent simulated spots i and j on 
grid that i, j ∈ G.

•	 Let R be a rotation matrix with an angle θ . After spot k is rotated with an angle θ , the 
rotated coordinates of spot k, r.k = Rz.k , is used to mapped the spot k to the closest 
grid spot î by î = arg mini ||g.i − r.k || . Then, the simulated coordinates of tissue spot 
k, z′k is given by z′k = g.î . Spot k is dropped if the grid spot g.î was already used by a 
previous tissue spot.

•	 Let X = [xij] ∈ N
m×n represent the m genes by n spots expression profile matrix of 

DLPFC slice 151673, where xij is the read count of gene i in tissue spot j. We can cal-
culate the mean of the total transcript count of the tissue spots, µ =

1
n

∑

ij xij , and 
the variance of the total read count, σ 2

=
1
n

∑

j(µ−
∑

i xij)
2 . Total read counts of 

spot j, kj , are generated according to kj ∼NegativeBinomial(r, p). Here, r = µ2

σ 2−µ
 and 

p =
µ

σ 2 such that E(kj) = µ and var(kj) = σ 2.
•	 Generate simulated gene i read count for spot j according to x′ij ∼Multino-

mial(kj ,
xij+δ

∑

i xij+δm
) , where δ ∈ {0, 0.5, . . . , 3} is a pseudocount.

Qualitative analysis for alignment and integration

Visualization of aligned, misaligned and unaligned spots from pairwise alignment

To assess the joint spot embeddings by integration tools and the alignment matrices by 
alignment tools, we quantified the alignment accuracy based on aligned, misaligned, and 
unaligned spots across two consecutive slices. For integration tools such as STAligner, 
PRECAST, DeepST, and SPIRAL, we aligned the spot (referred to as the “anchor” spot) 
on the first slice with the spot (referred to as the “aligned” spot) on the second slice based 
on their joint latent embeddings using Euclidean distance. If the aligned spot belonged 
to the same spatial domain or cell type as the anchor spot according to ground truth 
labels, we classified both spots as “aligned” spots (denoted as “orange” color in Fig. 8a, b). 
If the aligned spot did not belong to the same spatial domain or cell type as the anchor 
spot, we classified both spots as “misaligned” spots (denoted as “blue” color in Fig. 8a, b). 
In the last scenario, if spots on the second slice were not used to match any spot on the 
first slice, these spots on the second slice were classified as “unaligned” spots (denoted as 
“green” color in Fig. 8a, b). For alignment tools like PASTE, PASTE2, SPACEL, STalign, 
and GPSA, we directly used their alignment matrices or refined coordinates to perform 
this analysis.
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Reconstruction of three‑dimensional (3D) architecture of the tissue

Among all alignment and integration methods, Tools such as PASTE, PASTE2, SPACEL, 
SPIRAL, STalign, and GPSA have an output for a transformed coordinate system for all 
slices. Tools like STAligner use an embedded algorithm like ICP to align different slices 
based on an anchor cluster. Consequently, they can combine pairwise alignments from 
multiple adjacent consecutive slices into a stacked 3D alignment of a tissue. These three 
tools were benchmarked in three datasets by comparing their 3D architecture of the tissue.

One important note for SPACEL is that the 3D architecture for the MB dataset was 
reconstructed in two scenarios: (1) using the Scube module with manual annotation 
labels and (2) using both the Splane and Scube modules, incorporating the cell-type 
decomposition results provided by the authors.

Visualization of UMAP plot for joint embeddings

Most integration methods primarily concentrate on embedding the spots within a high-
dimensional latent space, which often proves challenging to interpret intuitively. To 
enhance comprehension of the distribution in the latent space, we performed dimension 
reduction for spot embeddings to two dimensions using UMAP. A quality UMAP plot of 
latent embeddings should exhibit structures resembling those of the real data while also 
demonstrating spatial domain or cell types in a separable manner.

Visualization of clustering results after integration

For the MB2SA&P dataset, we compared the identified domains after integration with the 
Allen Brain atlas through visualization. Furthermore, we examined the consistency of regions 
across the fissure between the anterior and posterior sections. Higher similarity to the atlas, 
along with the region coherence, serve as indicators of superior integration performance.

For the mouse Embryo data, we compared the clustering result after integrating two 
slices for developmental stages E11.5 and E12.5 with the manual annotation defined by 
different organs and tissues.

Computation platform

We conducted all benchmarking experiments on our computer server equipped with 
one Intel Xeon W-2195 CPUs, running at 2.3 GHz, featuring a total of 25 MB L3 cache, 
and comprising 36 CPU cores. The cluster also boasted 256 GB of DDR4 memory oper-
ating at 2666 MHz.

For the GPU configurations, we utilized the same computer with four Quadro RTX 
A6000 cards, each having 48 GB of memory and a total of 4608 CUDA cores.
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