
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Luo et al. Genome Biology (2024) 25:225
https://doi.org/10.1186/s13059-024-03356-x

Genome Biology

Benchmarking computational methods
for single-cell chromatin data analysis
Siyuan Luo1,2, Pierre‑Luc Germain2,3,4, Mark D. Robinson2,3* and Ferdinand von Meyenn1*

Abstract

Background: Single‑cell chromatin accessibility assays, such as scATAC‑seq, are
increasingly employed in individual and joint multi‑omic profiling of single cells. As
the accumulation of scATAC‑seq and multi‑omics datasets continue, challenges in ana‑
lyzing such sparse, noisy, and high‑dimensional data become pressing. Specifically,
one challenge relates to optimizing the processing of chromatin‑level measurements
and efficiently extracting information to discern cellular heterogeneity. This is of criti‑
cal importance, since the identification of cell types is a fundamental step in current
single‑cell data analysis practices.

Results: We benchmark 8 feature engineering pipelines derived from 5 recent meth‑
ods to assess their ability to discover and discriminate cell types. By using 10 metrics
calculated at the cell embedding, shared nearest neighbor graph, or partition levels,
we evaluate the performance of each method at different data processing stages. This
comprehensive approach allows us to thoroughly understand the strengths and weak‑
nesses of each method and the influence of parameter selection.

Conclusions: Our analysis provides guidelines for choosing analysis methods for dif‑
ferent datasets. Overall, feature aggregation, SnapATAC, and SnapATAC2 outper‑
form latent semantic indexing‑based methods. For datasets with complex cell‑type
structures, SnapATAC and SnapATAC2 are preferred. With large datasets, SnapATAC2
and ArchR are most scalable.

Keywords: Benchmark, ScATAC‑seq, Clustering, Feature engineering, Dimensional
reduction

Background
Recent advances in single-cell sequencing technologies have enabled the profiling
of genome-wide chromatin accessibility and histone modifications and allowed the
exploration of epigenetic landscapes within complex tissues. However, the analysis
of single-cell chromatin data is challenging due to two main reasons. Firstly, state-
of-the-art technologies such as single-cell ATAC-seq (scATAC-seq) [1, 2] and single-
cell CUT &Tag (scCUT &Tag) [3] are based on DNA tagmentation, which produces

*Correspondence:
mark.robinson@mls.uzh.ch;
ferdinand.vonmeyenn@hest.
ethz.ch

1 Laboratory of Nutrition
and Metabolic Epigenetics,
Department of Health Sciences
and Technology, ETH Zurich,
Zurich, Switzerland
2 Department of Molecular Life
Sciences, University of Zurich,
Zurich, Switzerland
3 SIB Swiss Institute
of Bioinformatics, University
of Zurich, Zurich, Switzerland
4 Institute for Neuroscience,
Department of Health Sciences
and Technology, ETH Zurich,
Zurich, Switzerland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-024-03356-x&domain=pdf
http://orcid.org/0000-0001-9920-3075

Page 2 of 30Luo et al. Genome Biology (2024) 25:225

sparse and noisy signals due to the low copy numbers and rare tagmentation events.
It has been estimated that only 1–10% of accessible regions are detected per cell com-
pared to corresponding bulk experiments [4]. Secondly, unlike in single-cell RNA-
seq data, there are no fixed feature sets for chromatin data. Usually, a set of genomic
regions (e.g., bins or peaks) is first determined, and then the tagmentation events are
counted within each region. For large genomes such as human and mouse, this leads
to very high-dimensional data that not only raises challenges on the time and mem-
ory efficiency of the processing pipelines but also hinders the statistical analysis. On
the other hand, it is commonly assumed that single-cell data is sampled from a cel-
lular state space that is of much lower intrinsic dimensionality than the observed data
[5–7]. Therefore, it is necessary and important to learn a low-dimensional representa-
tion of the data before further analysis.

In the past few years, there have been many efforts on improving feature engineering
and dimensional reduction methods for scATAC-seq data. One idea is to use approaches
that are originally designed for sparse and high-dimensional data (e.g., Latent Semantic
Indexing and Latent Dirichlet Allocation from the natural language processing field) and
directly apply them to the cell-by-region count matrix. Several popular methods fall into
this broad category, although the underlying algorithms differ. For example, Signac [8]
uses Latent Semantic Indexing (LSI), which is a linear dimensional reduction method
consisting of a normalization step (e.g., Term Frequency-Inverse Document Frequency,
TF-IDF) and Singular Value Decomposition (SVD); ArchR [9] employs an iterative pro-
cedure of LSI, in order to refine the feature selection during each iteration; cisTopic lev-
erages Latent Dirichlet Allocation (LDA), a topic modeling method, to discern thematic
structures; SnapATAC [10] uses diffusion maps, and SnapATAC2 uses Laplacian eigen-
maps, both of which are non-linear dimensional reduction methods that work by con-
structing a graph representation of the data and then utilizing the eigendecomposition
of some form of graph matrix. Another group of approaches first uses domain knowl-
edge to aggregate the genomic region set into a much smaller set of meta-features such
as motif hits, k-mers, and genes and then applies dimensional reduction methods such
as PCA on the cell-by-meta-feature matrix. For example, BROCKMAN [11] uses gapped
k-mer frequency of the DNA sequence around insertion points, SCRAT [12] allows the
usage of motifs, DNase I hypersensitive site clusters, genes, or gene sets as features,
and Cicero [13] calculates gene activity scores. A third type of method uses neural net-
work models, such as PeakVI [14], which uses a variational autoencoder, and scBasset
[15], which uses a convolutional neural network. Other ideas include integrating DNA
sequence information, such as in scBasset and CellSpace [16].

Despite a large amount of available methods, there is currently no consensus on the
best usage of these methods for scATAC-seq data. Chen et al. [4] did a benchmark on 10
methods and showed that SnapATAC, cisTopic, and Cusanovich2018 [17] outperform
other aggregation-based methods. Since then, many new methods have been proposed
[8, 9, 14–16], and an updated benchmark is desirable. Although a subset of methods has
been frequently benchmarked in papers of new methods using a few popular datasets, it
is hard to find an agreement between these benchmarking efforts. Therefore, a compre-
hensive and neutral benchmark effort is desired [18] to give an unbiased perspective on
how these methods perform on a large variety of datasets.

Page 3 of 30Luo et al. Genome Biology (2024) 25:225

One way to evaluate the feature engineering and dimensional reduction methods is
to combine them with unsupervised clustering with the aim to identify cell types or cell
states, which is a fundamental step for many downstream analysis [19]. Previous bench-
marking studies [4] for scATAC-seq data have focused on comparing the clustering out-
comes at a single predefined resolution [20]. However, determining the true number of
clusters in advance is not always feasible, and as dataset complexity increases, the choice
of clustering resolution becomes dependent on user-defined parameters and biological
questions [21]. Given that alterations in the number of clusters can have a substantial
influence on many evaluation metrics [22, 23], such evaluations may not fully capture
the scenarios encountered by users during dataset processing and interpretation.

To provide a comprehensive assessment of the methods under investigation, we con-
ducted our evaluation across three distinct levels: cell embeddings, graph structure,
and final partitions. We employed a set of ten metrics to evaluate performance at each
of these levels. By considering multiple aspects of clustering quality, our evaluation
approach aims to provide a more thorough understanding of the strengths and limita-
tions of each method. Based on our results, we provide guidelines for choosing analysis
methods for different data types. Meanwhile, our data and analysis also provide a com-
prehensive framework for benchmarking common single-cell chromatin data analysis
steps.

Results
Benchmark design

To get a comprehensive understanding of the method performance, we used 6 pub-
lished datasets of divergent sizes and sequencing protocols and from different tissues
and species (Additional file 2: Table S1). In the absence of perfect ground truth, we
included datasets with annotations from different information sources, including RNA
modalities, genotypes, FACS-sorting labels, or tissue of origins. This ensures that our
evaluation is not biased by specific assumptions of the ground truth. The coverage and
signal-to-noise ratio (measured by transcription start site enrichment score, TSSE) also
vary a lot across datasets, suggesting that our data collection represents a wide range of
realistic test cases from different experimental protocols.

The benchmarking pipeline (Fig. 1) starts from quality control (QC) and preprocessing
to get the fragment files in BED format. These files serve as the input for each method.
Then feature engineering and dimensional reduction are performed, and a cell embed-
ding matrix is generated. This particular stage is where the various methods are applied.
Subsequently, each embedding matrix is loaded into a common clustering and evalua-
tion pipeline to get the clustering results.

At the feature engineering and dimensional reduction stage, we benchmarked 5 meth-
ods in 8 configurations (Fig. 1). Signac was included as a representative of LSI-based
methods, and it uses a dataset-specific peak set as the genomic regions. Two differ-
ent ways of defining this peak set were tested: (1) aggregate all cells for peak calling, or
(2) first do coarse cell clustering, then do peak calling per cluster and use the merged
peak sets from all clusters. The iterative LSI in ArchR was also included and tested
on either genomic bins or merged peaks. In addition, we assessed SnapATAC and its
recently updated version, SnapATAC2. For SnapATAC2, when calculating the pairwise

Page 4 of 30Luo et al. Genome Biology (2024) 25:225

cellular similarity matrix, it allows the usage of either Jaccard or Cosine distance. So,
we tested both metrics to see how appropriate they are for the sparse and near-binary
data. Besides, while aggregating regions based on biologically meaningful features such
as motifs has tended to have poor performance [4], ad hoc feature clustering and sum-
ming into meta-features was shown to be a viable strategy for doublet detection [24].
We therefore chose to include this strategy as well in our evaluation (for a more detailed
description of each strategy, see the “Methods” section).

In the clustering process, several parameters could affect the clustering performance.
We explored various values of these parameters to study their effects (Fig. 1). These
parameters include the number of features (peaks or bins) been selected, the number
of latent dimensions, resolution, and random seed used in Leiden clustering (see the
“Methods” section). Meanwhile, during the evaluation process, we assessed each method
at different clustering steps including the cell embedding, the shared nearest neighbor
(SNN) graph, and the partition level, to eliminate the effect of potentially suboptimal
parameter choice.

Method performance is dependent on the intrinsic structure of datasets

Among our six datasets, Cell line [9], Atlas1 [25], and Atlas2 [25] consist of mixed
cell lines or cell types from various tissues. These three datasets show a relatively sim-
ple structure, with distinct cell clusters and little hierarchy. Conversely, the remaining

Fig. 1 Benchmark framework. Starting from the .bed format fragment files or the .bam format aligned reads
files, barcode‑level QC is performed, and the filtered fragment files are input to the benchmark pipeline. The
feature engineering step consists of two stages: (i) defining the genomic features and (ii) feature selection
and/or transformation. Approaches for each stage are listed, and respective approaches of each method are
indicated. Next, dimensional reduction is performed to generate the cell embedding matrix. A shared nearest
neighbor (SNN) graph is constructed from the embedding matrix and then used for Leiden clustering.
Evaluations are conducted on the embedding matrix, SNN graph, and final partitions, each using different
metrics. During the evaluation, we explored multiple values for parameters such as the number of latent
dimensions, resolution, and random seed―their positions within the workflow are denoted by blue boxes

Page 5 of 30Luo et al. Genome Biology (2024) 25:225

three datasets, derived from specific tissues, carry inherent complexity, including closely
related subtypes and/or hierarchical structures. This division is reflected by the average
levels of many evaluation metrics: the simpler datasets show a higher average Adjusted
Rand Index (ARI) and lower cluster Local Inverse Simpson Index (cLISI) and Proportion
of Weakly Connected (PWC) score and conversely (Figs. 2 and 3a). Through our analy-
sis, we noticed that some methods performed relatively better on the simpler or more
complex tasks.

As mentioned above, we first evaluated the cell embedding and SNN graph-level out-
puts (Fig. 2). The cLISI, which measures the purity of neighborhood composition in the
embedding space, was always close to 1 in easy tasks and showed little discrimination
between methods. This indicates that most local neighborhoods (k = 90) contain a sin-
gle cell type in the embedding space. On the contrary, the Silhouette width is calculated
between a cell and a whole cluster (k > 300). We observed that the average Silhouette
width (ASW) sometimes showed inconsistent rankings compared to other metrics.
While the Silhouette score has commonly been utilized for benchmarking clusterings
in single-cell datasets, a potential issue is that Euclidean distance may not be suitable for
accurate assessments in high-dimensional spaces over long-range distances [5]. There-
fore, we consider the Silhouette score calculated using Euclidean distance at the cluster
level to be less appropriate for our analysis. Nevertheless, we considered the fraction of

Fig. 2 Embedding‑ and graph‑level metrics averaged across all cells or all cell classes for each dataset; each
subpanel represents an evaluation metric. Bars are sorted from the best to the worst performance

Page 6 of 30Luo et al. Genome Biology (2024) 25:225

negative Silhouette (FNS) to be relatively more robust to certain space transformations
and thus more appropriate here. In two of the three relatively easy tasks, ArchR_peaks
and ArchR_tiles exhibited the highest FNS, followed by Signac_all_cell_peaks and Sig-
nac_by_cluster_peaks, while SnapATAC, SnapATAC2_cosine, and aggregation always
displayed close to 0 FNS. Consistently, ArchR showed the worst PWC score in two of the
three easy tasks, followed by Signac.

At the clustering level, the 6 evaluation metrics measure multiple aspects of the clus-
tering performance (Fig. 1). ARI, Variation of Information (VI) measure the overall
agreement between the clustering results and the ground-truth annotation. The variant
of ARI (denoted by ARI2) adjusts for the class size bias and is more sensitive to errors
in small classes. One of the two Adjusted Wallance Indices, AV, and Mutual Informa-
tion (MI) reflect mostly the homogeneity of clusters (i.e., the degree to which it includes
only cells of one class), while the other Adjusted Wallance Indices, AW, represents the
completeness of true classes in the clustering. Since the clustering solution varies by

Fig. 3 Clustering results. a The adjusted Rand Index (ARI) plotted against various number of clusters; each
subpanel represents a dataset. Each point represents a clustering solution obtained by varying the resolution
parameter and the random seed in Leiden algorithm. The line plot is the average ARI at a given number of
clusters. b Heatmaps displaying the normalized areas under the curve (AUC) from plots similar to a, but for
various partition‑level metrics. The color scale indicates deviations from the column‑wise median scaled by
the matrix‑wise median absolute deviation [23]. It provides a comparison of relative performance between
methods, and is unified across datasets and robust to outliers

Page 7 of 30Luo et al. Genome Biology (2024) 25:225

using different resolutions and random seeds, these metrics would also vary across these
parameters. As shown in Fig. 3a, ARI is strongly affected by the number of clusters. Usu-
ally, the best ARI is achieved at the cluster number that is equal or close to the ground-
truth number of classes, and then as the cluster number increase or decrease, ARI can
deteriorate dramatically. We therefore inspected multiple combinations of resolutions
and random seeds that give different numbers of clusters and summarized the results
using normalized areas under the curve (AUC, see the “Methods” section), as shown in
Fig. 3b. The AUC of ARI showed that ArchR related methods tend to have a lower rank
than SnapATAC2 based methods and that datasets 10XPBMC showed less discrimina-
tion between methods than other datasets, which is consistent with Fig. 3a. These obser-
vations confirm the use of AUC as a good summary of results across parameters.

For clustering tasks that are relatively easy, the number of clusters that provides the
highest ARI value is usually equal to the number of classes of the ground truth (Fig. 3a),
with a few exceptions. ArchR_tiles and ArchR_peaks achieved the best ARI using fewer
clusters than the true classes in datasets Atlas1 and Atlas2, and then their performance
starts to deteriorate as the number of clusters increases. This is because ArchR failed in
separating small similar classes from one another and instead segregated other classes
(Fig. 4a,b, Additional file 1: Fig. S1a-c,e). Signac_all_cell_peaks and Signac_by_cluster_
peaks are among the best performing methods in the Atlas2 dataset (Fig. 3a, b) but also
segregated classes in Atlas1 (Additional file 1: Fig. S1f,g). In contrast, SnapATAC, SnapA-
TAC2_cosine, SnapATAC2_jaccard, and the aggregation method performed consistently
well for the easy tasks in the sense that the optimal ARI is always achieved at the correct
number of clusters (Fig. 3a); in addition, the clustering is nearly perfect (Fig. 4c,d). As
noted in the cell line task, SnapATAC seems to have the worst performance according to
ARI when over-clustering (Fig. 3a), but this is because it segregated a large class (293T)
compared to what SnapATAC2 segregated (GM12878) (Additional file 1: Fig. S2b,c);
this is an example of the cluster size bias of ARI. The adjusted version, ARI2, does not
show a preference for SnapATAC2 over SnapATAC (Additional file 1: Fig. S2a), further
underscoring the importance of considering multiple evaluation metrics. Other parti-
tion-based metrics indicate that aggregation, SnapATAC, and SnapATAC2 are the best
methods, followed by Signac; ArchR performed worst (Fig. 3b). Overall, for easy tasks,
SnapATAC, SnapATAC2, and the aggregation method performed the best , followed by
Signac, while ArchR had a difficult time correctly clustering rare cell types.

(See figure on next page.)
Fig. 4 a-f True classes and their fractions of agreement with the predicted clusters. a and b are ArchR_tiles
on Atlas1, c and d are aggregation and SnapATAC2_cosine on Atlas1, and e and f are aggregation and
SnapATAC2_cosine on 10XPBMC. The x‑axis is the predicted clusters, and the y‑axis is the ground truth
classes. The colors of tiles indicate the proportion of cells from the corresponding true class (each row sums
up to one). A clearer diagonal structure indicates better agreement. ARI and ARI2 are calculated and shown
on the top right. The bar plot on top shows the value of AV (the “Methods” section) and can be interpreted
as the homogeneity of the corresponding clusters. The bar plot on the right shows the value of AW and
represents the completeness of each true class in the prediction. The color of the bars shows the proportion
of cells in each cluster/ground truth class. In title, the corresponding datasets, methods, and number of
clusters are indicated. g Corresponding UMAP given by aggregation and SnapATAC2_cosine on dataset
10XPBMC. The aggregation method did not resolve correctly CD14 vs CD16 monocytes, as well as CD4 vs
CD8 naive T cells

Page 8 of 30Luo et al. Genome Biology (2024) 25:225

For complex datasets, the overall cLISI, FNS, and PWC increased compared to sim-
ple datasets (Fig. 2). Specifically, on average more than 20% cells of each true class have
a negative Silhouette score, and more than 8% cells of each true class are weakly con-
nected to the belonging communities in the SNN graph. In datasets Buenrostro2018 [26]

Fig. 4 (See legend on previous page.)

Page 9 of 30Luo et al. Genome Biology (2024) 25:225

and 10XPBMC, cLISI and PWC did not show much discrimination between methods.
FNS is also similar across methods in 10XPBMC, although slightly worse for Signac_all_
cell_peaks, Signac_by_cluster_peaks, and SnapATAC in Buenrostro2018. In Chen2019
[27], the aggregation method exhibited the best local neighborhood purity reflected in
the cLISI score, followed by SnapATAC, Signac_all_cell_peaks, and Signac_by_cluster_
peaks, while ArchR_tiles and ArchR_peaks were the worst. FNS indicated that for Sig-
nac and ArchR, more than 60% cells of each true class have a negative Silhouette, while
for other methods, this value is less than 40% . In alignment with this, ArchR and Signac
also exhibited the worst PWC values in this dataset.

When comparing the clustering results, we noted that the number of clusters of the
highest ARI does not always equal the number of classes in the annotation for difficult
clustering tasks (Fig. 3a). This appears to be because of populations that are hard to sep-
arate, either because they are rare, as in the Chen2019 dataset (Additional file 1: Fig. S3),
or because they are very similar to each other, as intermediate and memory B cells in the
10XPBMC dataset (Fig. 4e, f, g).

For these difficult clustering tasks, SnapATAC and SnapATAC2_cosine consistently
performed the best, while ArchR_tiles and ArchR_peaks were the worst (Fig. 3a, b).
SnapATAC2_jaccard seems to have a worse performance than SnapATAC and SnapA-
TAC2_cosine in Buenrostro2018 according to ARI and AV, but it showed a comparative
performance of ARI2. The aggregation method also showed good performance in Buen-
rostro2018 and Chen2019 but slightly underperformed in 10XPBMC. The decrease in
performance of aggregation in 10XPBMC is mostly because of the mixing of subtypes,
as AV and MI indicate (Fig. 3b), and is clear in Fig. 4e, g. Signac tended to perform bet-
ter than ArchR no matter which configuration was used, and in dataset Buenrostro2018,
it was comparable to SnapATAC and SnapATAC2. Overall, for difficult tasks, we found
that SnapATAC, SnapATAC2_cosine, and SnapATAC2_jaccard are the top methods, fol-
lowed by the aggregation approach, then Signac, while ArchR is the worst.

Method choices at different feature engineering steps

This section focuses on the analysis of various choices made during the process of fea-
ture engineering, specifically regarding genomic features, peak calling methods, and dis-
tance metrics, and their impact on the overall clustering performance.

Peaks versus bins

Due to the absence of a standard feature set for chromatin data, researchers often resort
to using either genomic bins or peaks, each with its own limitations [28]. Genomic bins
suffer from the arbitrary selection of bin length and break-up positions. On the other
hand, peaks align more closely with functional intervals, but present challenges in their
identification in rare cells, and require additional processing when integrating different
datasets.

To assess the clustering performance with these two types of genomic features, we
compared the results obtained using ArchR_tiles (non-overlapping genomic bins of
500bp) and ArchR_peaks (MACS-2 consensus peaks across clusters) (Additional file 1:
Fig. S4a, Fig. S5a). Among most datasets we inspected, the performance of these two
approaches is very similar across our metrics. This is consistent with claims in the

Page 10 of 30Luo et al. Genome Biology (2024) 25:225

literature [29]. Only in the Chen2019 dataset, ArchR_peaks exhibited a slightly better
cLISI score (Additional file 1: Fig. S4a) and higher clustering-level performance than
ArchR_tiles (Additional file 1: Fig. S5a), mostly because it separated classes “L4 1” and
“L4 2” better (Additional file 1: Fig. S3). In the Atlas2 dataset, the utilization of peaks
demonstrated improved cluster homogeneity, as evidenced by metrics such as AV, MI,
and FNS, but not necessarily enhanced class completeness in AW (Additional file 1: Fig.
S4a, Additional file 1: Fig. S5a). In summary, we found that the use of peaks exhibited
marginal or no significant improvement over the use of bins.

Peak calling methods

If peaks are used as the genomic features, to facilitate the identification of population-
specific peak sets, a common approach is to employ a two-step peak calling procedure,
in which cells are first clustered using global peaks, before a second round of per-cluster
peak calls. In our study, we tested two Signac pipelines, namely Signac_all_cell_peaks
and Signac_by_cluster_peaks, to compare the effectiveness of one-step versus two-step
peak calling. We observed that at the embedding and graph level (Additional file 1: Fig.
S4b), these two approaches showed nearly identical performance. At the final partition
level, the performance was still very similar in easy tasks, and only on specific difficult
datasets did one method perform slightly better than the other. Specifically, in the Buen-
rostro2018 dataset, Signac_by_cluster_peaks outperformed Signac_all_cell_peaks (Addi-
tional file 1: Fig. S5b), whereas in the Chen2019 dataset, Signac_all_cell_peaks yielded
slightly better results (Additional file 1: Fig. S5b, Fig. S6a,b), mostly because L6 IT and
L5/6 IT cells are not properly grouped by Signac_by_cluster_peaks. Overall, our findings
revealed that the two-step approach does not always outperform the one-step approach.

Number of features

The methods benchmarked vary in their default settings, particularly in the default
number of features they employ, which can differ by an order of magnitude. To inves-
tigate the contribution of this parameter to the different performances observed, we set
ran the methods forcing them to use the same specific number of features (Additional
file 1: Fig. S7). In general, we observed that ArchR appears to benefit from slightly higher
number of features than used by default and that SnapATAC and SnapATAC2 did not
perform well with such low number of features and required ideally 200k features. This
highlights the importance of having methods capable of efficiently handling such high
dimensionality.

Distance metrics

Despite the debate between using peaks or bins, scATAC-seq data is usually regarded as
binary, and therefore in SnapATAC2, either Jaccard or cosine similarity was used to con-
struct the affinity matrix. We observed in our results that both similarity metrics showed
very similar cLISI and PWC scores across datasets; using cosine similarity gave better
FNS scores in two of the six datasets (Additional file 1: Fig. S4c). Metrics of clustering
results indicated that the performance of cosine similarity was very similar to Jaccard
similarity (Additional file 1: Fig. S5c), especially after being adjusted for class size effects

Page 11 of 30Luo et al. Genome Biology (2024) 25:225

using ARI2. Overall, our results proved that both similarity metrics work comparably
well in these clustering tasks.

Dimensions of the latent space

The five methods we evaluated use different underlying algorithms for dimensional
reduction. ArchR and Signac use truncated SVD, which identifies and preserves direc-
tions of maximum variance in the data. SnapATAC and SnapATAC2, on the other hand,
apply graph-based spectral embedding. Specifically, SnapATAC2 uses Laplacian Eigen-
maps, which removes higher-frequency variations from one node to its neighbors, and
preserves low-frequency structures of the graph [30]. In the aggregation method, fea-
ture-level aggregation is performed, followed by principal component analysis (PCA).
The goal is to exploit the redundancy of the high-dimensional genomic feature space to
average out potential noise.

Considering the varying assumptions and goals of each dimension reduction method,
we investigated if different numbers of dimensions across methods could contain dis-
tinct information and how the choice of the number of dimensions for the embedding
space affects performance. We examined a series of d values, namely 15, 30, 50, 100, and
calculated the embedding-level and graph-level evaluation metrics (see Additional file 1:
Fig. S8a). We observed that SnapATAC and SnapATAC2 were particularly sensitive
to this parameter, with performance rapidly deteriorating as d increased. This trend is
observable in the increasingly blurred structures in UMAP in Additional file 1: Fig. S8b
and suggests that the later dimensions may contain less cell-type-relevant information.
In contrast, the aggregation method demonstrated robustness to this parameter across
most datasets. This aligns with the assumption that the aggregation method removed
the noise by averaging it out, so that later dimensions are also smoothed signals. Sig-
nac and ArchR displayed an intermediate trend, and later eigenvectors may also have a
smaller signal-to-noise ratio, especially in more complex datasets.

Stability of clusterings and robustness of clustering performance

We observed that in certain cases, the inherent randomness of Leiden algorithm (the
“Methods” section) can lead to instability in the clustering results (e.g., Additional file 1:
Fig. S9). To account for this, we performed the clustering steps using 5 different ran-
dom seeds and compared the clustering results by calculating pairwise ARI (Additional
file 1: Fig. S10 and Fig. S11). The variability in the clustering outcomes varies depend-
ing on the datasets, methods, and resolution parameters employed. Generally, using the
same resolution value yielded partitions with the same number of clusters. However, in
some cases, changing the random seed resulted in partitions with different cluster num-
bers, leading to increased variability. Notably, in simple datasets, forcing over-clustering
of cells by increasing resolution tends to amplify the variability (Additional file 1: Fig.
S11). This can be attributed to the fact that the simpler datasets only have flat cluster-
ing structures, and increasing the resolution merely introduces random splits within the
true communities.

We then focused on the resolution value that yielded the highest clustering perfor-
mance, as measured by ARI against the ground truth. Specifically, we looked at how
much the pairwise ARIs between seeds deviate from 1, which reflects the level of

Page 12 of 30Luo et al. Genome Biology (2024) 25:225

instability in the clustering outcomes. Interestingly, we found a positive correlation
between the deviation and PWC value of the SNN graph (Additional file 1: Fig. S12a).
Furthermore, we observed that the variation in clustering outcomes was more promi-
nent across datasets rather than between methods.

In order to assess the impact of clustering result variability on the evaluation of clus-
tering performance, we examined the variability of performance measurements using
different random seeds. Notably, despite the instability observed in the clustering
results, we found that the similarity to the ground truth remained relatively consistent
(Fig. 5a, coefficient of variation (CV) of ARI; Additional file 1: Fig. S13). This consistency
provides us with a solid foundation for confidently interpreting the evaluation results.

LSI-based methods show strong library size biases

Large library size variation arising from technical biases are often observed in single-cell
data, and can potentially confound the downstream analysis [19]. Therefore, we exam-
ined to what extent the cell embedding of each method was driven by library size. By
looking at the scatter plot of each latent dimension against the empirical library size, one
can see that LSI-based methods (Signac, ArchR) showed a strong library size bias across
all datasets (Additional file 1: Fig. S14). The difference between cell types may reflect
biological variation, since global chromatin accessibility can differ during cell differentia-
tion. However, the difference within each cell type is more likely due to technical aspects
such as sampling effects. Therefore, we quantified this bias by calculating, for each latent
dimension, the Pearson’s correlation coefficient r with the square root of library size
per cell type, and averaged the absolute value across all cell types. This value is further
averaged across the first 5 components (Fig. 5b, average absolute correlation). Note that
we followed the suggestion in Signac’s tutorial and always removed latent components
r > 0.75 with the library counts. In all our datasets, this criterion always removed the
first component of Signac and ArchR embeddings, while no component was removed

Fig. 5 a Coefficient of variation of ARI between predicted clusterings and the true cell types. b Average
absolute Pearson’s correlation with fragment counts; for a given latent dimension and a given cell type, the
Pearson’s correlation coefficient is calculated between the latent axis and the square root of fragment counts.
This correlation value was then averaged across cell types and across the first 5 latent components

Page 13 of 30Luo et al. Genome Biology (2024) 25:225

for other methods. After this filtering, the average absolute correlation is still between
0.5 to 0.75 in Signac and ArchR, followed by aggregation-based method and SnapATAC2
using cosine distance, where the correlation is around 0.2–0.5, then SnapATAC and Sna-
pATAC2 using Jaccard distance, with correlation smaller than 0.3. We further evaluated
how the library size bias affects the whole cell embedding by calculating the spatial auto-
correlation of library size on the k nearest neighbor graph using Geary’s C index (Addi-
tional file 1: Fig. S12b). Signac and ArchR tend to have a positive spatial autocorrelation,
while aggregation, SnapATAC, and SnapATAC2 tend to have a smaller autocorrelation.
In conclusion, LSI-based methods such as Signac and ArchR generate latent representa-
tions that are strongly associated with library size, while SnapATAC and SnapATAC2
using Jaccard distance are less affected.

Benchmarking methods for predicting gene activity scores

Besides clustering cell types, another typical analysis of scATAC-seq data involves pre-
dicting gene activities. In the five methods we discussed, four offer capabilities for infer-
ring gene activities. ArchR’s [9] study included a comparative analysis of various gene
score models and found that ArchR’s optimal model enhanced gene score prediction
over other methods. Here, we independently benchmarked these four methods for gene
activity prediction, presenting our results in a manner akin to ArchR’s study for com-
parative purposes. By using the two multi-omics datasets, we compared the correlation
between the RNA data and the predicted gene scores. Despite the prevalence of zeros
and ties in gene expression and gene activity data due to high dropout rates, we found
that the outcome rankings between methods using Pearson’s correlation (Fig. 6) closely
matched those obtained with Kendall’s correlation (Additional file 1: Fig. S15). By look-
ing at per-gene correlations across cells and metacells (as shown in Fig. 6a, b, e, and f),
we observed that ArchR slightly outperformed Signac in the 10XPBMC dataset, yet it
was less effective in the Chen2019 dataset. Contrary to the findings reported in ArchR’s
study, SnapATAC and SnapATAC2 yielded better results than both ArchR and Signac
in several instances (refer to Fig. 6a, c–h). These findings underscore the importance of
conducting neutral and independent benchmarking of computational tools.

Differences in scATAC-seq processing propagate to integration with scRNA-seq

We also evaluated the impact of different scATAC-seq processing techniques on their
ability to integrate with scRNA-seq data. We performed cross-modality integration
using the two multiome datasets by treating the cells from two modalities as if they were
unmatched (i.e., unpaired integration) and used pairing information as the ground truth
for evaluation. An effective ATAC processing method should ideally bring the corre-
sponding matched cells into close proximity within the integrated space. We measured
the fraction of samples closer than the true match (FOSCTTM) [31] after integration
(see the “Methods” section). Although performances of the various methods were com-
parable (Additional file 1: Fig. S16), the differences were largely consistent with our
evaluations on previous tasks (e.g., SnapATAC/SnapATAC2 generally providing better
integration, and ArchR underperforming).

Page 14 of 30Luo et al. Genome Biology (2024) 25:225

Time and memory complexity

Due to the large feature space in scATAC-seq data, it is crucial to use methods that scale
efficiently in terms of time and memory usage. We monitored the CPU time and peak
memory usage in our Snakemake pipeline (Fig. 7a, b). For the aggregation method, we
tracked the program either from the start of peak count matrix generation (aggregation
+ Signac) or subsequent to it. We found that SnapATAC2 performed the best in terms
of runtime, while ArchR was the most memory efficient. SnapATAC had low memory
consumption with small datasets; however, its memory usage increased rapidly as the
dataset size increase, making it the least scalable option.

ArchR and SnapATAC2 both use on-disk storage instead of loading the entire data-
set into memory. This is achieved by storing large-sized data in an HDF5-format file on
disk and using an object to store small-sized metadata, which contains references to
the corresponding files on disk and facilitates synchronization between the on-disk and
in-memory data representations. This strategy makes them memory efficient and par-
ticularly well-suited for handling scATAC-seq data. For example, it enables ArchR and
SnapATAC2 to handle objects that use genome-wide bins with a size as small as 500bp.
In our analysis on number of features, ArchR had a increasing peak memory usage as the

Fig. 6 Distribution of Pearson’s correlations between the inferred gene activity score and the aligned gene
expression. a–d are data from 10XPBMC dataset, and e–h are data from Chen2019 dataset. In a, b, e, and
f, the per‑gene correlations are calculated across cells (a, e) or metacells (b, f) (500 metacells in total). In c
and g, the per‑cell correlations are calculated for each gene. In d and h, the per‑metacell correlations are
calculated for each gene. The blue dashed line represents the median value of the best‑performing model.
Violin plots represent the smoothed density of the distribution of the data

Page 15 of 30Luo et al. Genome Biology (2024) 25:225

feature number increases (Additional file 1: Fig. S17), although the impact of the feature
count on the memory and computational time was less pronounced than the effect of
the cell count (Additional file 1: Fig. S17 and Fig. S18).

Depending on the method for feature matrix construction, the running time for aggre-
gation can vary. The aggregation steps are relatively fast, e.g., within 10 min for 20000
cells. For ArchR and Signac, it depends on how the genomic features are defined. Unsur-
prisingly, ArchR_peaks nearly doubled the running time compared to ArchR_tiles, and
Signac_by_cluster_peaks doubled the time compared to Signac_all_cell_peaks. This is
because ArchR_peaks/Signac_by_cluster_peaks performed a second round of process-
ing on top of ArchR_tiles/Signac_all_cell_peaks. ArchR_peaks and Signac_by_cluster_
peaks aim to trade speed for improved identification of small cell classes.

Discussion
We benchmarked 8 data processing pipelines derived from 5 different methods devel-
oped for scATAC-seq data, focusing on their capability to discern cell heterogeneity and
delineate cell types. By using 10 metrics to assess the performance at the embedding,
graph, and partition levels, we systematically examined each pipeline and evaluated the
impact of key parameter choices at each data processing stage. We observed that the
ranking of methods is dependent on the complexity of the datasets. For simpler data-
sets with distinct cell types, aggregation outperformed other methods and demonstrated

Fig. 7 The CPU time and peak memory usage of each method across datasets of different sizes

Page 16 of 30Luo et al. Genome Biology (2024) 25:225

superior performance in identifying small cell classes. SnapATAC2 emerged as the sec-
ond-best method, while ArchR and Signac struggled to identify rare types. For complex
datasets presenting hierarchical clustering structures and highly similar subtypes, Sna-
pATAC and SnapATAC2 proved to be the most efficient in distinguishing subtypes. The
aggregation method is second best, although occasionally it failed to detect differences
between subtypes. Finally, SnapATAC and SnapATAC2 were also the best overall meth-
ods to infer gene activity scores.

Our evaluation metrics measured the efficacy of feature engineering at each stage
of the clustering pipeline, including cell embedding learning, SNN construction, and
graph-based partitioning. On one hand, this approach allows us to dissect distinct facets
of clustering performance. For instance, ARI2 offers a sensitive measure of the quality
of rare cell type identification, while PWC, at the SNN graph level, quantifies the extent
of isolation between cell types and is well-suited for evaluating both small and closely
related classes. On the other hand, our metrics facilitate a rigorous evaluation that is
not confounded by potentially suboptimal parameter choices at intermediate stages. For
example, the AUC of ARI provides an overall performance summary across different
resolutions, while cLISI assesses the cell embedding, which is at the stage prior to the
determination of resolution and partitioning. The ranking of methods defined by dif-
ferent metrics is not always consistent with each other, which is a common observation
in various benchmarking efforts. This further highlights the importance to incorporate
multiple metrics and allows users to focus on the most relevant aspects of the evaluation
according to their biological questions.

We built our benchmark on 6 datasets with different types of annotations serving as
the ground truth. Among these, 4 datasets contain annotations from either genotype,
tissue origins, or FACS labels, which we regard as high confidence for those specific
datasets. The remaining 2 datasets are multi-omic data, where RNA modality is used to
infer annotation. In these two datasets, we observed that the number of natural clusters
does not always agree between RNA and ATAC, and the best ARI is not always achieved
at the number of clusters of RNA data. While there may be discrepancies between RNA
and ATAC classes, for example if epigenetic differences lack a transcriptomic correlate,
these discrepancies are unlikely to significantly bias our comparisons. However, for cell
state differences that are specific to epigenetic changes but lack transcriptomic altera-
tions, our benchmark will not be able to include their comparison. In such cases, multi-
omics datasets with multiple epigenomic layers might help.

A potential limitation of our study lies in the composition of our datasets, which pre-
dominantly consist of well-defined cell types rather than a spectrum of continuous cell
states. This could bias our evaluation in favor of methods that facilitate clear separation
between distinct states. In scenarios where mapping a continuous trajectory is critical
for downstream analyses, the preferred method might differ. However, cell-type cluster-
ing remains at the heart of single-cell data analysis. Identifying the most effective feature
engineering method to discern cell type differences also contributes towards establish-
ing a foundation for studying state-informative features in future studies.

We believe that our benchmark not only provides practical guidance for users in
choosing methods for their biological analyses but also illuminates areas for potential
improvements in future method development. First, while previous benchmarks have

Page 17 of 30Luo et al. Genome Biology (2024) 25:225

concluded that methods based on aggregating accessible chromatin regions at the motif
or gene level generally underperform [4], our benchmark illustrates that a purely data-
driven aggregation strategy can achieve top performance. This suggests that redundant
information in scATAC-seq data exists and can be harnessed to reduce noise.

Our analysis also highlights the challenge of mitigating library size effects. Library
size effects, caused by technical variations, have long been observed in next-generation
sequencing data, and normalization steps to correct these are now standard practice for
single-cell RNA-seq data [19, 32, 33]. However, in the context of scATAC-seq data, this
issue has not been adequately characterized or addressed. One aim of TF-IDF transfor-
mation performed in Signac is to correct for the library size difference between cells.
From our observation, this is not very efficient. Linear regression-based normalization
implemented in SnapATAC and SnapATAC2 seems to work well, but further compari-
son is needed. The binarization of peaks or bins can also be regarded as a normaliza-
tion strategy [33], but recent work has also shown that retaining the count information
instead of binarizing it can improve the performance of some models [28, 34], indicating
that even in single cells, chromatin accessibility may actually be quantitative. In sum-
mary, striking a balance between removing the technical variance and avoiding excessive
correction that could mask biologically meaningful differences in global or local acces-
sibility levels remains a challenge.

The field of computational methods for scATAC-seq data is continually advancing,
with new methodologies regularly emerging. There is an ongoing need for robust and
neutral benchmarking efforts that serve both method users and developers effectively.
While we have incorporated the most prevalent and recent methods in this study, we
acknowledge that the immediacy of our work will inevitably diminish over time. To
facilitate future benchmarking work, we offer a reproducible and expandable Snakemake
pipeline of our benchmarking framework, and have made our processed datasets and
intermediate data publicly available.

Conclusions
Taking together, we suggest choosing method for scATAC-seq analysis according to the
complexity and size of the targeted dataset. For datasets with a simple structure where
cell types are distinct from each other, all methods generally perform well; if small cell
classes are expected and of interest, the aggregation method, SnapATAC, or SnapA-
TAC2 are preferred. For more difficult tasks with hierarchical clustering structures and
highly similar subtypes, SnapATAC and SnapATAC2 are among the best choice.

When the dataset is large (e.g., more than 20000 cells), SnapATAC is not very memory
efficient on a typical desktop computer, and SnapATAC2 is preferred. Signac generally
performs better than ArchR, but ArchR is more memory efficient. Aggregation steps do
not add much time and memory consumption on top of Signac, so whenever Signac is
used, the aggregation method can also be performed easily.

During the feature engineering steps, our results suggested that the choice peaks ver-
sus bins, or one-step versus two-step peak calling, are usually comparable in their per-
formance. Users can choose according to their preferences. If SnapATAC or SnapATAC2
is used, a dimension of the latent space between 10 and 30 is recommended. For Signac

Page 18 of 30Luo et al. Genome Biology (2024) 25:225

and ArchR, 10 to 50 dimensions represent a reasonable range, while for aggregation, a
larger number of dimensions is still suitable.

Methods
Datasets and preprocessing

For our benchmark, we used 6 scATAC-seq or single-cell multi-omics datasets that are
publicly available [9, 25–27] (see Additional file 2: Table S1; links to the public reposito-
ries can be found in the “Availability of data and materials” section). For datasets where
the fragment files are publicly available, these were downloaded from the author’s repos-
itories. For datasets where the fragment files are not available, we downloaded the bam
files and used the command line tool Sinto [35] to create fragment files.

For each scATAC-seq (or the ATAC component of the multi-omic) dataset, we first
performed per-cell quality control (QC) using ArchR (v1.0.3) [9] by thresholding the
Transcription Start Site Enrichment Score (TSSE) and the number of unique fragments;
the thresholds for each dataset are in Additional file 2: Table S2. Then, we applied dou-
blet removal procedures using addDoubletScores() and filterDoublets()
in ArchR. Key parameters for these two functions are in Additional file 2: Table S2,
including k in function addDoubletScores() and filterRatio in function filter-
Doublets(). We then filtered the fragment files to keep only cells that passed QC.
For single-cell multi-omics datasets, we filtered by QC of both the ATAC and the RNA
modalities. QC of RNA-seq was conducted using Seurat (v4.3.0) [36] by applying filters
nCount_RNA>800 & percent.mt< 5 for Chen2019 and nFeature_RNA> 200

& nFeature_RNA< 5000 & nCount_RNA< 25000 & percent.mt< 20 for
10XPBMC. Doublets were identified using function scDblFinder() in R package
scDblFinder (v1.13.9) [24] and then removed. Before calling scDblFinder(), Louvain
clustering [37] was performed with resolution= 0.5 for Chen2019 and 0.8 for 10XPBMC
in Seurat. Then, the clusterings results were used in scDblFinder(). All these filter-
ing steps were applied to the fragment files, and the final filtered fragment files were
inputs for the Snakemake pipeline.

Datasets from the human adult single-cell chromatin accessibility atlas

The human adult single-cell chromatin accessibility atlas [25] contains 111 distinct cell
types across 30 tissues and is a rich resource for scATAC-seq data of different cell types.
We took two subsets of this atlas as our evaluation datasets “Atlas1” and “Atlas2.” The
idea is to use the tissue of origin as the ground truth for benchmarking clustering. By
examining the fraction of cells from different tissues for each cell type, we found that
many cell types exist exclusively in one tissue (Additional file 1: Fig. S19). Therefore, we
selected tissue-cell-type pairs by first selecting a subset of cell types that have ≥ 85% of
cells from the same tissue, and then for each of the corresponding tissues, we selected
one cell type randomly but excluded cell types that have less than 300 cells. For each tis-
sue with multiple samples, we selected one sample that contains the maximum number
of cells of that cell type that have passed QC. We used only one sample for each cell type
to eliminate any potential batch effect. For the tissue-cell-type pairs selected for each
dataset, we downsampled cells per cell type, using fractions 0.3 for Atlas1 and 0.5 for

Page 19 of 30Luo et al. Genome Biology (2024) 25:225

Atlas2. The tissue-cell-type pairs and the sampled cell ID for “Atlas1” and “Atlas2” are
available on GitHub [38].

scRNA-seq data annotation

For 10XPBMC and Chen2019 datasets, the RNA modality was subjected to Leiden clus-
tering in Seurat using resolution = 0.5 for Chen2019 and resolution = 0.8 for 10XPBMC.
The resolution for each dataset was determined by first performing Leiden clustering
using a series of resolution values (with the maximum resolution obviously over-cluster-
ing the datasets), then constructing a cluster tree showing the co-clustering consistency
across resolutions [39], and finally choosing a resolution value that gives stable cluster-
ing result and reasonable separation of cells in the UMAP. Then, for each cell, a label was
transferred by reference mapping [36] using Seurat. In the case of the 10XPBMC data-
set, an annotated PBMC reference dataset [40] was utilized for label transfer. As for the
Chen2019 dataset, the scRNA-seq data of the adult mouse brain from the Allen Brain
Atlas [41] served as the reference dataset. Then, we performed some manual curation to
get the final cluster annotation. We describe roughly this process below. For each Leiden
cluster, the majority cell label was token as the label of that cluster. If two clusters got the
same label, we subset all cells from these two clusters and performed multiple rounds
of clusterings on this subset. If the splitting of these two clusters were stable, we labeled
them differently, including “CD4 Naive 1” and “CD4 Naive 2.” Otherwise, we merged
these two clusters.

Feature engineering methods

For all methods, we followed the procedures recommended in the author’s
documentation.

Signac

Starting from the fragment file, Signac first uses MACS2 for peak calling, then performs
LSI on the peak count matrix to obtain a low-dimensional representation. Peak calling
was conducted in two ways: (1) aggregating all cells for peak calling (denoted as “Sig-
nac_all_cell_peaks”) or (2) aggregating cells and calling peaks for each cluster individu-
ally, followed by generating a consensus peak set from the peaks identified in all clusters,
referred to as “Signac_by_cluster_peaks.” LSI consists of 3 steps: (1) normalization using
term frequency-inverse document frequency (TF-IDF), (2) selecting the top 95% most
common peaks, (3) performing singular value decomposition (SVD).

We used the R package Signac (v1.9.0) for its implementation. As suggested by the
tutorial: https:// stuar tlab. org/ signac/ artic les/ pbmc_ multi omic. html, we created a frag-
ment object, called MACS2, and removed peaks on nonstandard chromosomes and
genomic blacklist regions and peaks having width < 20 or width > 10000 . To identify
peaks per cluster, the cell embeddings generated by “Signac_all_cell_peaks” are used to
define clusters using the Louvain algorithm with a default resolution of 0.8.

Subsequently, we performed normalization, feature selection, and linear dimensional
reduction using RunTFIDF() with method=1, FindTopFeatures() with min.
cutoff=”q5”, and RunSVD() with n=100, respectively. As suggested in the tutorial,

https://stuartlab.org/signac/articles/pbmc_multiomic.html

Page 20 of 30Luo et al. Genome Biology (2024) 25:225

the first LSI components often capture sequencing depth. We removed LSI components
that have larger than 0.75 Pearson correlation with the total number of counts.

Aggregation

The aggregation method starts with the peak count matrix where the peak set is identi-
fied using the method “Signac_by_cluster_peaks.” Then, the cell-by-peak fragment count
matrix is used for subsequent TF-IDF normalization and PCA. Minibatch K-means clus-
tering is applied to the PCA to cluster peaks into meta-features (K = 1000 by default).
Ultimately, an aggregated count matrix is obtained by summing the counts per meta-fea-
ture, and PCA is performed on the aggregated count matrix to get the low-dimensional
representation.

We used the function aggregateFeatures() in R package scDblFinder (v1.13.9)
with the default parameters. By default, K = 1000 feature clusters are identified.

ArchR

ArchR takes the fragment files as input and can use either the genomic tiles or peaks
as features. We implemented both options. The “ArchR_tiles” method uses 500-bp non-
overlapping genomic tiles to construct a binarized tile matrix and then performs itera-
tive LSI on the matrix to extract meaningful low-dimensional representations. Similar
to “Signac_by_cluster_peaks” approach, “ArchR_peaks” method first uses the latent rep-
resentation obtained from “ArchR_tiles” for clustering, then performs peak calling per
individual clusters and generates a consensus peak set by merging these peak tracks.
Afterwards, iterative LSI is performed on the peak count matric.

During the iterative LSI process, at each iteration, the top accessible features (in 1st
iteration) or top variable features (since 2nd iteration) are selected for LSI. The resulting
cell clusters are then identified and utilized for feature selection in the subsequent itera-
tion, enabling an iterative refinement of the LSI procedure.

We used the R package ArchR(v1.0.3) for implementation. When running the function
addIterativeLSI(), Louvain algorithm was used for the clustering in intermedi-
ate steps with increasing resolutions, and no subsampling of cells was performed. Other
parameters we used were set to be the default values.

SnapATAC

The SnapATAC method (version 1) takes the fragment files as input and first constructs
a binary cell-by-bin matrix using 5000-bp non-overlapping genomic bins. Then, after fil-
tering out unwanted bins, it computes a pairwise cell-to-cell similarity matrix using Jac-
card coefficient. This kernel matrix is subject to normalization of the coverage bias and
then eigenvalue decomposition (EVD) to get the cell embeddings.

For the implementation, we used the command line tool snaptools (v1.4.8) to create
snap files from fragment files, and the R package SnapATAC (v1.0.0) for the rest of the
processing pipeline. We followed the standard procedures in https:// github. com/ r3fang/
SnapA TAC/ tree/ master/ examp les/ 10X_ PBMC_ 15K, except that we ran the function
runDiffusionMaps() using all cells instead of using landmark cells. This approach
was chosen in order to maintain a consistent basis for comparison with other methodol-
ogies. Furthermore, the datasets employed are of small to moderate size, and running all

https://github.com/r3fang/SnapATAC/tree/master/examples/10X_PBMC_15K
https://github.com/r3fang/SnapATAC/tree/master/examples/10X_PBMC_15K

Page 21 of 30Luo et al. Genome Biology (2024) 25:225

methods using all cells does not pose significant efficiency issues, which is the primary
concern that subsampling procedures are designed to address.

SnapATAC2

SnapATAC2 is the version 2 of SnapATAC method and it is released as a python package.
By implementing AnnData object and optimizing the on-disk representation, it facilitates
the processing of high-dimensional data. As demonstrated in the tutorial https:// kzhang.
org/ SnapA TAC2/ tutor ials/ pbmc. html, SnapATAC2 first creates a cell-by-bin matrix
containing insertion counts using 500-bp bins by default. Then, a pairwise cell-to-cell
similarity matrix is generated, using either Jaccard coefficient (SnapATAC2_jaccard) or
cosine similarity (SnapATAC2_cosine). With this kernel matrix, the symmetric normal-
ized graph Laplacian is computed, and the bottom eigenvectors of the graph Laplacian
is used as the lower dimensional representation. For implementation, we used SnapA-
TAC2 (v2.2.0). To select features, we removed bins overlapping with the blacklist regions
as always done in other methods and called function snapatac2.pp.select_fea-
tures() with parameters min_cells=10, most_variable=1000000.

Clustering

In this study, we used a well-established graph-based clustering method for all cluster-
ing analyses. We first constructed a shared nearest neighbor graph and then applied the
Leiden algorithm [20] using modularity as the optimization objective, as implemented in
the Seurat package (v4.3.0) [36]. The Leiden algorithm incorporates a step where node
partitions are refined by randomly reassigning nodes to communities that increase the
objective function, enabling a wider exploration of the partition space [20]. To account
for the inherent stochasticity in the Leiden algorithm, we ran it with 5 different random
seeds: 0, 2, 5, 42, and 123. Since the optimal number of clusters is not known a priori,
a range of resolutions was used to obtain diverse clustering solutions yielding varying
numbers of clusters. The parameters we used to achieve the optimal solution for each
method and dataset are presented in the Additional file 2.

Evaluation metrics

According to the data structure our evaluation applied to, we have classified our evalu-
ation metrics into three categories: embedding-based, graph-based and partition-based
(Fig. 1).

ASW, FNS

The silhouette width quantifies the average distance between an observation and the
other observations within its cluster, relative to the average distance to the nearest
neighboring cluster [42]. The Average Silhouette Width (ASW) is calculated as the mean
silhouette width across all observations within a cluster, providing insights into the com-
pactness of the cluster and its separation from other clusters. ASW values range from
− 1 to 1, with 1 indicating dense and well-separated clusters, 0 representing clusters that
overlap, and − 1 indicating significant misclassification, where within-cluster dispersion
is greater than between-cluster dispersion.

https://kzhang.org/SnapATAC2/tutorials/pbmc.html
https://kzhang.org/SnapATAC2/tutorials/pbmc.html

Page 22 of 30Luo et al. Genome Biology (2024) 25:225

A limitation of ASW is that it is not invariant to the scaling of the space. As a solution, we
introduced the fraction of negative Silhouette score (FNS) to assess the cluster-level pro-
portion of cells with a negative Silhouette width. FNS characterizes the fraction of cells with
a smaller distance to cells within another cluster compared to their own cluster. It is robust
to linear scaling and enables more meaningful comparisons across different dimensional
reduction methods.

cLISI

The LISI has been proposed to evaluate either the mixing between batches or the separa-
tion between cell types [43]. To calculate it, a weighted k-nearst neighbor (kNN) graph is
first generated based on Euclidean distance within an embedding space. Subsequently, for
each node in the graph, it computes the expected number of cells needed to be sampled
before two cells are drawn from the same batch/clusters within its neighborhood. We used
the cluster-based variant of LISI, known as cluster LISI (cLISI), as a metric to assess the
embedding representation. This is implemented by using the function compute_lisi()
from the R package lisi v1.0 [43, 44]. cLISI ranges from 1 to K, where K is the total num-
ber of cell types in the dataset. One indicates a neighborhood consisting exclusively of cells
from a single cell type, while K corresponds to complete mixing, with cells from all cell
types found within the neighborhood.

PWC

Partition-based metrics are susceptible to the influence of clustering parameters, whereas
embedding-based metrics rely on the proper definition of similarity within the embedding
space, which may not necessarily align with the similarity employed in clustering. There-
fore, we proposed a novel graph-based metric that directly operates on the graph where
cells of the same (ground truth) type are identified as communities. Filippo et al. [45] dis-
cussed a definition of community in the network by splitting the total degree of a node i
into two contributions: given a subgraph V ⊂ G , ki(V) = kini (V)+ kouti (V) , where kini (V)
is the number of edges connecting node i to other nodes in V, and kouti (V) is the number
of connections towards the rest of the network. The subgraph V is a community in a strong
sense if kini (V) > kouti (V),∀i ∈ V . Inspired by this definition, we introduced the metric
Proportion of Weakly Connected cells (PWC). PWC quantifies, for a subgraph V consist-
ing of all the cells of the same true class, the proportion of cells that have fewer connections
within V than with the rest of the graph.

AW, AV

Wallace [46] proposed two asymmetric indices to quantify the similarity between two par-
titions of a set. Let U = {U1,U2, ...,UI } be the partition of the dataset defined by cell types
and Z = {Z1,Z2, ...,ZJ } be the partition given by the clustering prediction. The first index
W is the proportion of joint object pairs in partition U that are also joined in partition Z.
The second index V is the proportion of joint object pairs in partition Z that are also joined
in partition U. Both index W and V can be adjusted for chance using formula:

(1)AS =
S− E(S)

1− E(S)
,

Page 23 of 30Luo et al. Genome Biology (2024) 25:225

where S is a similarity measure that does not have value 0 under statistical independ-
ence. A generalized hypergeometric model is assumed to calculate the expectation value
of V and W [47]. AW can be interpreted as the completeness of cell types. It quantifies to
what extend objects belonging to the same cell type in U are assigned to the same cluster
in Z. Similarly, AV can be interpreted as the homogeneity of clusters, which measures
to what extend clusters are not mixing objects of different cell types. AW and AV can
be decomposed into indices for the individual cell types of partitions U and for the indi-
vidual clusters of partitions Z, respectively [48], that is:

where nij is the number of objects placed in class Ui and in cluster Zj , N is the total number

of pairs of objects, P =
�I

i=1

ni+

2

 is the number of object pairs that were placed in the same

cluster in U, and
Q =

J
j=1

n+j

2

 is the number of object pairs that were placed in the same

cluster in Z. AW and AV range from −1 to 1, with 0 for random assignments and 1 for per-
fect agreement.

ARI, ARI2

The adjusted Rand index is the harmonic mean of AW and AV, and therefore a sum-
mary of both the homogeneity of predicted clusters and the completeness of true
classes. ARI can be decomposed into a weighted average of the AW i ’s and AV j ’s as
follows [48]:

where Pi =
(

ni+
2

)

 is the number of object pairs in cluster Ui , and Qj =

(

n+j

2

)

 is the

number of object pairs in cluster Zj . Equation 4 shows that ARI is largely determined by
the AWi and AV j values of large clusters. However, in many cases in single-cell analysis,
the rare cell types are of more concern. Therefore, we included a variant of ARI (ARI2)
proposed by Matthijs et al. [48] to alleviate the class size bias of ARI.

(2)AWi =

N
∑J

j=1

(

nij
2

)

−

(

ni+
2

)

Q

(

ni+
2

)

(N − Q)

,

(3)AVj =

N
∑I

i=1

(

nij
2

)

−

(

n+j

2

)

P

(

n+j

2

)

(N − P)

,

(4)ARI =

∑I
i=1 AWiPi +

∑J
j=1 AVjQj

∑I
i=1 Pi +

∑J
j=1Qj

,

(5)ARI2 =
2AW′

× 2AV′

AW′
+ AV′ ,

Page 24 of 30Luo et al. Genome Biology (2024) 25:225

where

and

MI, VI

While ARI, AW, and AV are external evaluation metrics that count pairs of objects,
Mutual Information (MI) and Variation of Information (VI) are based on information
theory. These two groups of metrics do not always show consistent results, due to differ-
ent underlying assumption. The MI between two partitions U and Z is as follows:

where pij =
nij
n , pi = ni+

n , and pj =
n+j

n . It has been shown [49] that

where H(·) is the Shannon entropy. Since Z stays the same for a given dataset, Eq. 9 indi-
cates that comparing MI between methods on the same dataset is equivalent to compar-
ing the conditional Shannon entropy of Z on U. In other words, MI can be interpreted
as the measure of homogeneity of clusters, similar to AV. Note that MI is not normalized
and the upper bound varies across datasets. It is therefore only meaningful to compare
MI within the same dataset.

VI measures the amount of information that is lost or gained in changing from parti-
tion Z to U:

Similarly, VI is also highly related to entropy:

VI is not normalized, and a higher VI value indicates a worse clustering solution.

Calculating and comparing the area under the curve

Partition-based metrics change as the clustering resolution changes. The true cluster
numbers is not predetermined, and the optimal performance is not always achieved at
the true number of clusters. Therefore, comparing clusterings at a fixed resolution or
number of clusters becomes challenging. To address this challenge, we compared clus-
terings across a range of resolution parameters that result in varying number of clusters

(6)AW′
=

1

I

I
∑

i=1

AWi,

(7)AV′
=

1

J

J
∑

j=1

AVj .

(8)MI =

I
∑

i=1

J
∑

j=1

pijlog
pij

pipj
,

(9)MI = H(Z)−H(Z|U),

(10)VI = −

I
∑

i=1

pilogpi −

J
∑

j=1

pjlogpj − 2

I
∑

i=1

J
∑

j=1

pijlog
pij

pipj
,

(11)VI = H(U |Z)+H(Z|U).

Page 25 of 30Luo et al. Genome Biology (2024) 25:225

(Additional file 1: Fig. S20a). We examined the performance as the number of clusters
changes and summarized the results using the area under the curve (AUC).

To calculate the AUC and compare between results of different ranges of cluster num-
bers, the upper bound of each metric is used for the normalization of the absolute AUC.
Specifically, metrics such as ARI, ARI2, AW, and AV have an upper bound of 1. MI and
VI were normalized using the empirical maximum value per method per dataset. Nota-
bly, in the case of VI, instead of using the normalized AUC directly for comparison, we
used 1− normalized AUC.

When plotting the AUC heatmap, we colored the heatmap using the deviations from
the column-wise median scaled by matrix-wise median absolute deviation. Let A be the
original matrix storing the metric values, B be the transformed matrix, and Ai,j , Bi,j is
the element of matrix A , and B , respectively. The calculation of B is as in Eqs. 12, 13, and
14. By applying this transformation, the color scale is unified across datasets.

where

and

Choosing the number of dimensions

When applying dimensional reduction methods, a parameter that one needs to choose
is the number of dimensions n of the embedding space to use. Since all the methods
use either principle component analysis (PCA) or singular value decomposition (SVD),
we applied the elbow approach and examined the scree plot of each method by plot-
ting the proportion of variance explained by each component against the component
indices. We observed that for nearly all methods and datasets, the elbow point is before
15 dimensions (Additional file 1: Fig. S20b). We therefore used n = 15 for all methods.
More details on how n affects the performance is discussed in the “Results” section.

Analysis of feature numbers

To understand how the feature numbers impact the performance, we run each method
across a range of feature numbers: 25k, 100k, 200k, and 500k. For ArchR and SnapA-
TAC2, adjusting these settings was straightforward, achieved by changing the varFea-
turesargument in the addIterativeLSI() function, or the most_variable
argument in the snapatac2.pp.select_features() function, respectively. In
the case of Signac and SnapATAC, retaining the desired number of features involves
computing the quantiles. The calculated quantile was specified through the argument
min.cutoff in the function FindTopFeatures() in Signac. For SnapATAC, after
initially removing the top 5% most accessible (and thus least variable) features, a second

(12)Bi,j =
Ai,j −Median(A+j)

Median(M′)
,

(13)M′
i,j = |Mi,j|,

(14)M+j = A+j −Median(A+j).

Page 26 of 30Luo et al. Genome Biology (2024) 25:225

filtering step was done by selecting the top n% most accessible features. Here, n% was
determined to ensure the retention of the specified feature counts. Then, the cluster-
ing was performed using the same optimal hyper-parameters as in the previous analysis
which used the default feature numbers.

Analysis of clustering robustness

As described in the Clustering section, we performed Leiden clustering using a range
of resolution values in combination with 5 random seeds. For each resolution, we com-
pared the clustering outcomes from different seed pairs by computing ARI. An ARI of
1 indivates identical clustering predictions from the two seeds, whereas an ARI of 0
suggests that the clusterings are independent. We then calculated the deviation of the
pairwise ARI from 1, interpreting this as a measure of the clustering’s robustness when
fixing resolutions. To get an overall estimation of robustness as in Additional file 1: Fig.
S12a, this deviation was averaged across seed pairs and resolutions.

Analysis of library size biases

The library size of each cell is the total number of unique fragments of that cell in the
fragment file. To quantify to what extent the learned latent space is driven by the library
size, we calculated an absolute Pearson’s correlation coefficient value rl,d for each latent
dimension l and dataset d as follows:

where cor() is the function to calculate Pearson’s correlation coefficient between two
vectors, and sqrt() is the function to calculate element-wise square root of a vector. ck ,d
represents the library size across all cells of cell type k in dataset d, and xk ,l,d represents
the value of the latent component l across all cells of cell type k in dataset d. K is the total
number of cell types. rl,d for dataset 10XPBMC and l = 1, 2, 3, 4, 5 are shown in Addi-
tional file 1: Fig. S14.

To summarize across methods, we averaged this value across l = 1, 2, 3, 4, 5 and the six
datasets (see Fig. 5).

Benchmarking methods for predicting gene activity scores

From the five methods discussed, four offer the capability to infer gene activities. Signac
employs a basic technique, counting fragments in the gene body and promoter regions
for each gene, followed by log-normalization of these counts to derive a gene activity
score. SnapATAC calculates gene body fragment counts, normalizes them using log-
transformed count-per-million reads, and then employs a Markov affinity-graph-based
method for imputation and smoothing. SnapATAC2 has a similar procedure to Sna-
pATAC, with the distinction of counting TN5 insertions instead of fragments. ArchR
adopts a more complex model that weights fragment counts based on their distance to
the Transcription Start Site (TSS) and includes distal regulatory elements, while also
considering neighboring genes.

To benchmark their performance on predicting gene activities, we utilized the two
multi-omics datasets, namely 10XPBMC and Chen2019. Gene expression data from the

(15)rl,d =

∑

k |cor(sqrt(ck ,d), xk ,l,d)|

K
,

Page 27 of 30Luo et al. Genome Biology (2024) 25:225

RNA components were used as the ground truth. Additionally, we identified 500 meta-
cells per dataset using k-means clustering, applied through the function fastcluster(ret
urnType=“metacells”) in scDblFinder (v 1.13.9). We then selected the top 1000 highly
variable genes and computed Pearson’s and Kendall’s correlation coefficients to compare
the predicted gene activity scores with the actual gene expression data. Specifically, we
computed both per-cell or metacell correlation across genes as well as per-gene correla-
tion across cell or metacell.

Benchmarking methods for integration with scRNA-seq data

The cross-modality integration was performed in an unpaired fassion, meaning we
treated the cells from two modalities as if they were unmatched. Specifically, we used
GLUE [50] for such integration, where the processing of RNA are fixed, and the features
and cell embeddings generated using different ATAC-seq processing pipelines are used
as GLUE’s input. For the construction of the guidence graph in GLUE, we used the top
2000 high variable genes (HVGs) from the RNA data and the genomic features from
ATAC data that were (i) selected by the processing method for dimensional reduction
and (ii) are connected to any HVGs (i.e., overlapping in either the gene body or pro-
moter region).

FOSCTTM are calculated as follows: let X1 and X2 be the cell embeddings of RNA and
ATAC data within an integrated space, respectively. Each matrix is of size n×m , where
n represents the number of cells and m is the number of latent dimensions. The rows
within X1 and X2 are aligned such that each corresponds to the same cell. Define di,j as
the cosine distance between X1[i, :] and X2[j, :] . For a given cell i, the fraction of samples
closer than its true match is computed as:

, where Ri is the rank of di,i among the distances di,1, di,2, ..., di,n that are less than or equal
to di,i . Then, the fraci were also calculated after switching X1 and X2 , and then averaged
for the cell pair i.

Other indices

Evenness

Evenness (E) quantifies the homogeneity of abundances of different types in a sample
[51]. Here, we use Eq. 17 to calculate E:

where H(·) is Shannon entropy, and K is the total number of cell types. E ranges from 1K
to 1, and a higher E indicates that the dataset is more balanced.

(16)fraci =
Ri − 1

n− 1

(17)E =
exp(H(U))

K
,

Page 28 of 30Luo et al. Genome Biology (2024) 25:225

Geary’s C

We calculated Geary’s C index [52] of log-transformed fragment counts using spatial
distance defined by k-nearest neighbor (KNN) graph (k = 20) [14]. Geary’s C is calcu-
lated as:

where N is the total number of cells; xi is the log-transformed fragment counts of cell i,
wij is the weight of edge between cell i and j on the KNN graph, and S0 is the sum of all
weights in W .

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 024‑ 03356‑x.

Additional file 1. Supplementary figures S1‑21

Additional file 2. Supplementary tables S1‑3

Additional file 3. Review history

Acknowledgements
We thank all members of the von Meyenn group and Robinson group for helpful discussions and support. We specifi‑
cally thank Adhideb Ghosh for advice on the study design and scRNA‑seq data analysis, João Pedro Agostinho de Sousa
for help with setting up the computational environments, and Emanuel Sonder for his feedbacks on the manuscript
draft.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora‑
tion with the rest of the editorial team.

Review history
The review history is available as Additional file 3.

Authors’ contributions
SL and FvM conceptualized the study with the help from MDR and PLG. SL designed the benchmark, prepared the data,
wrote the code for the pipeline, and performed the analysis. SL, PLG, MDR, and FvM interpreted the results. SL wrote the
manuscript draft. All authors reviewed and approved the final version of this manuscript.

Funding
Open access funding provided by Swiss Federal Institute of Technology Zurich This work was supported by ETH Zurich
core funding (FvM) and UZH core funding (MDR).

Availability of data and materials
Our benchmarking workflow is provided as a reproducible Snakemake pipeline on GitHub: https:// github. com/ RoseY
uan/ sc_ chrom atin_ bench mark [53]. Notebooks, R scripts, and supporting data used for preprocessing datasets and
generating all the visualizations in this manuscript is available at https:// github. com/ RoseY uan/ bench mark_ paper [38]
((snapshot on Zenodo [54]). For the analyzed datasets, the preprocessed data that can be directly input into the
Snakemake pipeline is available on Zenodo [55]. For the unprocessed data, fragment files of the cell line dataset were
downloaded from GEO accession GSE162690 [56], fragment file and the gene expression matrix file of the 10X PBMC
multiomics dataset were downloaded from https:// www. 10xge nomics. com/ resou rces/ datas ets/ pbmc‑ from‑a‑ healt hy‑
donor‑ granu locyt es‑ remov ed‑ throu gh‑ cell‑ sorti ng‑ 10‑k‑ 1‑ stand ard‑1‑ 0‑0, and fragment files of the human adult atlas
datasets were downloaded from GEO accession GSE184462 [57]. Bam files of the dataset Buenrostro2018 was down‑
loaded from GEO accession GSE96772 [58]. Bam file of the ATAC part of Chen2019 dataset was processed by Stuart’s
lab, and we downloaded the fragment files they provided at https:// stuar tlab. org/ signac/ artic les/ snare seq. html, and the
RNA part was downloaded from GEO accession GSE126074 [59]. The Seurat objects of the Allen mouse brain reference
dataset used for annotating the scRNA‑seq data were downloaded from Signac’s website: https:// signac‑ objec ts. s3.
amazo naws. com/ allen_ brain. rds. The PBMC reference dataset was downloaded here: https:// atlas. fredh utch. org/ data/
nygc/ multi modal/ pbmc_ multi modal. h5seu rat.

Declarations

Ethics approval and consent to participate
Not applicable.

(18)C =
(N − 1)

∑

i
∑

jwij(xi − xj)
2

2S0
∑

i(xi − x̄2)
,

https://doi.org/10.1186/s13059-024-03356-x
https://github.com/RoseYuan/sc_chromatin_benchmark
https://github.com/RoseYuan/sc_chromatin_benchmark
https://github.com/RoseYuan/benchmark_paper
https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-1-0-0
https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-1-0-0
https://stuartlab.org/signac/articles/snareseq.html
https://signac-objects.s3.amazonaws.com/allen_brain.rds
https://signac-objects.s3.amazonaws.com/allen_brain.rds
https://atlas.fredhutch.org/data/nygc/multimodal/pbmc_multimodal.h5seurat
https://atlas.fredhutch.org/data/nygc/multimodal/pbmc_multimodal.h5seurat

Page 29 of 30Luo et al. Genome Biology (2024) 25:225

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 August 2023 Accepted: 29 July 2024

References
 1. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single‑cell chromatin accessibility

reveals principles of regulatory variation. Nature. 2015;523(7561):486–90.
 2. Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, et al. Multiplex single‑cell profiling of

chromatin accessibility by combinatorial cellular indexing. Science. 2015;348(6237):910–4.
 3. Kaya‑Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, et al. CUT &Tag for efficient epigenomic profil‑

ing of small samples and single cells. Nat Commun. 2019;10(1):1930.
 4. Chen H, Lareau C, Andreani T, Vinyard ME, Garcia SP, Clement K, et al. Assessment of computational methods for the

analysis of single‑cell ATAC‑seq data. Genome Biol. 2019;20(1):1–25.
 5. Moon KR, Stanley JS III, Burkhardt D, van Dijk D, Wolf G, Krishnaswamy S. Manifold learning‑based methods for

analyzing single‑cell RNA‑sequencing data. Curr Opin Syst Biol. 2018;7:36–46.
 6. Wagner DE, Klein AM. Lineage tracing meets single‑cell omics: opportunities and challenges. Nat Rev Genet.

2020;21(7):410–27.
 7. Rautenstrauch P, Vlot AHC, Saran S, Ohler U. Intricacies of single‑cell multi‑omics data integration. Trends Genet.

2022;38(2):128–39.
 8. Stuart T, Srivastava A, Madad S, Lareau CA, Satija R. Single‑cell chromatin state analysis with Signac. Nat Methods.

2021;18(11):1333–41.
 9. Granja JM, Corces MR, Pierce SE, Bagdatli ST, Choudhry H, Chang HY, et al. ArchR is a scalable software package for

integrative single‑cell chromatin accessibility analysis. Nat Genet. 2021;53(3):403–11.
 10. Fang R, Preissl S, Li Y, Hou X, Lucero J, Wang X, et al. Comprehensive analysis of single cell ATAC‑seq data with SnapA‑

TAC. Nat Commun. 2021;12(1):1337.
 11. de Boer CG, Regev A. BROCKMAN: deciphering variance in epigenomic regulators by k‑mer factorization. BMC

Bioinformatics. 2018;19(1):1–13.
 12. Ji Z, Zhou W, Ji H. Single‑cell regulome data analysis by SCRAT. Bioinformatics. 2017;33(18):2930–2.
 13. Pliner HA, Packer JS, McFaline‑Figueroa JL, Cusanovich DA, Daza RM, Aghamirzaie D, et al. Cicero predicts cis‑

regulatory DNA interactions from single‑cell chromatin accessibility data. Mol Cell. 2018;71(5):858–71.
 14. Ashuach T, Reidenbach DA, Gayoso A, Yosef N. PeakVI: a deep generative model for single‑cell chromatin accessibil‑

ity analysis. Cell Rep Methods. 2022;2(3):100182.
 15. Yuan H, Kelley DR. scBasset: sequence‑based modeling of single‑cell ATAC‑seq using convolutional neural networks.

Nat Methods. 2022;19(9):1088–96.
 16. Tayyebi Z, Pine AR, Leslie CS. Scalable and unbiased sequence‑informed embedding of single‑cell ATAC‑seq data

with CellSpace. Nat Methods. 2024;21:1014–22. https:// doi. org/ 10. 1038/ s41592‑ 024‑ 02274‑x.
 17. Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA, Berletch JB, et al. A single‑cell atlas of in vivo mammalian

chromatin accessibility. Cell. 2018;174(5):1309–24.
 18. Weber LM, Saelens W, Cannoodt R, Soneson C, Hapfelmeier A, Gardner PP, et al. Essential guidelines for computa‑

tional method benchmarking. Genome Biol. 2019;20:1–12.
 19. Luecken MD, Theis FJ. Current best practices in single‑cell RNA‑seq analysis: a tutorial. Mol Syst Biol.

2019;15(6):e8746.
 20. Traag VA, Waltman L, Van Eck NJ. From Louvain to Leiden: guaranteeing well‑connected communities. Sci Rep.

2019;9(1):5233.
 21. Klamann C, Lau C, Schwartz GW. TooManyCellsInteractive: a visualization tool for dynamic exploration of single‑cell

data. bioRxiv. 2023:2023–06.
 22. Mishra S, Monath N, Boratko M, Kobren A, McCallum A. An evaluative measure of clustering methods incorporat‑

ing hyperparameter sensitivity. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36. 2022. pp.
7788–7796. https:// doi. org/ 10. 1609/ aaai. v36i7. 20747.

 23. Germain PL, Sonrel A, Robinson MD. pipeComp, a general framework for the evaluation of computational pipelines,
reveals performant single cell RNA‑seq preprocessing tools. Genome Biol. 2020;21(1):1–28.

 24. Germain PL, Lun A, Garcia Meixide C, et al. Doublet identification in single‑cell sequencing data using scDblFinder
[version 2; peer review: 2 approved]. F1000Research. 2022;10:979. https:// doi. org/ 10. 12688/ f1000 resea rch. 73600.2.

 25. Zhang K, Hocker JD, Miller M, Hou X, Chiou J, Poirion OB, et al. A single‑cell atlas of chromatin accessibility in the
human genome. Cell. 2021;184(24):5985–6001.

 26. Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, et al. Integrated single‑cell analysis maps the
continuous regulatory landscape of human hematopoietic differentiation. Cell. 2018;173(6):1535–48.

 27. Chen S, Lake BB, Zhang K. High‑throughput sequencing of the transcriptome and chromatin accessibility in the
same cell. Nat Biotechnol. 2019;37(12):1452–7.

 28. Miao Z, Kim J. Is single nucleus ATAC‑seq accessibility a qualitative or quantitative measurement? bioRxiv.
2022:2022–04.

 29. Hill A. Dimensionality reduction for scATAC data. 2019. http:// andre wjohn hill. com/ blog/ 2019/ 05/ 06/ dimen siona lity‑
reduc tion‑ for‑ scatac‑ data/. Accessed 12 July 2023.

https://doi.org/10.1038/s41592-024-02274-x
https://doi.org/10.1609/aaai.v36i7.20747
https://doi.org/10.12688/f1000research.73600.2
http://andrewjohnhill.com/blog/2019/05/06/dimensionality-reduction-for-scatac-data/
http://andrewjohnhill.com/blog/2019/05/06/dimensionality-reduction-for-scatac-data/

Page 30 of 30Luo et al. Genome Biology (2024) 25:225

 30. Ortega A, Frossard P, Kovačević J, Moura JM, Vandergheynst P. Graph signal processing: overview, challenges, and
applications. Proc IEEE. 2018;106(5):808–28.

 31. Liu J, Huang Y, Singh R, Vert JP, Noble WS. Jointly embedding multiple single‑cell omics measurements. In: Algo‑
rithms in bioinformatics:... International Workshop, WABI..., proceedings. WABI (Workshop), vol. 143. NIH Public
Access; 2019.

 32. Ahlmann‑Eltze C, Huber W. Comparison of transformations for single‑cell RNA‑seq data. Nat Methods. 2023;20:1–8.
 33. Heumos L, Schaar AC, Lance C, Litinetskaya A, Drost F, Zappia L, et al. Best practices for single‑cell analysis across

modalities. Nat Rev Genet. 2023;24:1–23.
 34. Martens LD, Fischer DS, Theis FJ, Gagneur J. Modeling fragment counts improves single‑cell ATAC‑seq analysis.

bioRxiv. 2022;21:2022–05.
 35. Tim Stuart WWK. Sinto: single‑cell analysis tools. GitHub; 2019. https:// github. com/ timoa st/ sinto.
 36. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single‑cell

data. Cell. 2019;177(7):1888–902.
 37. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech

Theory Exp. 2008;2008(10):P10008.
 38. Luo S, Germain PL, Robinson MD, von Meyenn F. Code and data for the manuscript “Benchmarking computational

methods for single‑cell chromatin data analysis”. GitHub; 2023. https:// github. com/ RoseY uan/ bench mark_ paper.
 39. Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience.

2018;7(7):giy083.
 40. Hao Y, Hao S, Andersen‑Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single‑cell

data. Cell. 2021;184(13):3573–87.
 41. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome‑wide atlas of gene expression in the

adult mouse brain. Nature. 2007;445(7124):168–76.
 42. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl

Math. 1987;20:53–65.
 43. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single‑

cell data with Harmony. Nat Methods. 2019;16(12):1289–96.
 44. Ilya Korsunsky KS. Methods to compute Local Inverse Simpson’s Index (LISI). GitHub; 2019. https:// github. com/

immun ogeno mics/ LISI.
 45. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc Natl

Acad Sci. 2004;101(9):2658–63.
 46. Wallace DL. A method for comparing two hierarchical clusterings: comment. J Am Stat Assoc. 1983;78(383):569–76.
 47. Severiano A, Pinto FR, Ramirez M, Carriço JA. Adjusted Wallace coefficient as a measure of congruence between

typing methods. J Clin Microbiol. 2011;49(11):3997–4000.
 48. Warrens MJ, van der Hoef H. Understanding the adjusted Rand index and other partition comparison indices based

on counting object pairs. J Classif. 2022;39(3):487–509.
 49. Wu J, Chen J, Xiong H, Xie M. External validation measures for K‑means clustering: a data distribution perspective.

Expert Syst Appl. 2009;36(3):6050–61.
 50. Cao ZJ, Gao G. Multi‑omics single‑cell data integration and regulatory inference with graph‑linked embedding. Nat

Biotechnol. 2022;40(10):1458–66.
 51. Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973;54(2):427–32.
 52. Geary RC. The contiguity ratio and statistical mapping. Inc Stat. 1954;5(3):115–46.
 53. Luo S, Germain PL, Robinson MD, von Meyenn F. Snakemake workflow to benchmark computational methods for

single‑cell chromatin data analysis. GitHub; 2023. https:// github. com/ RoseY uan/ sc_ chrom atin_ bench mark.
 54. Luo S, Germain PL, Robinson MD, von Meyenn F. Code and data for the manuscript “Benchmarking computational

methods for single‑cell chromatin data analysis”. Zenodo; 2024. https:// doi. org/ 10. 5281/ zenodo. 12607 316.
 55. Luo S, Germain PL, Robinson MD, von Meyenn F. Data for the manuscript “Benchmarking computational methods

for single‑cell chromatin data analysis”. Zenodo; 2023. https:// doi. org/ 10. 5281/ zenodo. 82129 20.
 56. Granja JM, Corces MR. ArchR: An integrative and scalable software package for single‑cell chromatin accessibility

analysis. Gene Expression Omnibus; 2020. https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE16 2690.
 57. Zhang K, Hocker JD, Miller M, Hou X, Poirion OB, Wang A, et al.. A single‑cell atlas of chromatin accessibility in the

human genome. Gene Expression Omnibus; 2021. https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE18
4462.

 58. Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, et al.. Single‑cell epigenomics maps the continu‑
ous regulatory landscape of human hematopoietic differentiation. Gene Expression Omnibus; 2018. https:// www.
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE96 772.

 59. Chen S, Zhang K. Simultaneous profiling of transcriptome and chromatin accessibility in single nucleus. Gene
Expression Omnibus; 2019. https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE12 6074.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/timoast/sinto
https://github.com/RoseYuan/benchmark_paper
https://github.com/immunogenomics/LISI
https://github.com/immunogenomics/LISI
https://github.com/RoseYuan/sc_chromatin_benchmark
https://doi.org/10.5281/zenodo.12607316
https://doi.org/10.5281/zenodo.8212920
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162690
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184462
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184462
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96772
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96772
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126074

	Benchmarking computational methods for single-cell chromatin data analysis
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results
	Benchmark design
	Method performance is dependent on the intrinsic structure of datasets
	Method choices at different feature engineering steps
	Peaks versus bins
	Peak calling methods
	Number of features
	Distance metrics
	Dimensions of the latent space

	Stability of clusterings and robustness of clustering performance
	LSI-based methods show strong library size biases
	Benchmarking methods for predicting gene activity scores
	Differences in scATAC-seq processing propagate to integration with scRNA-seq
	Time and memory complexity

	Discussion
	Conclusions
	Methods
	Datasets and preprocessing
	Datasets from the human adult single-cell chromatin accessibility atlas
	scRNA-seq data annotation
	Feature engineering methods
	Signac
	Aggregation
	ArchR
	SnapATAC
	SnapATAC2

	Clustering
	Evaluation metrics
	ASW, FNS
	cLISI
	PWC
	AW, AV
	ARI, ARI2
	MI, VI

	Calculating and comparing the area under the curve
	Choosing the number of dimensions
	Analysis of feature numbers
	Analysis of clustering robustness
	Analysis of library size biases
	Benchmarking methods for predicting gene activity scores
	Benchmarking methods for integration with scRNA-seq data
	Other indices
	Evenness
	Geary’s C

	Acknowledgements
	References

