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Abstract 

Background: Single‑cell chromatin accessibility assays, such as scATAC‑seq, are 
increasingly employed in individual and joint multi‑omic profiling of single cells. As 
the accumulation of scATAC‑seq and multi‑omics datasets continue, challenges in ana‑
lyzing such sparse, noisy, and high‑dimensional data become pressing. Specifically, 
one challenge relates to optimizing the processing of chromatin‑level measurements 
and efficiently extracting information to discern cellular heterogeneity. This is of criti‑
cal importance, since the identification of cell types is a fundamental step in current 
single‑cell data analysis practices.

Results: We benchmark 8 feature engineering pipelines derived from 5 recent meth‑
ods to assess their ability to discover and discriminate cell types. By using 10 metrics 
calculated at the cell embedding, shared nearest neighbor graph, or partition levels, 
we evaluate the performance of each method at different data processing stages. This 
comprehensive approach allows us to thoroughly understand the strengths and weak‑
nesses of each method and the influence of parameter selection.

Conclusions: Our analysis provides guidelines for choosing analysis methods for dif‑
ferent datasets. Overall, feature aggregation, SnapATAC, and SnapATAC2 outper‑
form latent semantic indexing‑based methods. For datasets with complex cell‑type 
structures, SnapATAC and SnapATAC2 are preferred. With large datasets, SnapATAC2 
and ArchR are most scalable.

Keywords: Benchmark, ScATAC‑seq, Clustering, Feature engineering, Dimensional 
reduction

Background
Recent advances in single-cell sequencing technologies have enabled the profiling 
of genome-wide chromatin accessibility and histone modifications and allowed the 
exploration of epigenetic landscapes within complex tissues. However, the analysis 
of single-cell chromatin data is challenging due to two main reasons. Firstly, state-
of-the-art technologies such as single-cell ATAC-seq (scATAC-seq) [1, 2] and single-
cell CUT &Tag (scCUT &Tag) [3] are based on DNA tagmentation, which produces 
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sparse and noisy signals due to the low copy numbers and rare tagmentation events. 
It has been estimated that only 1–10% of accessible regions are detected per cell com-
pared to corresponding bulk experiments [4]. Secondly, unlike in single-cell RNA-
seq data, there are no fixed feature sets for chromatin data. Usually, a set of genomic 
regions (e.g., bins or peaks) is first determined, and then the tagmentation events are 
counted within each region. For large genomes such as human and mouse, this leads 
to very high-dimensional data that not only raises challenges on the time and mem-
ory efficiency of the processing pipelines but also hinders the statistical analysis. On 
the other hand, it is commonly assumed that single-cell data is sampled from a cel-
lular state space that is of much lower intrinsic dimensionality than the observed data 
[5–7]. Therefore, it is necessary and important to learn a low-dimensional representa-
tion of the data before further analysis.

In the past few years, there have been many efforts on improving feature engineering 
and dimensional reduction methods for scATAC-seq data. One idea is to use approaches 
that are originally designed for sparse and high-dimensional data (e.g., Latent Semantic 
Indexing and Latent Dirichlet Allocation from the natural language processing field) and 
directly apply them to the cell-by-region count matrix. Several popular methods fall into 
this broad category, although the underlying algorithms differ. For example, Signac [8] 
uses Latent Semantic Indexing (LSI), which is a linear dimensional reduction method 
consisting of a normalization step (e.g., Term Frequency-Inverse Document Frequency, 
TF-IDF) and Singular Value Decomposition (SVD); ArchR [9] employs an iterative pro-
cedure of LSI, in order to refine the feature selection during each iteration; cisTopic lev-
erages Latent Dirichlet Allocation (LDA), a topic modeling method, to discern thematic 
structures; SnapATAC [10] uses diffusion maps, and SnapATAC2 uses Laplacian eigen-
maps, both of which are non-linear dimensional reduction methods that work by con-
structing a graph representation of the data and then utilizing the eigendecomposition 
of some form of graph matrix. Another group of approaches first uses domain knowl-
edge to aggregate the genomic region set into a much smaller set of meta-features such 
as motif hits, k-mers, and genes and then applies dimensional reduction methods such 
as PCA on the cell-by-meta-feature matrix. For example, BROCKMAN [11] uses gapped 
k-mer frequency of the DNA sequence around insertion points, SCRAT [12] allows the 
usage of motifs, DNase I hypersensitive site clusters, genes, or gene sets as features, 
and Cicero [13] calculates gene activity scores. A third type of method uses neural net-
work models, such as PeakVI [14], which uses a variational autoencoder, and scBasset 
[15], which uses a convolutional neural network. Other ideas include integrating DNA 
sequence information, such as in scBasset and CellSpace [16].

Despite a large amount of available methods, there is currently no consensus on the 
best usage of these methods for scATAC-seq data. Chen et al. [4] did a benchmark on 10 
methods and showed that SnapATAC, cisTopic, and Cusanovich2018 [17] outperform 
other aggregation-based methods. Since then, many new methods have been proposed 
[8, 9, 14–16], and an updated benchmark is desirable. Although a subset of methods has 
been frequently benchmarked in papers of new methods using a few popular datasets, it 
is hard to find an agreement between these benchmarking efforts. Therefore, a compre-
hensive and neutral benchmark effort is desired [18] to give an unbiased perspective on 
how these methods perform on a large variety of datasets.
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One way to evaluate the feature engineering and dimensional reduction methods is 
to combine them with unsupervised clustering with the aim to identify cell types or cell 
states, which is a fundamental step for many downstream analysis [19]. Previous bench-
marking studies [4] for scATAC-seq data have focused on comparing the clustering out-
comes at a single predefined resolution [20]. However, determining the true number of 
clusters in advance is not always feasible, and as dataset complexity increases, the choice 
of clustering resolution becomes dependent on user-defined parameters and biological 
questions [21]. Given that alterations in the number of clusters can have a substantial 
influence on many evaluation metrics [22, 23], such evaluations may not fully capture 
the scenarios encountered by users during dataset processing and interpretation.

To provide a comprehensive assessment of the methods under investigation, we con-
ducted our evaluation across three distinct levels: cell embeddings, graph structure, 
and final partitions. We employed a set of ten metrics to evaluate performance at each 
of these levels. By considering multiple aspects of clustering quality, our evaluation 
approach aims to provide a more thorough understanding of the strengths and limita-
tions of each method. Based on our results, we provide guidelines for choosing analysis 
methods for different data types. Meanwhile, our data and analysis also provide a com-
prehensive framework for benchmarking common single-cell chromatin data analysis 
steps.

Results
Benchmark design

To get a comprehensive understanding of the method performance, we used 6 pub-
lished datasets of divergent sizes and sequencing protocols and from different tissues 
and species (Additional file  2: Table  S1). In the absence of perfect ground truth, we 
included datasets with annotations from different information sources, including RNA 
modalities, genotypes, FACS-sorting labels, or tissue of origins. This ensures that our 
evaluation is not biased by specific assumptions of the ground truth. The coverage and 
signal-to-noise ratio (measured by transcription start site enrichment score, TSSE) also 
vary a lot across datasets, suggesting that our data collection represents a wide range of 
realistic test cases from different experimental protocols.

The benchmarking pipeline (Fig. 1) starts from quality control (QC) and preprocessing 
to get the fragment files in BED format. These files serve as the input for each method. 
Then feature engineering and dimensional reduction are performed, and a cell embed-
ding matrix is generated. This particular stage is where the various methods are applied. 
Subsequently, each embedding matrix is loaded into a common clustering and evalua-
tion pipeline to get the clustering results.

At the feature engineering and dimensional reduction stage, we benchmarked 5 meth-
ods in 8 configurations (Fig.  1). Signac was included as a representative of LSI-based 
methods, and it uses a dataset-specific peak set as the genomic regions. Two differ-
ent ways of defining this peak set were tested: (1) aggregate all cells for peak calling, or 
(2) first do coarse cell clustering, then do peak calling per cluster and use the merged 
peak sets from all clusters. The iterative LSI in ArchR was also included and tested 
on either genomic bins or merged peaks. In addition, we assessed SnapATAC and its 
recently updated version, SnapATAC2. For SnapATAC2, when calculating the pairwise 
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cellular similarity matrix, it allows the usage of either Jaccard or Cosine distance. So, 
we tested both metrics to see how appropriate they are for the sparse and near-binary 
data. Besides, while aggregating regions based on biologically meaningful features such 
as motifs has tended to have poor performance [4], ad hoc feature clustering and sum-
ming into meta-features was shown to be a viable strategy for doublet detection [24]. 
We therefore chose to include this strategy as well in our evaluation (for a more detailed 
description of each strategy, see the “Methods” section).

In the clustering process, several parameters could affect the clustering performance. 
We explored various values of these parameters to study their effects (Fig.  1). These 
parameters include the number of features (peaks or bins) been selected, the number 
of latent dimensions, resolution, and random seed used in Leiden clustering (see the 
“Methods” section). Meanwhile, during the evaluation process, we assessed each method 
at different clustering steps including the cell embedding, the shared nearest neighbor 
(SNN) graph, and the partition level, to eliminate the effect of potentially suboptimal 
parameter choice.

Method performance is dependent on the intrinsic structure of datasets

Among our six datasets, Cell line [9], Atlas1 [25], and Atlas2 [25] consist of mixed 
cell lines or cell types from various tissues. These three datasets show a relatively sim-
ple structure, with distinct cell clusters and little hierarchy. Conversely, the remaining 

Fig. 1 Benchmark framework. Starting from the .bed format fragment files or the .bam format aligned reads 
files, barcode‑level QC is performed, and the filtered fragment files are input to the benchmark pipeline. The 
feature engineering step consists of two stages: (i) defining the genomic features and (ii) feature selection 
and/or transformation. Approaches for each stage are listed, and respective approaches of each method are 
indicated. Next, dimensional reduction is performed to generate the cell embedding matrix. A shared nearest 
neighbor (SNN) graph is constructed from the embedding matrix and then used for Leiden clustering. 
Evaluations are conducted on the embedding matrix, SNN graph, and final partitions, each using different 
metrics. During the evaluation, we explored multiple values for parameters such as the number of latent 
dimensions, resolution, and random seed―their positions within the workflow are denoted by blue boxes
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three datasets, derived from specific tissues, carry inherent complexity, including closely 
related subtypes and/or hierarchical structures. This division is reflected by the average 
levels of many evaluation metrics: the simpler datasets show a higher average Adjusted 
Rand Index (ARI) and lower cluster Local Inverse Simpson Index (cLISI) and Proportion 
of Weakly Connected (PWC) score and conversely (Figs. 2 and 3a). Through our analy-
sis, we noticed that some methods performed relatively better on the simpler or more 
complex tasks.

As mentioned above, we first evaluated the cell embedding and SNN graph-level out-
puts (Fig. 2). The cLISI, which measures the purity of neighborhood composition in the 
embedding space, was always close to 1 in easy tasks and showed little discrimination 
between methods. This indicates that most local neighborhoods ( k = 90 ) contain a sin-
gle cell type in the embedding space. On the contrary, the Silhouette width is calculated 
between a cell and a whole cluster ( k > 300 ). We observed that the average Silhouette 
width (ASW) sometimes showed inconsistent rankings compared to other metrics. 
While the Silhouette score has commonly been utilized for benchmarking clusterings 
in single-cell datasets, a potential issue is that Euclidean distance may not be suitable for 
accurate assessments in high-dimensional spaces over long-range distances [5]. There-
fore, we consider the Silhouette score calculated using Euclidean distance at the cluster 
level to be less appropriate for our analysis. Nevertheless, we considered the fraction of 

Fig. 2 Embedding‑ and graph‑level metrics averaged across all cells or all cell classes for each dataset; each 
subpanel represents an evaluation metric. Bars are sorted from the best to the worst performance
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negative Silhouette (FNS) to be relatively more robust to certain space transformations 
and thus more appropriate here. In two of the three relatively easy tasks, ArchR_peaks 
and ArchR_tiles exhibited the highest FNS, followed by Signac_all_cell_peaks and Sig-
nac_by_cluster_peaks, while SnapATAC, SnapATAC2_cosine, and aggregation always 
displayed close to 0 FNS. Consistently, ArchR showed the worst PWC score in two of the 
three easy tasks, followed by Signac.

At the clustering level, the 6 evaluation metrics measure multiple aspects of the clus-
tering performance (Fig.  1). ARI, Variation of Information (VI) measure the overall 
agreement between the clustering results and the ground-truth annotation. The variant 
of ARI (denoted by ARI2) adjusts for the class size bias and is more sensitive to errors 
in small classes. One of the two Adjusted Wallance Indices, AV, and Mutual Informa-
tion (MI) reflect mostly the homogeneity of clusters (i.e., the degree to which it includes 
only cells of one class), while the other Adjusted Wallance Indices, AW, represents the 
completeness of true classes in the clustering. Since the clustering solution varies by 

Fig. 3 Clustering results. a The adjusted Rand Index (ARI) plotted against various number of clusters; each 
subpanel represents a dataset. Each point represents a clustering solution obtained by varying the resolution 
parameter and the random seed in Leiden algorithm. The line plot is the average ARI at a given number of 
clusters. b Heatmaps displaying the normalized areas under the curve (AUC) from plots similar to a, but for 
various partition‑level metrics. The color scale indicates deviations from the column‑wise median scaled by 
the matrix‑wise median absolute deviation [23]. It provides a comparison of relative performance between 
methods, and is unified across datasets and robust to outliers
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using different resolutions and random seeds, these metrics would also vary across these 
parameters. As shown in Fig. 3a, ARI is strongly affected by the number of clusters. Usu-
ally, the best ARI is achieved at the cluster number that is equal or close to the ground-
truth number of classes, and then as the cluster number increase or decrease, ARI can 
deteriorate dramatically. We therefore inspected multiple combinations of resolutions 
and random seeds that give different numbers of clusters and summarized the results 
using normalized areas under the curve (AUC, see the “Methods” section), as shown in 
Fig. 3b. The AUC of ARI showed that ArchR related methods tend to have a lower rank 
than SnapATAC2 based methods and that datasets 10XPBMC showed less discrimina-
tion between methods than other datasets, which is consistent with Fig. 3a. These obser-
vations confirm the use of AUC as a good summary of results across parameters.

For clustering tasks that are relatively easy, the number of clusters that provides the 
highest ARI value is usually equal to the number of classes of the ground truth (Fig. 3a), 
with a few exceptions. ArchR_tiles and ArchR_peaks achieved the best ARI using fewer 
clusters than the true classes in datasets Atlas1 and Atlas2, and then their performance 
starts to deteriorate as the number of clusters increases. This is because ArchR failed in 
separating small similar classes from one another and instead segregated other classes 
(Fig. 4a,b, Additional file 1: Fig. S1a-c,e). Signac_all_cell_peaks and Signac_by_cluster_
peaks are among the best performing methods in the Atlas2 dataset (Fig. 3a, b) but also 
segregated classes in Atlas1 (Additional file 1: Fig. S1f,g). In contrast, SnapATAC, SnapA-
TAC2_cosine, SnapATAC2_jaccard, and the aggregation method performed consistently 
well for the easy tasks in the sense that the optimal ARI is always achieved at the correct 
number of clusters (Fig. 3a); in addition, the clustering is nearly perfect (Fig. 4c,d). As 
noted in the cell line task, SnapATAC seems to have the worst performance according to 
ARI when over-clustering (Fig. 3a), but this is because it segregated a large class (293T) 
compared to what SnapATAC2 segregated (GM12878) (Additional file  1: Fig. S2b,c); 
this is an example of the cluster size bias of ARI. The adjusted version, ARI2, does not 
show a preference for SnapATAC2 over SnapATAC (Additional file 1: Fig. S2a), further 
underscoring the importance of considering multiple evaluation metrics. Other parti-
tion-based metrics indicate that aggregation, SnapATAC, and SnapATAC2 are the best 
methods, followed by Signac; ArchR performed worst (Fig. 3b). Overall, for easy tasks, 
SnapATAC, SnapATAC2, and the aggregation method performed the best , followed by 
Signac, while ArchR had a difficult time correctly clustering rare cell types.

(See figure on next page.)
Fig. 4 a-f True classes and their fractions of agreement with the predicted clusters. a and b are ArchR_tiles 
on Atlas1, c and d are aggregation and SnapATAC2_cosine on Atlas1, and e and f are aggregation and 
SnapATAC2_cosine on 10XPBMC. The x‑axis is the predicted clusters, and the y‑axis is the ground truth 
classes. The colors of tiles indicate the proportion of cells from the corresponding true class (each row sums 
up to one). A clearer diagonal structure indicates better agreement. ARI and ARI2 are calculated and shown 
on the top right. The bar plot on top shows the value of AV (the “Methods” section) and can be interpreted 
as the homogeneity of the corresponding clusters. The bar plot on the right shows the value of AW and 
represents the completeness of each true class in the prediction. The color of the bars shows the proportion 
of cells in each cluster/ground truth class. In title, the corresponding datasets, methods, and number of 
clusters are indicated. g Corresponding UMAP given by aggregation and SnapATAC2_cosine on dataset 
10XPBMC. The aggregation method did not resolve correctly CD14 vs CD16 monocytes, as well as CD4 vs 
CD8 naive T cells
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For complex datasets, the overall cLISI, FNS, and PWC increased compared to sim-
ple datasets (Fig. 2). Specifically, on average more than 20% cells of each true class have 
a negative Silhouette score, and more than 8% cells of each true class are weakly con-
nected to the belonging communities in the SNN graph. In datasets Buenrostro2018 [26] 

Fig. 4 (See legend on previous page.)
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and 10XPBMC, cLISI and PWC did not show much discrimination between methods. 
FNS is also similar across methods in 10XPBMC, although slightly worse for Signac_all_
cell_peaks, Signac_by_cluster_peaks, and SnapATAC in Buenrostro2018. In Chen2019 
[27], the aggregation method exhibited the best local neighborhood purity reflected in 
the cLISI score, followed by SnapATAC, Signac_all_cell_peaks, and Signac_by_cluster_
peaks, while ArchR_tiles and ArchR_peaks were the worst. FNS indicated that for Sig-
nac and ArchR, more than 60% cells of each true class have a negative Silhouette, while 
for other methods, this value is less than 40% . In alignment with this, ArchR and Signac 
also exhibited the worst PWC values in this dataset.

When comparing the clustering results, we noted that the number of clusters of the 
highest ARI does not always equal the number of classes in the annotation for difficult 
clustering tasks (Fig. 3a). This appears to be because of populations that are hard to sep-
arate, either because they are rare, as in the Chen2019 dataset (Additional file 1: Fig. S3), 
or because they are very similar to each other, as intermediate and memory B cells in the 
10XPBMC dataset (Fig. 4e, f, g).

For these difficult clustering tasks, SnapATAC and SnapATAC2_cosine consistently 
performed the best, while ArchR_tiles and ArchR_peaks were the worst (Fig.  3a, b). 
SnapATAC2_jaccard seems to have a worse performance than SnapATAC and SnapA-
TAC2_cosine in Buenrostro2018 according to ARI and AV, but it showed a comparative 
performance of ARI2. The aggregation method also showed good performance in Buen-
rostro2018 and Chen2019 but slightly underperformed in 10XPBMC. The decrease in 
performance of aggregation in 10XPBMC is mostly because of the mixing of subtypes, 
as AV and MI indicate (Fig. 3b), and is clear in Fig. 4e, g. Signac tended to perform bet-
ter than ArchR no matter which configuration was used, and in dataset Buenrostro2018, 
it was comparable to SnapATAC and SnapATAC2. Overall, for difficult tasks, we found 
that SnapATAC, SnapATAC2_cosine, and SnapATAC2_jaccard are the top methods, fol-
lowed by the aggregation approach, then Signac, while ArchR is the worst.

Method choices at different feature engineering steps

This section focuses on the analysis of various choices made during the process of fea-
ture engineering, specifically regarding genomic features, peak calling methods, and dis-
tance metrics, and their impact on the overall clustering performance.

Peaks versus bins

Due to the absence of a standard feature set for chromatin data, researchers often resort 
to using either genomic bins or peaks, each with its own limitations [28]. Genomic bins 
suffer from the arbitrary selection of bin length and break-up positions. On the other 
hand, peaks align more closely with functional intervals, but present challenges in their 
identification in rare cells, and require additional processing when integrating different 
datasets.

To assess the clustering performance with these two types of genomic features, we 
compared the results obtained using ArchR_tiles (non-overlapping genomic bins of 
500bp) and ArchR_peaks (MACS-2 consensus peaks across clusters) (Additional file 1: 
Fig. S4a, Fig. S5a). Among most datasets we inspected, the performance of these two 
approaches is very similar across our metrics. This is consistent with claims in the 
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literature [29]. Only in the Chen2019 dataset, ArchR_peaks exhibited a slightly better 
cLISI score (Additional file  1: Fig. S4a) and higher clustering-level performance than 
ArchR_tiles (Additional file 1: Fig. S5a), mostly because it separated classes “L4 1” and 
“L4 2” better (Additional file 1: Fig. S3). In the Atlas2 dataset, the utilization of peaks 
demonstrated improved cluster homogeneity, as evidenced by metrics such as AV, MI, 
and FNS, but not necessarily enhanced class completeness in AW (Additional file 1: Fig. 
S4a, Additional file 1: Fig. S5a). In summary, we found that the use of peaks exhibited 
marginal or no significant improvement over the use of bins.

Peak calling methods

If peaks are used as the genomic features, to facilitate the identification of population-
specific peak sets, a common approach is to employ a two-step peak calling procedure, 
in which cells are first clustered using global peaks, before a second round of per-cluster 
peak calls. In our study, we tested two Signac pipelines, namely Signac_all_cell_peaks 
and Signac_by_cluster_peaks, to compare the effectiveness of one-step versus two-step 
peak calling. We observed that at the embedding and graph level (Additional file 1: Fig. 
S4b), these two approaches showed nearly identical performance. At the final partition 
level, the performance was still very similar in easy tasks, and only on specific difficult 
datasets did one method perform slightly better than the other. Specifically, in the Buen-
rostro2018 dataset, Signac_by_cluster_peaks outperformed Signac_all_cell_peaks (Addi-
tional file 1: Fig. S5b), whereas in the Chen2019 dataset, Signac_all_cell_peaks yielded 
slightly better results (Additional file 1: Fig. S5b, Fig. S6a,b), mostly because L6 IT and 
L5/6 IT cells are not properly grouped by Signac_by_cluster_peaks. Overall, our findings 
revealed that the two-step approach does not always outperform the one-step approach.

Number of features

The methods benchmarked vary in their default settings, particularly in the default 
number of features they employ, which can differ by an order of magnitude. To inves-
tigate the contribution of this parameter to the different performances observed, we set 
ran the methods forcing them to use the same specific number of features (Additional 
file 1: Fig. S7). In general, we observed that ArchR appears to benefit from slightly higher 
number of features than used by default and that SnapATAC and SnapATAC2 did not 
perform well with such low number of features and required ideally 200k features. This 
highlights the importance of having methods capable of efficiently handling such high 
dimensionality.

Distance metrics

Despite the debate between using peaks or bins, scATAC-seq data is usually regarded as 
binary, and therefore in SnapATAC2, either Jaccard or cosine similarity was used to con-
struct the affinity matrix. We observed in our results that both similarity metrics showed 
very similar cLISI and PWC scores across datasets; using cosine similarity gave better 
FNS scores in two of the six datasets (Additional file 1: Fig. S4c). Metrics of clustering 
results indicated that the performance of cosine similarity was very similar to Jaccard 
similarity (Additional file 1: Fig. S5c), especially after being adjusted for class size effects 
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using ARI2. Overall, our results proved that both similarity metrics work comparably 
well in these clustering tasks.

Dimensions of the latent space

The five methods we evaluated use different underlying algorithms for dimensional 
reduction. ArchR and Signac use truncated SVD, which identifies and preserves direc-
tions of maximum variance in the data. SnapATAC and SnapATAC2, on the other hand, 
apply graph-based spectral embedding. Specifically, SnapATAC2 uses Laplacian Eigen-
maps, which removes higher-frequency variations from one node to its neighbors, and 
preserves low-frequency structures of the graph [30]. In the aggregation method, fea-
ture-level aggregation is performed, followed by principal component analysis (PCA). 
The goal is to exploit the redundancy of the high-dimensional genomic feature space to 
average out potential noise.

Considering the varying assumptions and goals of each dimension reduction method, 
we investigated if different numbers of dimensions across methods could contain dis-
tinct information and how the choice of the number of dimensions for the embedding 
space affects performance. We examined a series of d values, namely 15, 30, 50, 100, and 
calculated the embedding-level and graph-level evaluation metrics (see Additional file 1: 
Fig. S8a). We observed that SnapATAC and SnapATAC2 were particularly sensitive 
to this parameter, with performance rapidly deteriorating as d increased. This trend is 
observable in the increasingly blurred structures in UMAP in Additional file 1: Fig. S8b 
and suggests that the later dimensions may contain less cell-type-relevant information. 
In contrast, the aggregation method demonstrated robustness to this parameter across 
most datasets. This aligns with the assumption that the aggregation method removed 
the noise by averaging it out, so that later dimensions are also smoothed signals. Sig-
nac and ArchR displayed an intermediate trend, and later eigenvectors may also have a 
smaller signal-to-noise ratio, especially in more complex datasets.

Stability of clusterings and robustness of clustering performance

We observed that in certain cases, the inherent randomness of Leiden algorithm (the 
“Methods” section) can lead to instability in the clustering results (e.g., Additional file 1: 
Fig. S9). To account for this, we performed the clustering steps using 5 different ran-
dom seeds and compared the clustering results by calculating pairwise ARI (Additional 
file 1: Fig. S10 and Fig. S11). The variability in the clustering outcomes varies depend-
ing on the datasets, methods, and resolution parameters employed. Generally, using the 
same resolution value yielded partitions with the same number of clusters. However, in 
some cases, changing the random seed resulted in partitions with different cluster num-
bers, leading to increased variability. Notably, in simple datasets, forcing over-clustering 
of cells by increasing resolution tends to amplify the variability (Additional file 1: Fig. 
S11). This can be attributed to the fact that the simpler datasets only have flat cluster-
ing structures, and increasing the resolution merely introduces random splits within the 
true communities.

We then focused on the resolution value that yielded the highest clustering perfor-
mance, as measured by ARI against the ground truth. Specifically, we looked at how 
much the pairwise ARIs between seeds deviate from 1, which reflects the level of 
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instability in the clustering outcomes. Interestingly, we found a positive correlation 
between the deviation and PWC value of the SNN graph (Additional file 1: Fig. S12a). 
Furthermore, we observed that the variation in clustering outcomes was more promi-
nent across datasets rather than between methods.

In order to assess the impact of clustering result variability on the evaluation of clus-
tering performance, we examined the variability of performance measurements using 
different random seeds. Notably, despite the instability observed in the clustering 
results, we found that the similarity to the ground truth remained relatively consistent 
(Fig. 5a, coefficient of variation (CV) of ARI; Additional file 1: Fig. S13). This consistency 
provides us with a solid foundation for confidently interpreting the evaluation results.

LSI-based methods show strong library size biases

Large library size variation arising from technical biases are often observed in single-cell 
data, and can potentially confound the downstream analysis [19]. Therefore, we exam-
ined to what extent the cell embedding of each method was driven by library size. By 
looking at the scatter plot of each latent dimension against the empirical library size, one 
can see that LSI-based methods (Signac, ArchR) showed a strong library size bias across 
all datasets (Additional file  1: Fig. S14). The difference between cell types may reflect 
biological variation, since global chromatin accessibility can differ during cell differentia-
tion. However, the difference within each cell type is more likely due to technical aspects 
such as sampling effects. Therefore, we quantified this bias by calculating, for each latent 
dimension, the Pearson’s correlation coefficient r with the square root of library size 
per cell type, and averaged the absolute value across all cell types. This value is further 
averaged across the first 5 components (Fig. 5b, average absolute correlation). Note that 
we followed the suggestion in Signac’s tutorial and always removed latent components 
r > 0.75 with the library counts. In all our datasets, this criterion always removed the 
first component of Signac and ArchR embeddings, while no component was removed 

Fig. 5 a Coefficient of variation of ARI between predicted clusterings and the true cell types. b Average 
absolute Pearson’s correlation with fragment counts; for a given latent dimension and a given cell type, the 
Pearson’s correlation coefficient is calculated between the latent axis and the square root of fragment counts. 
This correlation value was then averaged across cell types and across the first 5 latent components
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for other methods. After this filtering, the average absolute correlation is still between 
0.5 to 0.75 in Signac and ArchR, followed by aggregation-based method and SnapATAC2 
using cosine distance, where the correlation is around 0.2–0.5, then SnapATAC and Sna-
pATAC2 using Jaccard distance, with correlation smaller than 0.3. We further evaluated 
how the library size bias affects the whole cell embedding by calculating the spatial auto-
correlation of library size on the k nearest neighbor graph using Geary’s C index (Addi-
tional file 1: Fig. S12b). Signac and ArchR tend to have a positive spatial autocorrelation, 
while aggregation, SnapATAC, and SnapATAC2 tend to have a smaller autocorrelation. 
In conclusion, LSI-based methods such as Signac and ArchR generate latent representa-
tions that are strongly associated with library size, while SnapATAC and SnapATAC2 
using Jaccard distance are less affected.

Benchmarking methods for predicting gene activity scores

Besides clustering cell types, another typical analysis of scATAC-seq data involves pre-
dicting gene activities. In the five methods we discussed, four offer capabilities for infer-
ring gene activities. ArchR’s  [9] study included a comparative analysis of various gene 
score models and found that ArchR’s optimal model enhanced gene score prediction 
over other methods. Here, we independently benchmarked these four methods for gene 
activity prediction, presenting our results in a manner akin to ArchR’s study for com-
parative purposes. By using the two multi-omics datasets, we compared the correlation 
between the RNA data and the predicted gene scores. Despite the prevalence of zeros 
and ties in gene expression and gene activity data due to high dropout rates, we found 
that the outcome rankings between methods using Pearson’s correlation (Fig. 6) closely 
matched those obtained with Kendall’s correlation (Additional file 1: Fig. S15). By look-
ing at per-gene correlations across cells and metacells (as shown in Fig. 6a, b, e, and f ), 
we observed that ArchR slightly outperformed Signac in the 10XPBMC dataset, yet it 
was less effective in the Chen2019 dataset. Contrary to the findings reported in ArchR’s 
study, SnapATAC and SnapATAC2 yielded better results than both ArchR and Signac 
in several instances (refer to Fig. 6a, c–h). These findings underscore the importance of 
conducting neutral and independent benchmarking of computational tools.

Differences in scATAC-seq processing propagate to integration with scRNA-seq

We also evaluated the impact of different scATAC-seq processing techniques on their 
ability to integrate with scRNA-seq data. We performed cross-modality integration 
using the two multiome datasets by treating the cells from two modalities as if they were 
unmatched (i.e., unpaired integration) and used pairing information as the ground truth 
for evaluation. An effective ATAC processing method should ideally bring the corre-
sponding matched cells into close proximity within the integrated space. We measured 
the fraction of samples closer than the true match (FOSCTTM) [31] after integration 
(see the “Methods” section). Although performances of the various methods were com-
parable (Additional file  1: Fig. S16), the differences were largely consistent with our 
evaluations on previous tasks (e.g., SnapATAC/SnapATAC2 generally providing better 
integration, and ArchR underperforming).
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Time and memory complexity

Due to the large feature space in scATAC-seq data, it is crucial to use methods that scale 
efficiently in terms of time and memory usage. We monitored the CPU time and peak 
memory usage in our Snakemake pipeline (Fig. 7a, b). For the aggregation method, we 
tracked the program either from the start of peak count matrix generation (aggregation 
+ Signac) or subsequent to it. We found that SnapATAC2 performed the best in terms 
of runtime, while ArchR was the most memory efficient. SnapATAC had low memory 
consumption with small datasets; however, its memory usage increased rapidly as the 
dataset size increase, making it the least scalable option.

ArchR and SnapATAC2 both use on-disk storage instead of loading the entire data-
set into memory. This is achieved by storing large-sized data in an HDF5-format file on 
disk and using an object to store small-sized metadata, which contains references to 
the corresponding files on disk and facilitates synchronization between the on-disk and 
in-memory data representations. This strategy makes them memory efficient and par-
ticularly well-suited for handling scATAC-seq data. For example, it enables ArchR and 
SnapATAC2 to handle objects that use genome-wide bins with a size as small as 500bp. 
In our analysis on number of features, ArchR had a increasing peak memory usage as the 

Fig. 6 Distribution of Pearson’s correlations between the inferred gene activity score and the aligned gene 
expression. a–d are data from 10XPBMC dataset, and e–h are data from Chen2019 dataset. In a, b, e, and 
f, the per‑gene correlations are calculated across cells (a, e) or metacells (b, f) (500 metacells in total). In c 
and g, the per‑cell correlations are calculated for each gene. In d and h, the per‑metacell correlations are 
calculated for each gene. The blue dashed line represents the median value of the best‑performing model. 
Violin plots represent the smoothed density of the distribution of the data
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feature number increases (Additional file 1: Fig. S17), although the impact of the feature 
count on the memory and computational time was less pronounced than the effect of 
the cell count (Additional file 1: Fig. S17 and Fig. S18).

Depending on the method for feature matrix construction, the running time for aggre-
gation can vary. The aggregation steps are relatively fast, e.g., within 10 min for 20000 
cells. For ArchR and Signac, it depends on how the genomic features are defined. Unsur-
prisingly, ArchR_peaks nearly doubled the running time compared to ArchR_tiles, and 
Signac_by_cluster_peaks doubled the time compared to Signac_all_cell_peaks. This is 
because ArchR_peaks/Signac_by_cluster_peaks performed a second round of process-
ing on top of ArchR_tiles/Signac_all_cell_peaks. ArchR_peaks and Signac_by_cluster_
peaks aim to trade speed for improved identification of small cell classes.

Discussion
We benchmarked 8 data processing pipelines derived from 5 different methods devel-
oped for scATAC-seq data, focusing on their capability to discern cell heterogeneity and 
delineate cell types. By using 10 metrics to assess the performance at the embedding, 
graph, and partition levels, we systematically examined each pipeline and evaluated the 
impact of key parameter choices at each data processing stage. We observed that the 
ranking of methods is dependent on the complexity of the datasets. For simpler data-
sets with distinct cell types, aggregation outperformed other methods and demonstrated 

Fig. 7 The CPU time and peak memory usage of each method across datasets of different sizes
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superior performance in identifying small cell classes. SnapATAC2 emerged as the sec-
ond-best method, while ArchR and Signac struggled to identify rare types. For complex 
datasets presenting hierarchical clustering structures and highly similar subtypes, Sna-
pATAC and SnapATAC2 proved to be the most efficient in distinguishing subtypes. The 
aggregation method is second best, although occasionally it failed to detect differences 
between subtypes. Finally, SnapATAC and SnapATAC2 were also the best overall meth-
ods to infer gene activity scores.

Our evaluation metrics measured the efficacy of feature engineering at each stage 
of the clustering pipeline, including cell embedding learning, SNN construction, and 
graph-based partitioning. On one hand, this approach allows us to dissect distinct facets 
of clustering performance. For instance, ARI2 offers a sensitive measure of the quality 
of rare cell type identification, while PWC, at the SNN graph level, quantifies the extent 
of isolation between cell types and is well-suited for evaluating both small and closely 
related classes. On the other hand, our metrics facilitate a rigorous evaluation that is 
not confounded by potentially suboptimal parameter choices at intermediate stages. For 
example, the AUC of ARI provides an overall performance summary across different 
resolutions, while cLISI assesses the cell embedding, which is at the stage prior to the 
determination of resolution and partitioning. The ranking of methods defined by dif-
ferent metrics is not always consistent with each other, which is a common observation 
in various benchmarking efforts. This further highlights the importance to incorporate 
multiple metrics and allows users to focus on the most relevant aspects of the evaluation 
according to their biological questions.

We built our benchmark on 6 datasets with different types of annotations serving as 
the ground truth. Among these, 4 datasets contain annotations from either genotype, 
tissue origins, or FACS labels, which we regard as high confidence for those specific 
datasets. The remaining 2 datasets are multi-omic data, where RNA modality is used to 
infer annotation. In these two datasets, we observed that the number of natural clusters 
does not always agree between RNA and ATAC, and the best ARI is not always achieved 
at the number of clusters of RNA data. While there may be discrepancies between RNA 
and ATAC classes, for example if epigenetic differences lack a transcriptomic correlate, 
these discrepancies are unlikely to significantly bias our comparisons. However, for cell 
state differences that are specific to epigenetic changes but lack transcriptomic altera-
tions, our benchmark will not be able to include their comparison. In such cases, multi-
omics datasets with multiple epigenomic layers might help.

A potential limitation of our study lies in the composition of our datasets, which pre-
dominantly consist of well-defined cell types rather than a spectrum of continuous cell 
states. This could bias our evaluation in favor of methods that facilitate clear separation 
between distinct states. In scenarios where mapping a continuous trajectory is critical 
for downstream analyses, the preferred method might differ. However, cell-type cluster-
ing remains at the heart of single-cell data analysis. Identifying the most effective feature 
engineering method to discern cell type differences also contributes towards establish-
ing a foundation for studying state-informative features in future studies.

We believe that our benchmark not only provides practical guidance for users in 
choosing methods for their biological analyses but also illuminates areas for potential 
improvements in future method development. First, while previous benchmarks have 
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concluded that methods based on aggregating accessible chromatin regions at the motif 
or gene level generally underperform [4], our benchmark illustrates that a purely data-
driven aggregation strategy can achieve top performance. This suggests that redundant 
information in scATAC-seq data exists and can be harnessed to reduce noise.

Our analysis also highlights the challenge of mitigating library size effects. Library 
size effects, caused by technical variations, have long been observed in next-generation 
sequencing data, and normalization steps to correct these are now standard practice for 
single-cell RNA-seq data [19, 32, 33]. However, in the context of scATAC-seq data, this 
issue has not been adequately characterized or addressed. One aim of TF-IDF transfor-
mation performed in Signac is to correct for the library size difference between cells. 
From our observation, this is not very efficient. Linear regression-based normalization 
implemented in SnapATAC and SnapATAC2 seems to work well, but further compari-
son is needed. The binarization of peaks or bins can also be regarded as a normaliza-
tion strategy [33], but recent work has also shown that retaining the count information 
instead of binarizing it can improve the performance of some models [28, 34], indicating 
that even in single cells, chromatin accessibility may actually be quantitative. In sum-
mary, striking a balance between removing the technical variance and avoiding excessive 
correction that could mask biologically meaningful differences in global or local acces-
sibility levels remains a challenge.

The field of computational methods for scATAC-seq data is continually advancing, 
with new methodologies regularly emerging. There is an ongoing need for robust and 
neutral benchmarking efforts that serve both method users and developers effectively. 
While we have incorporated the most prevalent and recent methods in this study, we 
acknowledge that the immediacy of our work will inevitably diminish over time. To 
facilitate future benchmarking work, we offer a reproducible and expandable Snakemake 
pipeline of our benchmarking framework, and have made our processed datasets and 
intermediate data publicly available.

Conclusions
Taking together, we suggest choosing method for scATAC-seq analysis according to the 
complexity and size of the targeted dataset. For datasets with a simple structure where 
cell types are distinct from each other, all methods generally perform well; if small cell 
classes are expected and of interest, the aggregation method, SnapATAC, or SnapA-
TAC2 are preferred. For more difficult tasks with hierarchical clustering structures and 
highly similar subtypes, SnapATAC and SnapATAC2 are among the best choice.

When the dataset is large (e.g., more than 20000 cells), SnapATAC is not very memory 
efficient on a typical desktop computer, and SnapATAC2 is preferred. Signac generally 
performs better than ArchR, but ArchR is more memory efficient. Aggregation steps do 
not add much time and memory consumption on top of Signac, so whenever Signac is 
used, the aggregation method can also be performed easily.

During the feature engineering steps, our results suggested that the choice peaks ver-
sus bins, or one-step versus two-step peak calling, are usually comparable in their per-
formance. Users can choose according to their preferences. If SnapATAC or SnapATAC2 
is used, a dimension of the latent space between 10 and 30 is recommended. For Signac 
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and ArchR, 10 to 50 dimensions represent a reasonable range, while for aggregation, a 
larger number of dimensions is still suitable.

Methods
Datasets and preprocessing

For our benchmark, we used 6 scATAC-seq or single-cell multi-omics datasets that are 
publicly available [9, 25–27] (see Additional file 2: Table S1; links to the public reposito-
ries can be found in the “Availability of data and materials” section). For datasets where 
the fragment files are publicly available, these were downloaded from the author’s repos-
itories. For datasets where the fragment files are not available, we downloaded the bam 
files and used the command line tool Sinto [35] to create fragment files.

For each scATAC-seq (or the ATAC component of the multi-omic) dataset, we first 
performed per-cell quality control (QC) using ArchR (v1.0.3) [9] by thresholding the 
Transcription Start Site Enrichment Score (TSSE) and the number of unique fragments; 
the thresholds for each dataset are in Additional file 2: Table S2. Then, we applied dou-
blet removal procedures using addDoubletScores() and filterDoublets() 
in ArchR. Key parameters for these two functions are in Additional file  2: Table  S2, 
including k in function addDoubletScores()  and filterRatio in function filter-
Doublets(). We then filtered the fragment files to keep only cells that passed QC. 
For single-cell multi-omics datasets, we filtered by QC of both the ATAC and the RNA 
modalities. QC of RNA-seq was conducted using Seurat (v4.3.0) [36] by applying filters 
nCount_RNA>800 & percent.mt< 5 for Chen2019 and nFeature_RNA> 200 

& nFeature_RNA< 5000 & nCount_RNA< 25000 & percent.mt< 20 for 
10XPBMC. Doublets were identified using function scDblFinder() in R package 
scDblFinder (v1.13.9) [24] and then removed. Before calling scDblFinder(), Louvain 
clustering [37] was performed with resolution= 0.5 for Chen2019 and 0.8 for 10XPBMC 
in Seurat. Then, the clusterings results were used in scDblFinder(). All these filter-
ing steps were applied to the fragment files, and the final filtered fragment files were 
inputs for the Snakemake pipeline.

Datasets from the human adult single-cell chromatin accessibility atlas

The human adult single-cell chromatin accessibility atlas [25] contains 111 distinct cell 
types across 30 tissues and is a rich resource for scATAC-seq data of different cell types. 
We took two subsets of this atlas as our evaluation datasets “Atlas1” and “Atlas2.” The 
idea is to use the tissue of origin as the ground truth for benchmarking clustering. By 
examining the fraction of cells from different tissues for each cell type, we found that 
many cell types exist exclusively in one tissue (Additional file 1: Fig. S19). Therefore, we 
selected tissue-cell-type pairs by first selecting a subset of cell types that have ≥ 85% of 
cells from the same tissue, and then for each of the corresponding tissues, we selected 
one cell type randomly but excluded cell types that have less than 300 cells. For each tis-
sue with multiple samples, we selected one sample that contains the maximum number 
of cells of that cell type that have passed QC. We used only one sample for each cell type 
to eliminate any potential batch effect. For the tissue-cell-type pairs selected for each 
dataset, we downsampled cells per cell type, using fractions 0.3 for Atlas1 and 0.5 for 
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Atlas2. The tissue-cell-type pairs and the sampled cell ID for “Atlas1” and “Atlas2” are 
available on GitHub [38].

scRNA-seq data annotation

For 10XPBMC and Chen2019 datasets, the RNA modality was subjected to Leiden clus-
tering in Seurat using resolution = 0.5 for Chen2019 and resolution = 0.8 for 10XPBMC. 
The resolution for each dataset was determined by first performing Leiden clustering 
using a series of resolution values (with the maximum resolution obviously over-cluster-
ing the datasets), then constructing a cluster tree showing the co-clustering consistency 
across resolutions [39], and finally choosing a resolution value that gives stable cluster-
ing result and reasonable separation of cells in the UMAP. Then, for each cell, a label was 
transferred by reference mapping [36] using Seurat. In the case of the 10XPBMC data-
set, an annotated PBMC reference dataset [40] was utilized for label transfer. As for the 
Chen2019 dataset, the scRNA-seq data of the adult mouse brain from the Allen Brain 
Atlas [41] served as the reference dataset. Then, we performed some manual curation to 
get the final cluster annotation. We describe roughly this process below. For each Leiden 
cluster, the majority cell label was token as the label of that cluster. If two clusters got the 
same label, we subset all cells from these two clusters and performed multiple rounds 
of clusterings on this subset. If the splitting of these two clusters were stable, we labeled 
them differently, including “CD4 Naive 1” and “CD4 Naive 2.” Otherwise, we merged 
these two clusters.

Feature engineering methods

For all methods, we followed the procedures recommended in the author’s 
documentation.

Signac

Starting from the fragment file, Signac first uses MACS2 for peak calling, then performs 
LSI on the peak count matrix to obtain a low-dimensional representation. Peak calling 
was conducted in two ways: (1) aggregating all cells for peak calling (denoted as “Sig-
nac_all_cell_peaks”) or (2) aggregating cells and calling peaks for each cluster individu-
ally, followed by generating a consensus peak set from the peaks identified in all clusters, 
referred to as “Signac_by_cluster_peaks.” LSI consists of 3 steps: (1) normalization using 
term frequency-inverse document frequency (TF-IDF), (2) selecting the top 95% most 
common peaks, (3) performing singular value decomposition (SVD).

We used the R package Signac (v1.9.0) for its implementation. As suggested by the 
tutorial: https:// stuar tlab. org/ signac/ artic les/ pbmc_ multi omic. html, we created a frag-
ment object, called MACS2, and removed peaks on nonstandard chromosomes and 
genomic blacklist regions and peaks having width < 20 or width > 10000 . To identify 
peaks per cluster, the cell embeddings generated by “Signac_all_cell_peaks” are used to 
define clusters using the Louvain algorithm with a default resolution of 0.8.

Subsequently, we performed normalization, feature selection, and linear dimensional 
reduction using RunTFIDF() with method=1, FindTopFeatures() with min.
cutoff=”q5”, and RunSVD() with n=100, respectively. As suggested in the tutorial, 

https://stuartlab.org/signac/articles/pbmc_multiomic.html
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the first LSI components often capture sequencing depth. We removed LSI components 
that have larger than 0.75 Pearson correlation with the total number of counts.

Aggregation

The aggregation method starts with the peak count matrix where the peak set is identi-
fied using the method “Signac_by_cluster_peaks.” Then, the cell-by-peak fragment count 
matrix is used for subsequent TF-IDF normalization and PCA. Minibatch K-means clus-
tering is applied to the PCA to cluster peaks into meta-features (K = 1000 by default). 
Ultimately, an aggregated count matrix is obtained by summing the counts per meta-fea-
ture, and PCA is performed on the aggregated count matrix to get the low-dimensional 
representation.

We used the function aggregateFeatures() in R package scDblFinder (v1.13.9) 
with the default parameters. By default, K = 1000 feature clusters are identified.

ArchR

ArchR takes the fragment files as input and can use either the genomic tiles or peaks 
as features. We implemented both options. The “ArchR_tiles” method uses 500-bp non-
overlapping genomic tiles to construct a binarized tile matrix and then performs itera-
tive LSI on the matrix to extract meaningful low-dimensional representations. Similar 
to “Signac_by_cluster_peaks” approach, “ArchR_peaks” method first uses the latent rep-
resentation obtained from “ArchR_tiles” for clustering, then performs peak calling per 
individual clusters and generates a consensus peak set by merging these peak tracks. 
Afterwards, iterative LSI is performed on the peak count matric.

During the iterative LSI process, at each iteration, the top accessible features (in 1st 
iteration) or top variable features (since 2nd iteration) are selected for LSI. The resulting 
cell clusters are then identified and utilized for feature selection in the subsequent itera-
tion, enabling an iterative refinement of the LSI procedure.

We used the R package ArchR(v1.0.3) for implementation. When running the function 
addIterativeLSI(), Louvain algorithm was used for the clustering in intermedi-
ate steps with increasing resolutions, and no subsampling of cells was performed. Other 
parameters we used were set to be the default values.

SnapATAC 

The SnapATAC method (version 1) takes the fragment files as input and first constructs 
a binary cell-by-bin matrix using 5000-bp non-overlapping genomic bins. Then, after fil-
tering out unwanted bins, it computes a pairwise cell-to-cell similarity matrix using Jac-
card coefficient. This kernel matrix is subject to normalization of the coverage bias and 
then eigenvalue decomposition (EVD) to get the cell embeddings.

For the implementation, we used the command line tool snaptools (v1.4.8) to create 
snap files from fragment files, and the R package SnapATAC (v1.0.0) for the rest of the 
processing pipeline. We followed the standard procedures in https:// github. com/ r3fang/ 
SnapA TAC/ tree/ master/ examp les/ 10X_ PBMC_ 15K, except that we ran the function 
runDiffusionMaps() using all cells instead of using landmark cells. This approach 
was chosen in order to maintain a consistent basis for comparison with other methodol-
ogies. Furthermore, the datasets employed are of small to moderate size, and running all 

https://github.com/r3fang/SnapATAC/tree/master/examples/10X_PBMC_15K
https://github.com/r3fang/SnapATAC/tree/master/examples/10X_PBMC_15K
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methods using all cells does not pose significant efficiency issues, which is the primary 
concern that subsampling procedures are designed to address.

SnapATAC2

SnapATAC2 is the version 2 of SnapATAC method and it is released as a python package. 
By implementing AnnData object and optimizing the on-disk representation, it facilitates 
the processing of high-dimensional data. As demonstrated in the tutorial https:// kzhang. 
org/ SnapA TAC2/ tutor ials/ pbmc. html, SnapATAC2 first creates a cell-by-bin matrix 
containing insertion counts using 500-bp bins by default. Then, a pairwise cell-to-cell 
similarity matrix is generated, using either Jaccard coefficient (SnapATAC2_jaccard) or 
cosine similarity (SnapATAC2_cosine). With this kernel matrix, the symmetric normal-
ized graph Laplacian is computed, and the bottom eigenvectors of the graph Laplacian 
is used as the lower dimensional representation. For implementation, we used SnapA-
TAC2 (v2.2.0). To select features, we removed bins overlapping with the blacklist regions 
as always done in other methods and called function snapatac2.pp.select_fea-
tures() with parameters min_cells=10, most_variable=1000000.

Clustering

In this study, we used a well-established graph-based clustering method for all cluster-
ing analyses. We first constructed a shared nearest neighbor graph and then applied the 
Leiden algorithm [20] using modularity as the optimization objective, as implemented in 
the Seurat package (v4.3.0) [36]. The Leiden algorithm incorporates a step where node 
partitions are refined by randomly reassigning nodes to communities that increase the 
objective function, enabling a wider exploration of the partition space [20]. To account 
for the inherent stochasticity in the Leiden algorithm, we ran it with 5 different random 
seeds: 0, 2, 5, 42, and 123. Since the optimal number of clusters is not known a priori, 
a range of resolutions was used to obtain diverse clustering solutions yielding varying 
numbers of clusters. The parameters we used to achieve the optimal solution for each 
method and dataset are presented in the Additional file 2.

Evaluation metrics

According to the data structure our evaluation applied to, we have classified our evalu-
ation metrics into three categories: embedding-based, graph-based and partition-based 
(Fig. 1).

ASW, FNS

The silhouette width quantifies the average distance between an observation and the 
other observations within its cluster, relative to the average distance to the nearest 
neighboring cluster [42]. The Average Silhouette Width (ASW) is calculated as the mean 
silhouette width across all observations within a cluster, providing insights into the com-
pactness of the cluster and its separation from other clusters. ASW values range from 
− 1 to 1, with 1 indicating dense and well-separated clusters, 0 representing clusters that 
overlap, and − 1 indicating significant misclassification, where within-cluster dispersion 
is greater than between-cluster dispersion.

https://kzhang.org/SnapATAC2/tutorials/pbmc.html
https://kzhang.org/SnapATAC2/tutorials/pbmc.html
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A limitation of ASW is that it is not invariant to the scaling of the space. As a solution, we 
introduced the fraction of negative Silhouette score (FNS) to assess the cluster-level pro-
portion of cells with a negative Silhouette width. FNS characterizes the fraction of cells with 
a smaller distance to cells within another cluster compared to their own cluster. It is robust 
to linear scaling and enables more meaningful comparisons across different dimensional 
reduction methods.

cLISI

The LISI has been proposed to evaluate either the mixing between batches or the separa-
tion between cell types [43]. To calculate it, a weighted k-nearst neighbor (kNN) graph is 
first generated based on Euclidean distance within an embedding space. Subsequently, for 
each node in the graph, it computes the expected number of cells needed to be sampled 
before two cells are drawn from the same batch/clusters within its neighborhood. We used 
the cluster-based variant of LISI, known as cluster LISI (cLISI), as a metric to assess the 
embedding representation. This is implemented by using the function compute_lisi() 
from the R package lisi v1.0 [43, 44]. cLISI ranges from 1 to K, where K is the total num-
ber of cell types in the dataset. One indicates a neighborhood consisting exclusively of cells 
from a single cell type, while K corresponds to complete mixing, with cells from all cell 
types found within the neighborhood.

PWC

Partition-based metrics are susceptible to the influence of clustering parameters, whereas 
embedding-based metrics rely on the proper definition of similarity within the embedding 
space, which may not necessarily align with the similarity employed in clustering. There-
fore, we proposed a novel graph-based metric that directly operates on the graph where 
cells of the same (ground truth) type are identified as communities. Filippo et al. [45] dis-
cussed a definition of community in the network by splitting the total degree of a node i 
into two contributions: given a subgraph V ⊂ G , ki(V ) = kini (V )+ kouti (V ) , where kini (V ) 
is the number of edges connecting node i to other nodes in V, and kouti (V ) is the number 
of connections towards the rest of the network. The subgraph V is a community in a strong 
sense if kini (V ) > kouti (V ),∀i ∈ V  . Inspired by this definition, we introduced the metric 
Proportion of Weakly Connected cells (PWC). PWC quantifies, for a subgraph V consist-
ing of all the cells of the same true class, the proportion of cells that have fewer connections 
within V than with the rest of the graph.

AW, AV

Wallace [46] proposed two asymmetric indices to quantify the similarity between two par-
titions of a set. Let U = {U1,U2, ...,UI } be the partition of the dataset defined by cell types 
and Z = {Z1,Z2, ...,ZJ } be the partition given by the clustering prediction. The first index 
W is the proportion of joint object pairs in partition U that are also joined in partition Z. 
The second index V is the proportion of joint object pairs in partition Z that are also joined 
in partition U. Both index W and V can be adjusted for chance using formula:

(1)AS =
S− E(S)

1− E(S)
,
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where S is a similarity measure that does not have value 0 under statistical independ-
ence. A generalized hypergeometric model is assumed to calculate the expectation value 
of V and W [47]. AW can be interpreted as the completeness of cell types. It quantifies to 
what extend objects belonging to the same cell type in U are assigned to the same cluster 
in Z. Similarly, AV can be interpreted as the homogeneity of clusters, which measures 
to what extend clusters are not mixing objects of different cell types. AW and AV can 
be decomposed into indices for the individual cell types of partitions U and for the indi-
vidual clusters of partitions Z, respectively [48], that is:

where nij is the number of objects placed in class Ui and in cluster Zj , N is the total number 

of pairs of objects, P =
�I

i=1





ni+

2



 is the number of object pairs that were placed in the same 

cluster in U, and 
Q =

J
j=1

n+j

2

 is the number of object pairs that were placed in the same 

cluster in Z. AW and AV range from −1 to 1, with 0 for random assignments and 1 for per-
fect agreement.

ARI, ARI2

The adjusted Rand index is the harmonic mean of AW and AV, and therefore a sum-
mary of both the homogeneity of predicted clusters and the completeness of true 
classes. ARI can be decomposed into a weighted average of the AW i  ’s and AV j ’s as 
follows [48]:

where Pi =
(

ni+
2

)

 is the number of object pairs in cluster Ui , and Qj =

(

n+j

2

)

 is the 

number of object pairs in cluster Zj . Equation 4 shows that ARI is largely determined by 
the AWi and AV j values of large clusters. However, in many cases in single-cell analysis, 
the rare cell types are of more concern. Therefore, we included a variant of ARI (ARI2) 
proposed by Matthijs et al. [48] to alleviate the class size bias of ARI.

(2)AWi =

N
∑J

j=1

(

nij
2

)

−

(

ni+
2

)

Q

(

ni+
2

)

(N − Q)

,

(3)AVj =

N
∑I

i=1

(

nij
2

)

−

(

n+j

2

)

P

(

n+j

2

)

(N − P)

,

(4)ARI =

∑I
i=1 AWiPi +

∑J
j=1 AVjQj

∑I
i=1 Pi +

∑J
j=1Qj

,

(5)ARI2 =
2AW′

× 2AV′

AW′
+ AV′ ,
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where

and

MI, VI

While ARI, AW, and AV are external evaluation metrics that count pairs of objects, 
Mutual Information (MI) and Variation of Information (VI) are based on information 
theory. These two groups of metrics do not always show consistent results, due to differ-
ent underlying assumption. The MI between two partitions U and Z is as follows:

where pij =
nij
n  , pi = ni+

n  , and pj =
n+j

n  . It has been shown [49] that

where H(·) is the Shannon entropy. Since Z stays the same for a given dataset, Eq. 9 indi-
cates that comparing MI between methods on the same dataset is equivalent to compar-
ing the conditional Shannon entropy of Z on U. In other words, MI can be interpreted 
as the measure of homogeneity of clusters, similar to AV. Note that MI is not normalized 
and the upper bound varies across datasets. It is therefore only meaningful to compare 
MI within the same dataset.

VI measures the amount of information that is lost or gained in changing from parti-
tion Z to U:

Similarly, VI is also highly related to entropy:

VI is not normalized, and a higher VI value indicates a worse clustering solution.

Calculating and comparing the area under the curve

Partition-based metrics change as the clustering resolution changes. The true cluster 
numbers is not predetermined, and the optimal performance is not always achieved at 
the true number of clusters. Therefore, comparing clusterings at a fixed resolution or 
number of clusters becomes challenging. To address this challenge, we compared clus-
terings across a range of resolution parameters that result in varying number of clusters 

(6)AW′
=

1

I

I
∑

i=1

AWi,

(7)AV′
=

1

J

J
∑

j=1

AVj .

(8)MI =

I
∑

i=1

J
∑

j=1

pijlog
pij

pipj
,

(9)MI = H(Z)−H(Z|U),

(10)VI = −

I
∑

i=1

pilogpi −

J
∑

j=1

pjlogpj − 2

I
∑

i=1

J
∑

j=1

pijlog
pij

pipj
,

(11)VI = H(U |Z)+H(Z|U).
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(Additional file 1: Fig. S20a). We examined the performance as the number of clusters 
changes and summarized the results using the area under the curve (AUC).

To calculate the AUC and compare between results of different ranges of cluster num-
bers, the upper bound of each metric is used for the normalization of the absolute AUC. 
Specifically, metrics such as ARI, ARI2, AW, and AV have an upper bound of 1. MI and 
VI were normalized using the empirical maximum value per method per dataset. Nota-
bly, in the case of VI, instead of using the normalized AUC directly for comparison, we 
used 1− normalized AUC.

When plotting the AUC heatmap, we colored the heatmap using the deviations from 
the column-wise median scaled by matrix-wise median absolute deviation. Let A be the 
original matrix storing the metric values, B be the transformed matrix, and Ai,j , Bi,j is 
the element of matrix A , and B , respectively. The calculation of B is as in Eqs. 12, 13, and 
14. By applying this transformation, the color scale is unified across datasets.

where

and

Choosing the number of dimensions

When applying dimensional reduction methods, a parameter that one needs to choose 
is the number of dimensions n of the embedding space to use. Since all the methods 
use either principle component analysis (PCA) or singular value decomposition (SVD), 
we applied the elbow approach and examined the scree plot of each method by plot-
ting the proportion of variance explained by each component against the component 
indices. We observed that for nearly all methods and datasets, the elbow point is before 
15 dimensions (Additional file 1: Fig. S20b). We therefore used n = 15 for all methods. 
More details on how n affects the performance is discussed in the “Results” section.

Analysis of feature numbers

To understand how the feature numbers impact the performance, we run each method 
across a range of feature numbers: 25k, 100k, 200k, and 500k. For ArchR and SnapA-
TAC2, adjusting these settings was straightforward, achieved by changing the varFea-
turesargument in the addIterativeLSI() function, or the most_variable 
argument in the snapatac2.pp.select_features() function, respectively. In 
the case of Signac and SnapATAC, retaining the desired number of features involves 
computing the quantiles. The calculated quantile was specified through the argument 
min.cutoff in the function FindTopFeatures() in Signac. For SnapATAC, after 
initially removing the top 5% most accessible (and thus least variable) features, a second 

(12)Bi,j =
Ai,j −Median(A+j)

Median(M′)
,

(13)M′
i,j = |Mi,j|,

(14)M+j = A+j −Median(A+j).
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filtering step was done by selecting the top n% most accessible features. Here, n% was 
determined to ensure the retention of the specified feature counts. Then, the cluster-
ing was performed using the same optimal hyper-parameters as in the previous analysis 
which used the default feature numbers.

Analysis of clustering robustness

As described in the Clustering  section, we performed Leiden clustering using a range 
of resolution values in combination with 5 random seeds. For each resolution, we com-
pared the clustering outcomes from different seed pairs by computing ARI. An ARI of 
1 indivates identical clustering predictions from the two seeds, whereas an ARI of 0 
suggests that the clusterings are independent. We then calculated the deviation of the 
pairwise ARI from 1, interpreting this as a measure of the clustering’s robustness when 
fixing resolutions. To get an overall estimation of robustness as in Additional file 1: Fig. 
S12a, this deviation was averaged across seed pairs and resolutions.

Analysis of library size biases

The library size of each cell is the total number of unique fragments of that cell in the 
fragment file. To quantify to what extent the learned latent space is driven by the library 
size, we calculated an absolute Pearson’s correlation coefficient value rl,d for each latent 
dimension l and dataset d as follows:

where cor() is the function to calculate Pearson’s correlation coefficient between two 
vectors, and sqrt() is the function to calculate element-wise square root of a vector. ck ,d 
represents the library size across all cells of cell type k in dataset d, and xk ,l,d represents 
the value of the latent component l across all cells of cell type k in dataset d. K is the total 
number of cell types. rl,d for dataset 10XPBMC and l = 1, 2, 3, 4, 5 are shown in Addi-
tional file 1: Fig. S14.

To summarize across methods, we averaged this value across l = 1, 2, 3, 4, 5 and the six 
datasets (see Fig. 5).

Benchmarking methods for predicting gene activity scores

From the five methods discussed, four offer the capability to infer gene activities. Signac 
employs a basic technique, counting fragments in the gene body and promoter regions 
for each gene, followed by log-normalization of these counts to derive a gene activity 
score. SnapATAC calculates gene body fragment counts, normalizes them using log-
transformed count-per-million reads, and then employs a Markov affinity-graph-based 
method for imputation and smoothing. SnapATAC2 has a similar procedure to Sna-
pATAC, with the distinction of counting TN5 insertions instead of fragments. ArchR 
adopts a more complex model that weights fragment counts based on their distance to 
the Transcription Start Site (TSS) and includes distal regulatory elements, while also 
considering neighboring genes.

To benchmark their performance on predicting gene activities, we utilized the two 
multi-omics datasets, namely 10XPBMC and Chen2019. Gene expression data from the 

(15)rl,d =

∑

k |cor(sqrt(ck ,d), xk ,l,d)|

K
,
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RNA components were used as the ground truth. Additionally, we identified 500 meta-
cells per dataset using k-means clustering, applied through the function fastcluster(ret
urnType=“metacells”) in scDblFinder (v 1.13.9). We then selected the top 1000 highly 
variable genes and computed Pearson’s and Kendall’s correlation coefficients to compare 
the predicted gene activity scores with the actual gene expression data. Specifically, we 
computed both per-cell or metacell correlation across genes as well as per-gene correla-
tion across cell or metacell.

Benchmarking methods for integration with scRNA-seq data

The cross-modality integration was performed in an unpaired fassion, meaning we 
treated the cells from two modalities as if they were unmatched. Specifically, we used 
GLUE [50] for such integration, where the processing of RNA are fixed, and the features 
and cell embeddings generated using different ATAC-seq processing pipelines are used 
as GLUE’s input. For the construction of the guidence graph in GLUE, we used the top 
2000 high variable genes (HVGs) from the RNA data and the genomic features from 
ATAC data that were (i) selected by the processing method for dimensional reduction 
and (ii) are connected to any HVGs (i.e., overlapping in either the gene body or pro-
moter region).

FOSCTTM are calculated as follows: let X1 and X2 be the cell embeddings of RNA and 
ATAC data within an integrated space, respectively. Each matrix is of size n×m , where 
n represents the number of cells and m is the number of latent dimensions. The rows 
within X1 and X2 are aligned such that each corresponds to the same cell. Define di,j as 
the cosine distance between X1[i, :] and X2[j, :] . For a given cell i, the fraction of samples 
closer than its true match is computed as:

, where Ri is the rank of di,i among the distances di,1, di,2, ..., di,n that are less than or equal 
to di,i . Then, the fraci were also calculated after switching X1 and X2 , and then averaged 
for the cell pair i.

Other indices

Evenness

Evenness (E) quantifies the homogeneity of abundances of different types in a sample 
[51]. Here, we use Eq. 17 to calculate E:

where H(·) is Shannon entropy, and K is the total number of cell types. E ranges from 1K  
to 1, and a higher E indicates that the dataset is more balanced.

(16)fraci =
Ri − 1

n− 1

(17)E =
exp(H(U))

K
,
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Geary’s C

We calculated Geary’s C index [52] of log-transformed fragment counts using spatial 
distance defined by k-nearest neighbor (KNN) graph (k = 20) [14]. Geary’s C is calcu-
lated as:

where N is the total number of cells; xi is the log-transformed fragment counts of cell i, 
wij is the weight of edge between cell i and j on the KNN graph, and S0 is the sum of all 
weights in W .
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