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Abstract 

Background: The emergence of the SARS‑CoV‑2 virus has highlighted the importance 
of genomic epidemiology in understanding the evolution of pathogens and guiding 
public health interventions. The Omicron variant in particular has underscored the role 
of epistasis in the evolution of lineages with both higher infectivity and immune 
escape, and therefore the necessity to update surveillance pipelines to detect them 
early on.

Results: In this study, we apply a method based on mutual information between posi‑
tions in a multiple sequence alignment, which is capable of scaling up to millions 
of samples. We show how it can reliably predict known experimentally validated 
epistatic interactions, even when using as little as 10,000 sequences, which opens 
the possibility of making it a near real‑time prediction system. We test this possibil‑
ity by modifying the method to account for the sample collection date and apply it 
retrospectively to multiple sequence alignments for each month between March 2020 
and March 2023. We detected a cornerstone epistatic interaction in the Spike protein 
between codons 498 and 501 as soon as seven samples with a double mutation were 
present in the dataset, thus demonstrating the method’s sensitivity. We test the ability 
of the method to make inferences about emerging interactions by testing candidates 
predicted after March 2023, which we validate experimentally.

Conclusions: We show how known epistatic interaction in SARS‑CoV‑2 can be 
detected with high sensitivity, and how emerging ones can be quickly prioritized 
for experimental validation, an approach that could be implemented downstream 
of pandemic genome sequencing efforts.

Background
The COVID-19 severe respiratory syndrome is caused by the SARS-CoV-2 virus, which 
emerged in late 2019 in China and quickly escalated to a pandemic. Since then, the virus 
has differentiated into a number of lineages, some of which have taken over the whole 
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population in successive sweeps reminiscent of clonal interference [1]. These success-
ful lineages—designated as variants of concern (VOC)—have acquired a number of 
mutations that have increased their ability to infect new hosts and escape infection and 
vaccine-induced immunity [2–9]. The unprecedented efforts in the genomic epidemiol-
ogy of the virus leading to millions of whole sequences being deposited in public and 
restricted-access databases have accelerated the pace by which emerging lineages are 
tracked and the impact of genetic mutations is estimated [1, 10–12]. Together with expe-
dited experimental measurements of the impact of single mutations, it has been possible 
to obtain estimates of the fitness advantage of emerging variants with as little delay as a 
few weeks [13–15]. Given the successes of SARS-CoV-2 genome sequencing in tracking 
the emergence and spread of variants and to develop groundbreaking vaccines [16], it is 
hard to imagine it not becoming a routine tool in handling current and future epidemics 
[17].

Which other information of relevance can be obtained from large genome sequencing 
datasets? A growing body of evidence from population genetics and evolutionary studies 
indicates that the impact of individual genetic variants can be modulated by the presence 
of other variants in other sites, a phenomenon known as epistasis or genetic background 
effect [18]. In practice, this means that the measured impact of a genetic variant may be 
very different when the same variant is present in a different genetic background, which 
in turn makes sequence and phenotypic evolution unpredictable at medium to long 
timescales [19]. In the context of SARS-CoV-2 evolution, epistasis might have implica-
tions for genomic surveillance of lineages; assumptions about the fitness advantage con-
ferred by a mutation, be it through increased transmissibility or immune escape, might 
be invalidated and lead to erroneous applications of public health measures or vaccine 
updates. At a smaller scale, this possibility has been experimentally confirmed for the 
receptor binding domain (RBD) of the SARS-CoV-2 spike protein, for which mutations 
have a different impact on antibody escape depending on the overall genetic background 
(i.e., different VOCs) [20, 21]. Detecting potential epistatic interactions between mutat-
ing sites in the SARS-CoV-2 genomes could be used as a sign that the fitness effect of a 
particular mutation in a particular genetic background might not generalize in another. 
Furthermore, positions participating in an epistatic interaction might indicate that a 
particular fitness “peak” can only be reached through another neutral or slightly delete-
rious mutation [22]. Predicting whether seemingly neutral mutations are enabling fur-
ther ones that affect transmissibility or immune escape would therefore be a valuable 
epidemiological tool. Lastly, from the perspective of genomic surveillance, being able to 
quickly identify sites that participate in an epistatic interaction would help identify virus’ 
variants that could have a fitness advantage and that could therefore quickly spread. The 
feasibility of predicting epistatic interactions and their potential impact on infection 
control has been shown for HIV [23, 24], the other recently emerged virus causing a 
global pandemic.

In order to make the estimation of epistatic interactions useful in the context of a rap-
idly unfolding pandemic, the method needs to have an appropriate combination of speed 
and precision/sensitivity. Ideally, it would require modest computational resources and 
would run in near real-time, so that it could be implemented as part of existing auto-
mated genomic epidemiology tools that feed on sequence repositories [1, 10, 25]. Some 
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of the computational approaches that are able to estimate epistatic interactions would 
not be suitable for this task for resource considerations, such as pseudolikelihood or 
phylogenetic methods [26–32]. These methods are generally applicable at the resolution 
of a single gene for their requirements in terms of computational resources: aggressive 
subsampling, potentially coupled with batch learning, would make these methods appli-
cable at the whole genome level, but could theoretically reduce their ability to quickly 
identify new interactions and variants that are starting to emerge, as well as making 
them more difficult to implement.

Here, we explore the usefulness of a method based on the detection of mutual infor-
mation (MI) between sites in a multiple sequence alignment [33] as an indirect estimate 
of mutational epistasis, which is able to handle alignments with more than  106 samples. 
Since MI formally measures the level of correlation in substitutions between two sites, 
it is liable to incorrectly identify pairs of sites that are correlated through stochastic or 
population structure effects and not because they participate in an epistatic interaction. 
Multiple studies have however shown that despite these limitations, MI-based methods 
perform similarly to pseudolikelihood methods, assuming that a proper control for pop-
ulation structure is applied [34–37]. We applied a MI-based method to all high-quality 
publicly available SARS-CoV-2 sequences as of April 14th, 2023 (N = 6,644,032). The 
method detected 474 putative epistatic interactions between different positions, 222 of 
which with high mutual information. We validated the highest scoring hits using a list 
of known mutation of interest/concern (MUI and MOC) [38], data from deep muta-
tional scans [20, 21], and different epistasis models [26–28]. We further adapted the 
method to account for the “age” of each sequence, leveraging the metadata associated 
with each sequence, and thus showing how interactions gain/loss varies over time and 
variant emergence, and how this could be used as a near real-time genomic surveillance 
system. To this extent we demonstrated how our method is highly sensitive, being able 
to identify a known epistatic interaction in the Omicron variant with as little as seven 
sequences. Taken together, these results offer yet another vision of the future of patho-
gen genomic epidemiology, in which the subtle complexities of the evolution of biologi-
cal sequences are taken into account.

Results
Mutual information methods can estimate epistatic interactions in a large‑scale genomic 

dataset

This analysis was possible thanks to the data available on the GISAID database, from 
which we downloaded the SARS-CoV2 multialignment file and its relative phylogenetic 
tree. After 2 steps of filtering, followed by trimming and deduplication, a phylogenetic 
weighting strategy was applied to each sequence in the alignment in order to account for 
population structure. Finally, the spydrpick algorithm [33] was run to compute mutual 
information (MI) between every pair of positions in the genome (pipeline shown in 
Fig. 1A). Each position pair was then assigned to an outlier level O (O1, O2, O3, O4) 
according to their score, with O4 values indicating the strongest predicted interactions 
(see Methods).

The unfiltered dataset counted 15,372,583 sequences (up to 14th April 2023). 
From these, we picked the public sequences (i.e., also available in the NCBI’s 
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Genbank database, N = 6,644,032) which were then filtered by using only the high-qual-
ity sequences present in the GISAID SARS-CoV2 phylogenetic tree and by removing 
exact duplicates (N = 4,093,019).

Fig. 1 Estimation of epistatic interactions from > 4 M SARS‑CoV‑2 sequences. A Analysis workflow. B 
Overview of the estimated epistatic interactions across the whole SARS‑CoV‑2 genome; each interaction is 
colored according to its outlier level (O1 to O4), using the same color scale as panel C. C Distance distribution 
between all interactions. D Proportion of interactions within and between genes, normalized by the 
nucleotide length of each focal gene. E Interaction network for the RBD region of the Spike gene; amino acid 
positions are colored according to publicly available annotations. The category “other” indicates positions 
which are not known to have an impact on affinity to ACE2, immune escape, or are otherwise flagged as 
MOI/MOC. F Enrichment of interactions between positions known to epistatically interact (red dot) versus 
a series (N = 1000) of random RBD networks with the same number of interactions as the real one (gray 
distribution). The red horizontal line indicates the 95% confidence interval
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We obtained 474 interactions (between 247 unique positions) with many interactions 
both within and between different genes (Fig. 1B, Additional file 1: Table S1). Most of the 
observed interactions were concerning the ORF1ab and Spike gene, with 179 and 185 
interactions each, respectively. The interactions were assigned to 4 “outliers levels” (O1 
to O4) based on their MI value (Methods), with an overrepresentation of O4 interac-
tions  (NO4 = 222) compared to the others which showed similar frequencies  (NO1 = 92, 
 NO2 = 96,  NO3 = 64). However, they showed a similar distribution in function of the dis-
tance between the interacting genome positions (Fig. 1C).

Another important aspect that we considered was if the interactions fell within the 
same gene or between different ones: ORF3a, the Envelope gene (E), ORF6, and ORF7b 
presented only interactions between different genes, while the remaining had both kinds. 
In particular, Spike, ORF1ab, and the Nucleocapsid gene (N) presented the highest ratio 
between different/same gene interactions using normalized counts (Fig.  1D), showing 
more interactions in the same gene compared to the others.

To further validate our predictions, we labeled positions in the Spike RBD as either 
affinity mutations [21], escape mutations [20], or other MOI/MOC [38]. These posi-
tions have been shown to engage in epistatic interactions resulting in increased viral fit-
ness through higher infectivity or immune escape. The RBD interaction’s network we 
obtained from our predictions (shown in Fig.  1E) captured all 3 kinds of mutations. 
Among them, the interaction between affinity mutations 501 and 498 was observed, but 
also between escape mutations and other mutations of interest including 484, 505, 446, 
and 477. In addition, other positions with unknown significance (e.g., 373, 390, 486, 376) 
were highlighted by our method and would need a deeper investigation to understand if 
they engage in actual epistatic interactions or if they are false positives. We verified that 
the reconstructed interaction network was significantly different than a random one via 
a permutation test, which showed strong enrichment in known epistatic interactions in 
the RBD region of the Spike gene (odds ratio 69.9 [22.0–202.1], Fig. 1F). We observed an 
even stronger enrichment (odds ratio 104.8 [42.9–336.0]) when restricting interactions 
with outlier levels O3 and O4. We further used the outlier thresholds O3 and O4 to build 
a binary classifier for known RBD epistatic interactions (Methods), which had a specific-
ity of 0.33 [0.17–0.71] and 0.50 [0.17–0.71], and a sensitivity of 1 and 0.71, respectively. 
Lastly, we used the pairwise epistasis coefficients for 15 BA.1 mutations [21] and meas-
ured the ability to recover those with a value over 0.4 using O3 and O4 interactions, for 
which we recorded a specificity of 0.93 [0.86–0.97] and sensitivity of 0.4 for both thresh-
olds. These results showed how this method was able to pick many experimentally veri-
fied interactions and possible new ones.

Influence of dataset size on the estimation of epistatic interactions

Even though our implementation of the spydrpick algorithm can be run in reasonable 
time in a high-performance cluster (i.e., ~ 36  h, each job requiring > 150  Gb of RAM), 
we reasoned that for it to be of real use it would need to work with a leaner dataset. 
We therefore created 4 smaller datasets with orders of magnitude less sequences than 
the complete > 4 M dataset (N = 1000, 10,000, 100,000, and 1,000,000, randomly chosen). 
We observed that the number of predicted interactions was larger with smaller data-
sets and that the numbers became comparable with the complete dataset when at least 
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100,000 sequences were considered (Fig. 2A, Additional files 2–5: Table S2–5). Despite 
the large difference in predicted interactions, we observed a strong correlation (r > 0.95) 
in MI values for those interactions found both in a reduced subset and the complete 
dataset (Fig. 2B–E). The overlap became larger with subset size, from 57.8% of the 474 
interactions from the complete dataset predicted in the N = 1000 subset to 92.4% in the 
N = 1,000,000 subset. We also observed a stronger enrichment in known epistatic inter-
actions in the Spike RBD with increasing sample size, with comparable strength as the 
complete dataset when using at least 100,000 sequences (odds ratio > 10 for all subsets, 
Fig. 2F–I). When reducing the interactions to outlier levels O3 and O4 we observed a 
consistently high level of enrichment across all subsets (odds ratios > 100), which could 
be explained by the high number of predicted interactions with outlier level O1 and 
O2 in the smaller 1000 and 10,000 datasets (Additional file  6: Fig. S1). We then used 
the O3 outlier threshold to build a binary classifier for RBD known epistatic interac-
tions, which yielded the following specificity/sensitivity values: 0.97 (0.95–0.99)/0.19 
(0.09–0.28) (n = 1000), 0.80 (0.68–0.96)/1.00 (N = 10,000), 0.46 (0.28–0.84)/1.00 
(N = 100,000), and 0.38 (0.21–0.74)/1.00 (N = 1,000,000). When predicting pairwise 
interactions with coefficient > 0.15 using O3 interactions we instead recorded the follow-
ing specificity/sensitivity values: 0.93 (0.86–0.97)/0.40 (n = 1000), 0.94 (0.87–0.98)/0.40 
(0.00–1.00) (N = 10,000), 0.94 (0.88–0.98)/0.40 (N = 100,000), and 0.93 (0.87–0.97)/0.40 
(N = 1,000,000). We therefore estimate that mutual information-based estimation of epi-
static interactions in SARS-CoV-2 can be performed with datasets with sizes between 
10,000 and 100,000 sequences.

Real‑time estimation of epistatic interactions

The unprecedented genomic epidemiology effort during the SARS-CoV-2 pandemic 
offers the opportunity to test the usefulness of computational methods to quickly iden-
tify emerging pathogen variants and mutations of concern [15]. In the same spirit, we 
sought to understand if we could apply the mutual information methodology described 
here to develop a near real-time system to discover emerging epistatic interactions. We 

Fig. 2 Influence of dataset size on mutual information estimation. A Number of interactions across datasets, 
divided by outlier level; the “complete” dataset refers to the one computed using 4,093,019 sequences. B–E 
Linear regression analysis of mutual information values in the complete dataset (x‑axis) versus the same 
interactions in the 1000 (B), 10,000 (C), 100,000 (D), and 1,000,000 (E) subsets. The dashed red line shows 
the linear regression, and the corresponding r‑value is indicated in the panel legend. F–I Enrichment of 
interactions between positions known to epistatically interact (red dots) versus a series (N = 1000) of random 
RBD networks with the same number of interactions as the real one (gray distribution). Subsets are the same 
as the panel directly above: 1000 (F), 10,000 (G), 100,000 (H), and 1,000,000 (I). The red lines indicate the 95% 
confidence interval
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therefore used the sample collection date associated with each viral sequence to divide 
the complete dataset into 37 subsets, one for each month from March 2020 up to March 
2023, and selecting up to 2500 sequences for each month. We then computed the mutual 
information for each month using the cumulative sequences up until the focal month 
(Fig. 3A). In order to highlight emerging interactions and remove earlier ones, we intro-
duced a further weight to each sequence based on its distance in time from the focal 
month. That is, we placed lower importance to older sequences, halving their weight at 
around 4 months (120 days), using a hill function (Methods, Additional file 6: Fig. S2, 
and Additional file 6: Fig. S3). We reasoned that this would allow the method to discard 
older interactions and focus on emerging ones.

We first verified that the final subset yielded comparable results as larger data-
sets and as a partially orthogonal method [26–28]. For this, we used the last subset 
(March 2023, N = 84,923) and avoided the time weighting step to allow for a fair com-
parison. We observed that MI values had a high correlation with the complete data-
set, with 64.1% of the interactions found in the complete dataset recovered in the final 

Fig. 3 Time‑based mutual information estimation. A Analysis workflow. B Comparison between MI values 
in the total dataset versus those in the last subset (March 2023, without the time weighting correction). C 
Comparison of MI values in the Spike gene between the March 2023 subset and the output of the plmc 
pseudo‑likelihood method; the 10 interactions with the highest absolute residuals with respect to the 
linear regression are labeled with the amino acid position in the Spike gene. D Number of interactions for 
each outlier category across all the time subsets. E Median distance between interacting positions, divided 
by outlier level and across all the time subsets. F Enrichment of interactions between positions known to 
epistatically interact (red dots) versus a series (N = 1000) of random RBD networks with the same number 
of interactions as the real one (gray line, shaded area represents the standard deviation, vertical red lines 
indicate the 95% confidence interval)
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subset and with a linear regression r-value of 0.92 (Fig. 3B, Additional file 7: Table S6). 
We also compared the correlation between the MI values against estimates using a 
pseudo-likelihood method [26–28] (Methods). For this analysis, we focused only 
on the Spike gene as the plmc implementation does not scale well to genome-scale 
nucleotide alignments. We again observed a very high correlation (linear regression 
r-value of 0.85, Fig. 3C, Additional file 8: Table S7). We singled out the 10 interactions 
with the highest residual: two of them (amino acid positions 460/486 and 445/490) 
belonged to the RBD region of the spike and had a higher interaction score when 
using the pseudolikelihood method. Conversely, the interaction between the muta-
tions of concern 501/681 was scored higher when using the MI-based method. Even 
when applying our time-based weighting we observed a high correlation between 
the two methods, with a Pearson r-value higher than 0.4 for all but three timepoints 
(Additional file 6: Fig. S4). Perhaps more importantly, we found that our method was 
able to identify known epistatic interactions in the Spike RBD [21] earlier and with 
more consistency over timepoints than the pseudolikelihood method (Additional 
file 6: Fig. S5), which is a desirable property (other than speed and ease of implemen-
tation) for a real-time surveillance system.

We next computed MI values for all subsets with the time correction; the number 
of estimated interactions decreased steadily over time, from a total of 79,586 for the 
March 2020 subset to 730 in the final March 2023 subset. The number of O4 interac-
tions was more stable over time, especially starting from 2021: the median number 
of O4 interactions in 2020 was 1513 versus 196 in the 2021 to 2023 period (Fig. 3D, 
Additional file 9: Table S8). The median distance between interacting nucleotide posi-
tions was more stable over time, with O3/O4 interactions being more distant from 
each other than lower confidence ones: the median distance was 284 and 1232 bases 
over all subsets, respectively, while O1/O2 interactions’ median distance was 9 and 12 
bases, respectively (Fig. 3E). A lower distance between interactions could be a sign of 
a lower confidence interaction, at least in the general case.

In line with the fact that variants of concern with both higher infectivity and 
immune escape capabilities did not emerge before the spring of 2021 (e.g., the Delta 
variant), we did not observe an appreciably high enrichment of known interactions 
between affinity and escape Spike mutations before at least July 2021 (odds ratio 
80.2 [29.5–184.2]), and we observed a consistently high enrichment level until the 
last time point (odds ratio > 30, Fig.  3F, Additional file  10: Table  S9). We measured 
the ability of this method to recover known RBD interactions by assessing the F1 
score, specificity, and sensitivity of binary classifiers built using the outlier thresholds 
(Additional file  6: Fig. S6). The O4 binary classifier had the highest F1-score in the 
December 2021 dataset (value 0.8 [0.61–0.91]), consistent with the emergence of the 
Omicron variant, and no predictive power before then. When we used the predicted 
RBD interaction networks before applying the ARACNE filtering algorithm [39], we 
observed a similar trend for both enrichment and binary classification than with the 
filtered datasets, albeit with lower odds ratio and F1 scores (Additional file 6: Fig. S7). 
Lastly, using O4 interactions to predict BA.1 epistatic interactions we measured the 
highest F1 score for the December 2021 dataset (0.35 [0.02–0.67]), again consistent 
with the rise of this variant at the same time (Additional file 6: Fig. S8). This validation 
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using experimentally determined epistatic interactions suggests that efficient compu-
tation of MI values could be used to implement a near real-time surveillance system 
for epistatic interactions.

In order to put this idea of a near real-time surveillance system for epistatic interac-
tions to the test, we focused on determining how early known epistatic interactions 
would be highlighted by the MI-based method. An ideal interaction pair is between 
positions 498 and 501 in the Spike protein, which has been shown experimentally 
to increase the Spike’s affinity to the ACE2 receptor both compared to the wild type 
and the single mutants alone, and thus the virus’ infectivity [20, 40]. While mutations 
at position 501 were already observed in the Alpha variant, the double mutation was 
not observed before the Omicron variant appeared around November 2021 (Fig.  4A). 
Consistent with this observation, we first predicted an O3 interaction between these 
two positions in the November 2021 dataset, which contained only 7 viral sequences 
out of 2500 that were annotated as lineage 21  K (Omicron BA.1, Fig.  4B and D). We 
note that our weighting scheme inflated the effective number of sequences belonging 
to this lineage to 86 (Additional file  6: Fig. S3). In the following month the frequency 
of Omicron viral sequences already increased to 56.4% and as expected the interaction 
strength between the two positions increased to reach the O4 level. We observed that 

Fig. 4 Predicted epistatic interaction in the Spike gene as a function of time. A Muller plot indicating the 
relative frequency of each lineage as a function of time. B Presence/absence matrix of predicted interactions 
between Spike codons 498/501 and those labeled either as escape variants or other mutation of interest/
concern. Gray indicates no predicted interaction. C–E Interaction heatmaps between selected Spike gene 
codons at particular time points
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this interaction faded with time and eventually disappeared in February 2023, consistent 
with mutations having reached fixation in the population and thus bearing no further 
mutual information between them. While the time point datasets are cumulative and 
thus contain all sequences up until the focal time point, our sequence age-based correc-
tion greatly reduces the contribution of sequences older than a year in the calculation of 
the MI values (Additional file 6: Fig. S2 and Additional file 6: Fig. S3). This seems a desir-
able property for a real-time surveillance system that is focused on highlighting new epi-
static interactions as they appear, even when the number of sequences bearing a double 
mutation is very low (e.g., N = 7).

We observed a similar pattern for the interaction between either affinity-related 
mutation (Spike codon 498 or 501) and escape or other mutations of concern, such as 
501/484 (appeared for the first time in the Beta B.1.135 variant) already emerged in 
October 2020. In many cases the interactions were first estimated when the Omicron 
variant first appeared (around November/December 2021), consistent with the studies 
that have characterized mutations at these positions to interact epistatically and to mod-
ulate infectivity and immune escape [20, 21].

Another particularly interesting interaction we singled out was between spike codons 
501 and 681, the latter having been described as conferring enhanced resistance to 
innate immunity [41]. Position 681 in particular has accumulated different amino acid 
substitutions in different variants: P681H in lineage 20I (Alpha B.1.1.7) and all Omicron 
subvariants, and P681R in lineage 21A (Delta B.1.617.2). Both positions have mutations 
that were first observed together when the Alpha variant emerged (around November 
2020) and we therefore expected to see a predicted interaction with a high MI value. We 
however first estimated the 501/681 interaction in August 2021 (Fig. 4C), which corre-
sponded with the virtual extinction of the Alpha variant. We then checked the raw MI 
interactions, which contain indirect ones (Methods), and as expected the 501/681 inter-
action was first observed in November 2020 with outlier level O3, which we observed 
every month until the last time point (Additional file 6: Fig. S9). We posit that this appar-
ent failure of the method to single out a known combination of mutations enhancing 
viral fitness was due to the relatively low number of sequences and their diversity until 
Summer 2021, which we have shown results in a large number of estimated interactions, 
many of which are likely false positives (Fig. 3D).

Apart from recapitulating known epistatic interactions, we sought to determine 
whether MI-based predictions have real predictive power. To answer this question, 
we devised a “blind” validation experiment. We extended our dataset to include viral 
sequences until August 2023 (Fig. 5A) and selected O4 interactions that fulfilled the 
following criteria: (i) both sites needed to be in the Spike RBD, (ii) one of the sites 
had to be previously characterized, and (iii) the interaction between the two sites had 
to have emerged at later timepoints. Based on these criteria, we selected three inter-
actions (Fig.  5C): 446–460, 446–486, and 452–490 (Fig.  5B). We then analyzed the 
changes in the frequency of non-synonymous variants at these sites and selected six 
for testing, combined in four pairs. Of those, L452R/F490S and G446S/F486V were 
anti-correlated in their frequency and virtually never occurred together in our data-
set. We observed the G446S/F486S pair at a low frequency (87 samples after 2023–
05), and almost never observed the G446S/N460H pair (5 samples). We chose the 
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anti-correlated pairs to elucidate why these variants “avoid” each other, and the low-
frequency pairs as a way to test an early warning system for mutation signatures that 
might rise in the future. We then tested each variant separately and as a pair in both 
the WT and Q498R/N501Y backgrounds, using the latter as a crude model of the 
Omicron variant. We used a pseudovirus system to test the impact of these variants 
on both infectivity (i.e., the ability to infect Vero-B4 cells, Fig. 5D, Additional file 11: 
Table  S10) and immune escape (i.e., lower neutralization to the Imdevimab mono-
clonal antibody, Fig. 5E, Additional file 6: Fig. S10, Additional file 11: Table S10). We 
then used a simple model of epistasis to validate interaction effects (Methods).

We first confirmed the previously described epistatic interaction for the Q498R/
N501H pair [21], both for its effect on infectivity (p-value  10−7) and immune escape 
(p-value  10−9). For both anti-correlated pairs, we found a significant interaction for 
either the infectivity assay (L452R/F490S and G446S/F486V with p-value <  <  10−10 in 
the WT background) and immune escape (G446S/F486V p-value  10−4). In particu-
lar, we found that on the one hand, the G446S/F486V pair induced a large drop in 
infectivity in the Q498R/N501H background (p-value  10−4) while the double mutant 
was fairly similar to the immune escape profile of the single G446S variant, thus com-
pensating for the loss of escape shown by the F486V variant alone. For infectivity, we 

Fig. 5 Experimental validation of emerging interactions. A Muller plot indicating the relative frequency of 
each lineage as a function of time, extending the dataset until August 2023. B Presence/absence matrix 
of the top predicted interactions between in the Spike RBD, plus codons 498/501. Gray indicates no 
predicted interaction. C Frequency of variants at each Spike codon shown in B (top) and of six selected 
non‑synonymous variants (bottom). D Impact of single and double mutants on viral infectivity, in the WT 
and Q498R/N501Y backgrounds. E Impact of single and double mutants on viral immune escape, using the 
area under the curve (AUC) of the neutralization assay (Additional file 6: Fig. S10) as a metric. The gray dashed 
vertical line indicates the maximum detectable neutralization (i.e., a flat neutralization curve). Bold asterisks in 
both the D and E panels indicate a pair with a significant epistatic interaction (p‑value < 0.05)
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observed the opposite effect for the L452R/F490S pair, observing a large increase in 
infectivity in the Q498R/N501H background, a significant effect (p-value  10−3). The 
double mutant had a slightly better immune escape profile than the single mutants, 
although not significant. From these observations we can hypothesize that the G446S 
and F486V variants are anticorrelated for their strong defect in infectivity; we cannot 
however apply the same reasoning for the L452R/F490S pair, whose absence from cir-
culating variants could be ascribed to stochasticity in population dynamics or interac-
tions with other variants. We observed a similar impact on infectivity for the G446S/
F486S (p-value <  <  10−10 for both backgrounds) and G446S/N460H (p-value <  <  10−10 
and 0.02 for the WT and Q498R/N501Y backgrounds, respectively) pairs as G446S/
F486V; based on these results we could estimate that variants carrying these pairs 
might have a fitness disadvantage, which indicates that they might have a low chance 
of increasing in frequency. Through this relatively small “blind” validation assay we 
demonstrated how interactions with high MI values indicate sites that interact epi-
statically, and thus the usefulness of the method to prioritize mutations for further 
validation.

The SARS-CoV-2 pandemic accelerated the usual pace of infection biology research: 
deep-mutational scanning and large-scale antibody escape assays have been developed and 
released at unprecedented speed [42, 43]. These are however necessarily limited to a single 
region of the genome of the virus: specifically the RBD region of the Spike gene. This nec-
essarily excludes longer-range interactions; not only within the Spike gene, as the 501/681 
interaction, but also between different genes. Given the difficulty in testing those interac-
tions in a laboratory assay, we focused on those for which we had the highest confidence to 
provide the community with a list of potentially interesting interactions. Overall the num-
ber of predicted interactions between genes is much lower than those within each gene, 
with the lowest number being 102 interactions in May 2022, and similar to the median 
number for the last 12 time points (137, Fig. 6A). To focus on the highest-confidence pre-
dictions, we selected the inter-gene interactions that had one position in the Spike gene and 
had a large MI value (outlier level O4) in at least 9 time points; this resulted in 7 interactions 
(Fig. 6B). Interestingly we observed three intergene interactions involving the notable 681 
Spike codon, which is known to increase viral fitness. Among them, we found codon 203 
in the Nucleocapsid gene (N) [44], which is known to increase infectivity. The other two 
positions with interactions with the 681 Spike codon were codon 26 in the ORF3a gene and 
codon 82 in the M protease gene; both are not known to influence viral fitness, and indeed 
they both are defining mutations for the Delta variant, their frequency closely following 
that of this variant (Fig. 6C). We therefore suspect that these two interactions might be false 
positives, thus suggesting that despite the population structure correction, the method is 
sometimes still susceptible to the impact of the strong clonal interference observed with 
this virus and almost complete lack of recombination. It is however also possible that these 
mutations do have a yet to be determined impact on viral fitness.

Discussion
The tragic public health toll of the COVID-19 pandemic has coincided with an unprec-
edented pace of scientific discovery and application in developing diagnostics and treat-
ment solutions. Large-scale sequencing of viral samples has played an important part 
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in guiding public health interventions and more recently vaccine updates. The unprec-
edented scale of these genomic epidemiology efforts offer an ideal testbed for new com-
putational approaches aimed at tackling future epidemics, for which genome sequencing 
will surely continue to play an important part [17].

While multiple approaches to rapidly estimate the fitness effects of individual genetic 
variants have been proposed [13–15], very few attempts have been made to estimate 
epistatic interactions between pairs of mutations. The interest in predicting them is not 
purely academic, as best exemplified by the appearance of the Omicron subvariants, 
each characterized by higher infectivity and immune evasion thanks to epistatic interac-
tions, many of which have been experimentally verified [20, 21]. Of note is the combi-
nation of amino acid changes at Spike codons 498 and 501, each of which alone results 
in a modest increase of the Spike protein for the ACE2 receptor, while together they 
have been shown to result in a > 350-fold increase in ACE2 affinity, a clear example of 
positive epistasis. This large increase in fitness in turn likely allowed for the accumula-
tion of slightly deleterious immune escape variants. Being able to quickly discover these 

Fig. 6 Between gene interactions. A Change in within and between gene interactions across time points. B 
Presence/absence matrix of predicted interactions between Spike codons and positions in other genes. Gray 
indicates no predicted interaction. C Frequency of nucleotide substitutions at specific positions interacting 
with Spike codon 681. Labels are encoded with format gene:codon:nucleotide position. Purple and pink lines 
overlap perfectly
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interactions from the large number of viral sequences being routinely generated could 
complement predictors for single variants to form a reliable early warning system.

The few approaches that have so far been described in the literature make them rela-
tively unsuitable for a near real-time system for predicting epistatic interactions. Nev-
erov and colleagues recently proposed a method that relies on ancestral sequence 
reconstruction over a time-calibrated phylogeny to infer epistatic interactions based 
on mutations appearing one after the other over a relatively short time span [29]. This 
method is interesting in its similarity to what we presented here because it also explic-
itly includes a time component to aid prediction; it is however most certainly not able 
to scale to a large number of sequences and be efficient, as it relies on constructing a 
timed phylogeny and reconstruct the ancestral states for each branch of the tree. In this 
study, we used a pseudolikelihood method, also termed direct coupling analysis (DCA) 
to validate the approach based on mutual information. Multiple studies have applied 
DCA to predict epistatic interactions in SARS-CoV-2, although at different times in 
the pandemic and with differences in the input alignments. Zeng and colleagues used 
DCA in the early stage of the pandemic (summer 2020) and reported a small number 
of predicted interactions, which is expected given the low diversity of the virus at that 
time [45]. While DCA can be considered a more accurate model to predict epistasis, 
available implementations of the model tend to require more computational resources 
and more time to complete (~ 4.5 h on 100 k Spike sequences using 16 cores), making 
them less suitable for a real-time system. Two interesting exceptions are the study by 
Rodriguez-Rivas and colleagues, in which they used DCA over multiple sequence align-
ments spanning a longer evolutionary timescale [46], which could be run as soon as the 
first SARS-CoV-2 genome sequence was available and required no subsequent update. 
The second study used a similar approach to what we have described in this study, that 
is, dividing sequences according to their collection date, but used an implementation of 
DCA that was able to scale up sufficiently [47]. We did not benchmark this implementa-
tion, but we note how selecting an appropriate threshold for “significant” interactions is 
as challenging as the MI-based approach we have followed. Filtering out positions with 
low diversity from the multiple sequence alignment might be a relatively simple strat-
egy to reduce the computational requirement of DCA-based methods, although they 
could reduce their sensitivity, as emerging variants may be filtered out. Lastly, protein 
structure modeling has been used as a more direct way to measure the impact of com-
binations of mutations on the binding of the Spike protein to the ACE2 receptor [46], a 
method that is likely unable to scale to thousands of sequences.

We chose to use a method based on computing mutual information between pairs of 
positions for its balance between speed, ease of implementation, and precision/sensi-
tivity. While MI-based methods are generally acknowledged to suffer from a number 
of biases such as those caused by uneven sampling or linkage between sites not actu-
ally participating in an epistatic interaction, they have been shown to be able to identify 
bona-fide interactions with comparable accuracy to pseudolikelihood methods, both in 
simulations [34, 37] and real sequence datasets. We have in fact shown how reasonably 
accurate reconstruction of known interactions can be obtained with as little as 10,000 
sequences with a short computation time (~ 2  h to process 10,000 sequences). These 
characteristics make it an attractive approach to be integrated into automated systems 
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that feed on central sequence repositories. We introduced a sequence weighting strat-
egy based on the age of each sequence so that a higher score would be given to emerg-
ing interactions and old ones be gradually removed. We showed how we were able to 
predict the known Spike 498/501 interaction as early as seven sequences encoding the 
double mutations were present in the dataset, thus demonstrating its potential use as an 
early warning system. We have in fact validated the predictive potential of this approach 
by extending our dataset beyond March 2023 and selecting three interactions that had 
emerged since the original cutoff. For those interactions, we chose six non-synonymous 
variants and tested their impact on infectivity and immune escape for the single and 
double mutants in two backgrounds, validating all interactions. Since we used an unsu-
pervised method to identify interactions, we are not able to predict which particular 
phenotype might be affected and in which direction (e.g., higher or lower infectivity). 
However, reducing the number of variants to be tested would still be a very valuable 
tool, which could be combined with recent advances in high-throughput molecular 
assays [48] to further speed-up the characterization of emerging virus variants. We also 
note that interacting pairs estimated with a method based on mutual information could 
then be further filtered using a DCA-based method, which could reduce the false posi-
tive rate and simplify the dense parts of the interaction graph; the theoretical and techni-
cal details of such a two-step approach are however still to be properly defined.

One challenge of this genome-wide method is the interpretation of interactions pre-
dicted between genes [18]. The mechanism behind interactions within a single gene is 
intuitive; in the case of the Spike protein, many immune escape mutations destabilize the 
protein structure while providing a fitness advantage. In more general terms, changes in 
amino acid sequences might result in protein structure changes that might need to be 
compensated by changes in residues that are close to each other in the protein struc-
ture. In the case of an interaction between protein-coding genes, unless these proteins 
share an interaction interface, two possible explanations are left to explain the predic-
tion of an interaction: a functional interaction or a false positive. We found it compelling 
that 3 between-gene interactions out of 7 that we flagged as high quality involved the 
known 681 Spike codon, one of which with the known 203 codon in the Nucleocapsid 
gene, whose mutations resulted in higher infectivity [44]. Given the recent report on the 
importance of intersegment (i.e., between genetic backgrounds) epistatic interactions in 
modulating the evolution of the hemagglutinin gene in the flu virus [49], we believe that 
these longer-range interactions are worth reporting and explored in further detail.

Conclusions
With this study, we have tested the applicability of a relatively simple computational method 
to estimate epistatic interactions from a large collection of viral sequences. By leveraging 
the metadata associated with each sample, notably the collection date, we could track the 
dynamics of these interactions, which can be used to filter out spurious predictions and pri-
oritize other ones that appear over multiple subsequent time points. This approach is how-
ever heavily reliant on the quality of the metadata; as we have shown we could identify the 
interaction between the 498/501 spike codons with as little as 7 samples bearing the double 
mutation (equivalent to 86 effective sequences following our weighting scheme, Additional 
file 6: Fig. S3). During our earlier analysis, we noticed how we could predict this interaction 
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even earlier (December 2020, Additional file 6: Fig. S11), which puzzled us because at the 
time the Alpha variant, which only had mutations at the 501 codon was increasing in fre-
quency. Upon careful inspection we discovered that 2 Omicron sequences out of the 2500 
used in the December 2020 timepoint were erroneously dated, thus generating a modest 
signal. The analysis presented in the main text has been performed after a further round of 
filtering out sequences that are known to have incorrect metadata. This accident speaks in 
favor of the high sensitivity of the method, but also of the need for a well-curated sequence 
repository, which requires proper funding, infrastructure, and a community engaged in 
curating it [17]. The potential of such repositories in enabling real-time surveillance and 
interventions in the face of rapidly unfolding epidemics is well worth the effort.

Materials and methods
Dataset and estimation of epistatic interactions

We used a mutual information (MI) based method to estimate epistasis across multiple 
sequence alignments (MSAs) of SARS-CoV-2 sequences. This method is based on a previ-
ously developed software (spydrpick [33]). Our implementation, derived from that provided 
in the panaroo software [50], was optimized to process a very high number of sequences in 
a short amount of time.

We selected the whole pan-genome alignment available on the GISAID platform, count-
ing 15,372,583 sequences by mid-April 2023. We only extracted the high-quality sequences 
according to a curated GISAID tree [51] which were also available in the public NCBI 
database (N = 5,447,247). Also, since the non-coding 5′ and 3′ ends of the SARS-CoV-2 
genomes are generally of lower quality, we resized them, considering only the positions 
from 266 to 29,768 (98.7% of the alignment length). Sequences were then deduplicated 
(N = 4,093,019) and stored in a matrix file. Before computing the mutual information 
between positions, sequences were weighted according to their distance to the root of the 
phylogenetic tree, normalized by the number of leaves at each internal node. This in turn 
ensures that the contribution of a large number of very similar sequences to the final pre-
diction is reduced.

The actual MI value was computed in the same way as the original implementation [33]. 
Briefly, mutual information is an extension of Shannon’s entropy to two random variables, 
which are the two sites ( X and Y  ) in the MSA being considered. Its value can be better 
understood as the reduction in uncertainty for one site (e.g., X ) when given the value at 
the other site (e.g., Y  ). Mutual information can be computed between each pair of residues 
in a multiple sequence alignment, which can take one of 5 values for each sample, the four 
nucleotides plus a character for gaps or undetermined bases. The main equation is as in the 
original implementation, and as follows:

in which X and Y  indicate the two positions in the multiple sequence alignment, val(X) 
and val(Y ) the five possible discrete states at both positions, p x, y  the joint probability 
of X = x and Y = y , and p(x) and p
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original publication, the joint probability p
(

x, y
)

 has to be estimated from the data itself, 
with the following equation:

in which neff
(

x, y
)

 indicates the effective count of occurrences of the x and y pair (see 
below), n the number of samples, and rX = val(X) , rY = val(Y ) . Marginal probabilities 
are computed with equations:

and.

Thus described, this mutual information strategy will likely be influenced by sampling 
biases, which could for instance arise when a particular lineage dominates the popula-
tion. To overcome this problem, and as indicated above, we introduced a sample weight-
ing strategy similar to that used in the implementation that is present in the panaroo 
software package [50], and based on the phylogenetic tree of all samples. For each sam-
ple i , we computed the weight wi as the distance from the root, with a normalization 
step such that the length of each branch is normalized by the number of leaves down-
stream of each branch:

In which b is the internal branch over the total number t , len(b) the length of the 
branch, and nb the number of downstream leaves. The weights are used to derive 
neff

(

x, y
)

 , which is the count of occurrences of the x and y pair multiplied by the weights.
We ran our implementation of the spydrpick algorithm on a random sample of 100 

positions in the MSA to extract a MI threshold based on the 90th percentile of the com-
puted MI values. The resulting interactions were then filtered by an algorithm imple-
mented for inferring gene expression networks (ARACNE [39]) and used to retain direct 
interactions, discarding indirect ones with a lower MI value. The output is generated as a 
tab-separated values (tsv) file. We defined 4 thresholds to indicate our confidence in the 
computed MI values based on the Tukey method as follows:

Q3 and Q1 respectively indicate the upper and lower quartiles of the MI values, and 
n are four different coefficients ( n = {1.5,3, 6,12} ) to be multiplied to the interquartile 
range, one for each outlier level. The resulting output with MI values was then anno-
tated using the SARS-CoV2 GFF file (RefSeq NC_045512.2) and each pair of positions 
was associated to the respective gene, codon number, and gene relative codon num-
ber. We excluded interactions within the same codon and between adjacent codons, as 
well as interactions between different genes whose nucleotide distance was < 2. For the 
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overall analysis (Fig. 1, Additional file 1: Table S1) we ran the pipeline on the whole data-
set of public sequences up to March 2023. A total number of 4,093,019 deduplicated 
and weighted sequences were processed. Smaller subsets of 1000, 10,000, 100,000, and 
1,000,000 sequences were generated by drawing random sequences from the complete 
dataset.

In silico validation of predictions

We validated the interactions using a set of experimentally validated epistatic interac-
tions and notable positions in the RBD of the Spike protein. We divided them into three 
sets, based on their known impact on viral fitness; we termed codons 498 and 501 as 
“Affinity” mutations for their positive epistatic interaction resulting in increased affinity 
to the ACE2 receptor [21]. We termed codons 406, 417, 446, 447, 449, 484, 493, 496, 505, 
and 506 as “Escape” mutations for their contribution to immune escape, especially in the 
498/501 genetic background [20, 21]. We added to this category those Spike codons with 
a relatively high escape score (> 0.1) as computed by the Escape Calculator [52]. Lastly, 
we added other notable Spike codons based on their designation as mutation of interest 
or mutations of concern if they were not already included in the other two sets: 18, 439, 
452, 477, 494, and 681 [38].

We used interactions between the codons in all three sets if they were in the RBD 
region (318 < codon < 541) and three different methods to validate our predicted interac-
tions. The first method is based on a hypergeometric test (Fisher’s test) for the enrich-
ment of observed known interactions over all possible RBD interactions. We defined 
the universe of all possible interactions as those between residues mutated in at least 
one sequence of those used to build the predictions. We then compared the odds ratio 
thus computed against that from 1000 permutations of the actual RBD network, avoid-
ing self links (a position interacting with itself ) and those between adjacent codons. For 
the second validation method we built a binary classifier to indicate whether the interac-
tions passing the first MI value threshold (90th percentile of MI values computed over 
100 random positions) were the known ones or not. For each outlier level (O1, O2, O3, 
O4) we used its threshold value to classify the interactions and computed the F1 score 
using the known interactions as a truth set. For the third validation, we used the inferred 
pairwise epistatic coefficients between 15 BA.1 mutations and tested the ability of our 
predicted interactions to predict interactions with a coefficient > 0.15, using the outlier 
levels as thresholds. For all three validation methods, we measured the 95% confidence 
interval of each indicator (i.e., odds ratio, specificity, sensitivity, F1 score) through boot-
strapping with N = 1000.

Time‑resolved analysis

We also tested the accuracy of our method on different time-points along a roughly 
3-year period (December 2019 to March 2023). To this purpose, we divided our data-
set into different subsets of sequences for every month as follows. Firstly, we binned the 
sequences for each month, collapsing the period between December 2019 and Febru-
ary 2020, since the number of sequences collected in the databases was very low at the 
very beginning of the pandemic (N = 592), obtaining a total of 38 bins. Furthermore, we 
randomly selected 2500 sequences for each month filtering out those known to have an 
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erroneous sample collection date [53]. For each subset, we then created a MSA with the 
selected sequences at that specific time point plus all the previously selected sequences. 
Moreover, beyond the phylogenetic weights, a second time-based weighting system was 
applied to the sequences in order to maximize the importance of emerging interactions. 
This has been made to reduce the MI values of less recent interactions. For this pur-
pose, we developed a function of exponential decay that follows a Hill curve function 
for the weighting of each sequence. We used a Hill coefficient of 3 and a weight of 0.5 
at 120 days (Additional file 6: Fig. S2). Both phylogenetic and time-based weights were 
then combined via multiplication to generate a final weight wi for each sequence in each 
subset (Additional file 6: Fig. S3). We used Nextclade [54] v2.14.0 to generate the list of 
amino acid substitutions in each sequence as well as their lineage, and used the pyfish 
package [55] v1.0.3 to generate a Muller plot to represent the changes in lineage relative 
proportions across all subsets.

Comparison with direct coupling analysis (DCA)

To further validate our data, we also used a pseudolikelihood method called DCA 
(Direct Coupling Analysis), and implemented in the plmc tool [26] that calculates the 
covariation and coevolution of biological sequences by inferring undirected graphi-
cal models, and applies a pseudo-likelihood approximation (Potts model) to impute the 
interaction strength between all pairwise positions in a given sequence. Since this imple-
mentation scales poorly with large MSA, both in terms of length and depth (i.e., num-
ber of sequences), we used the spike portion of the MSA to compare values computed 
using plmc against MI values for all the time-resolved datasets. We used the following 
command line arguments when running plmc (commit 18c9e55): “–fast -m 20 -le 20.0 
-lh 0.01 -a -AGCT”. To have a more direct comparison for Fig. 3C, we did not apply the 
time-based weighting for MI values but only that based on phylogenetic distances. For 
Additional file 6: Fig. S4, we used the weighting scheme including the time-based correc-
tion. In order to compare the ability of the DCA-based method to identify known Spike 
RBD interactions [21], we computed outlier levels for the output of the plmc implemen-
tation in a different manner from the MI-based method. We first selected the 1000 top 
scoring interactions, and then computed the four On levels using the following quartiles 
of the score distribution: n = {0,25,50,75} . We followed this approach as it allowed us 
to obtain a comparable number of predicted interactions, which would allow for a fair 
comparison between the two methods.

Plasmid cloning of selected SARS‑CoV‑2 point mutations

For the generation of the expression plasmids for SARS-CoV-2 point mutations, site-
directed mutagenesis was performed on a previously described full-length human-
codon-optimized plasmid pCG1_SARS-2-Sdel18 encoding the spike protein of the 
Wuhan-Hu-1 SARS-CoV-2 (18 amino acid truncation at the C-terminus) [56]. Plas-
mids encoding the selected spike protein mutations were integrated using the Q5 Site-
Directed Mutagenesis Kit (NEB #E0554S) according to the manufacturer’s instructions. 
Successful introduction of the respective mutation was verified by sequence analysis 
using a commercial sequencing service (Microsynth Seqlab). Mutagenic primers listed 
in Additional file 12: Table S11 were designed to flank sequences of the respective target 
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regions to introduce up to two selected mutations per reaction. Primers were designed 
using the “NEBase Changer” tool (https:// nebas echan ger. neb. com/) which also pro-
vided primer-specific annealing temperatures. PCR amplification was performed using 
Q5 High-Fidelity DNA Polymerase. The PCR program included denaturation at 98  °C 
for 30 s, annealing at primer-specific temperatures for 30 s, and extension at 72 °C for 
2 min. The PCR was followed by DpnI treatment at room temperature for 15 min and 
heat inactivation of the enzyme at 80 °C for 20 min to remove the parental template. The 
mutagenized PCR products were then transformed into Escherichia coli DH5 alpha cells 
in the presence of ampicillin. Positive colonies were identified and successful introduc-
tion of the respective mutation was verified by sequence analysis using a commercial 
sequencing service (Microsynth Seqlab).

Generation of VSV‑SARS‑CoV‑2 mutant pseudotypes

Vesicular stomatitis virus (VSV, Indiana strain) pseudotypes harboring the SARS-CoV-2 
WT spike or the spike protein-coding for the different point mutations were generated 
as previously described [57]. Briefly, HEK-293 T cells maintained in DMEM (Capricorn 
Scientific DMEM-HXA) supplemented with 10% FBS (Capricorn Scientific FBS-11A) 
and 2  mM L-glutamine (Thermo Fisher 25,030,081) were transfected with different 
SARS-CoV-2 mutant spike protein expression plasmids using polyethylenimine Max 
(polysciences 24,765). Twenty-eight hours post-transfection, cells were transduced with 
a replication-deficient VSV expressing the enhanced green fluorescent protein (eGFP) 
cassette, in lieu of the VSV glycoprotein G open reading frame (ORF) (VSV*ΔG-GFP) 
at a multiplicity of infection (MOI) of 3 at 37  °C and 5%  CO2 for 2 h. Cells were then 
washed with PBS, and a fresh medium with an anti-VSV-G antibody was added to neu-
tralize residual VSV*ΔG-GFP. The supernatant containing the WT VSV-SARS-CoV-2-S 
or the mutant pseudotypes was collected 18  h post-transduction, pooled, and centri-
fuged at 300 × g for 6 min to remove cellular debris. Supernatant was then concentrated 
using 100 kD Amicon® Ultra-15 centrifugal filters (Millipore UFC910024), by centrif-
ugation at 2000 × g for 10  min. Concentrated pseudotypes were aliquoted and stored 
at − 80  °C until further use. Pseudo-virus was titrated on Vero-B4 cells to quantify the 
amount of infectious virus to normalize viral input of the generated mutants between 
assays.

VSV‑SARS‑CoV‑2‑S pseudovirus titration

To determine the concentration of infectious VSV-SARS-CoV-2-S pseudovirus parti-
cles, the virus stock was initially tenfold diluted in MEM (5% FBS, 1% Glutamax) in a 
96-well plate. This was followed by a threefold serial dilution for a total of 11 dilutions 
each in 3 replicates. A control well without pseudovirus was also included. The dilutions 
were then added to a separate 96-well plate containing a monolayer of Vero B4 cells and 
incubated at 37  °C and 5%  CO2 for 24 h. Infected cells were identified and quantified 
for positive GFP signal by full-well widefield microscopy using the Olympus FV3000 
microscope CellSens software. The number of GFP-positive cells for each dilution was 
quantified by ImageJ2 version 2.9.0. The virus titer was calculated by the mean number 
of the replicates based on the dilution factor and expressed as focal forming units per 
milliliter (ffu/ml). SARS-CoV-2 pseudovirus infectivity was measured by threefold serial 

https://nebasechanger.neb.com/
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dilution of each pseudo-virus in triplicates starting from 6000 ffu/ml over 6 dilution 
steps in MEM (5% FBS, 1% Glutamax) in a 96-well plate. The respective pseudovirus 
dilutions were then added to Vero-B4 cell monolayer and incubated at 37 °C and 5%  CO2 
for 24 h. Infected cells were identified and quantified for positive GFP signal by full-well 
widefield microscopy using the Olympus FV3000 microscope CellSens software. GFP-
positive cells were quantified by ImageJ2 [58] version 2.9.0. Three consecutive dilution 
columns with GFP-positive cells ranging between 50 and 2000 were selected and aver-
aged to quantify the mutant pseudovirus infectivity (ffu/ml). The pseudo-virus titer was 
then calculated by the mean number of ffu/ml from all three replicates of each pseudo-
virus dilution.

VSV‑SARS‑CoV‑2‑S pseudotypes spike dependent viral entry

To determine virus entry into the cells, SARS-CoV-2 pseudovirus infectivity was meas-
ured by threefold serial dilution of each pseudo-virus in triplicates starting from an ini-
tial concentration of 6000 ffu/ml over 6 dilution steps in MEM (5% FBS, 1% Glutamax) 
in a 96-well plate. The respective pseudovirus dilutions were then added to the Vero-B4 
cell monolayer and incubated at 37 °C and 5%  CO2 for 24 h. Infected cells were identified 
under full-well widefield microscopy using the Olympus FV3000 microscope CellSens 
software to quantify GFP expression as a marker of viral entry. GFP-positive cells were 
quantified by ImageJ2 [58] version 2.9.0. Three consecutive dilution columns with GFP-
positive cells ranging between 50 and 2000 were selected and averaged to quantify the 
mutant pseudovirus infectivity (ffu/ml).

VSV‑SARS‑CoV‑2‑S pseudovirus neutralization assay

The commercially available monoclonal antibody (mAb) against SARS-CoV-2, 
Imdevimab (REGN10987) was threefold serially diluted in MEM (Capricorn Scientific 
MEM-XA) supplemented with 5% FBS and 2  mM L-glutamine in triplicates starting 
from 4 μg/ml over 11 dilution steps. An equal volume of pseudovirus was then added 
to the antibody dilutions at a final concentration of 300 ffu/well. Wells containing pseu-
dovirus in the absence of the monoclonal antibody were included as a control. After 1 h 
of virus-antibody incubation at 37 °C, 100 μl of the pseudo-virus/antibody mixture was 
transferred to the Vero-B4 cell monolayer and incubated at 37  °C for 24 h. GFP-posi-
tive infected cells were identified by full-well widefield microscopy and the number of 
GFP-positive infected cells per well was quantified by ImageJ2. Triplicate values of the 
GFP-positive infected cells were averaged and normalized relative to the control wells 
containing the virus in the absence of mAb.

Identification of epistatic interactions from pseudovirus assays

We transformed the viral entry data into normalized viral particle counts and com-
puted the fold-change with respect to the wild-type pseudovirus for all tested vari-
ants, which we used as a measure of the impact of each variant set on viral infectivity. 
We similarly converted the antibodies neutralization curves to a normalized area 
under the curve (AUC) value, with 1 representing a complete failure in viral neutral-
ization, which we used as a measure of the impact of each variant set on immune 
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escape. In order to formally test for epistatic interactions based on the data from the 
pseudovirus assays, we fitted two ordinary least squares models for each tested pair:

where Y  represents the value of the target phenotype (i.e., infectivity log2 fold-changes 
or immune escape AUC), Va and Vb the presence/absence vector of the target variant at 
site a and b , respectively, Va · Vb the interaction term between the two sites, and ǫ the 
biological replicate. We then used a likelihood ratio test to compare the two models and 
derive a p-value. We applied the same approach for the variants tested in the Q498R/
N501Y background with two slightly modified ordinary least squares models:

where VQ498R and VN501Y  represent the presence/absence vector of the target variant at 
sites 498 and 501, respectively, and VQ498R · VN501Y  the interaction term between the 
two sites.
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