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Background
The development of spatially resolved transcriptomic technologies has improved our 
understanding of the spatial organization and gene expression heterogeneity within tis-
sues [1–4]. Spatial transcriptomics (ST) technologies enable the measurement of tran-
scriptomes while maintaining the spatial context of the tissue, offering valuable insights 
into disease pathology research [5–7]. However, ST technologies still face certain limita-
tions due to the trade-off between cell resolution and throughput. For instance, many 
fluorescence in situ hybridization (FISH) based technologies are unable to capture the 
full scope of the transcriptome within a single cell [8]. This poses computational chal-
lenges when attempting to infer the missing gene expression information from FISH 
data. In addition, many sequencing-based methods used in ST often lack sufficient 
resolution at the single cell level, raising computational challenges for deconvolving cell 
types detected within the same spatial spot/location. In contrast to ST technologies, 
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single-cell RNA sequencing (scRNA-seq) is capable of detecting many thousands of gene 
expressions within individual cells. As a result, scRNA-seq can be effectively leveraged 
as a complementary tool to address certain limitations of ST technologies. For example, 
restoring cell type decomposition within a spot/location in ST data bears similarities to 
using scRNA-seq to deconvolve bulk RNA-seq data. Indeed, several models have been 
developed for bulk RNA-seq data deconvolution [9–14], and in theory, these models 
could be adapted to handle ST data. However, the cell numbers within a spot/location in 
ST data are considerably lower than those in bulk RNA-seq data. Consequently, applying 
a bulk RNA-seq deconvolution method to such a small sample size usually introduces 
noise from unrelated cell types and has been demonstrated by several benchmark analy-
ses [15–17].

In recent years, several models have been developed for deconvolving ST data, 
employing either statistics-based or machine learning-based algorithms [3, 15–31]. Sta-
tistics-based algorithms typically assume a distribution, usually Poisson [18] or negative 
binomial [15, 17, 22, 26], for the gene transcript count. These methods first employ the 
scRNA-seq data to calculate the distribution coefficients for genes in each cell type. Cell-
type proportions are then inferred using maximum-likelihood estimation or maximum 
a posteriori estimation. On the other hand, machine learning-based algorithms usu-
ally integrate the predicted ST data with scRNA-seq data to directly predict cell-type 
proportions through neural network systems. These models eliminate the need for an 
additional step to learn cell type gene signatures from scRNA-seq data [20, 21, 29]. How-
ever, a common limitation of these models is that they deconvolve the spots in a given 
ST dataset independently, without considering the neighborhood connections between 
spots. Indeed, it has been demonstrated that ST data can be divided into distinct spatial 
domains [32, 33]. By incorporating the spatial coordinate information between spots, the 
ST cell type decomposition learned from scRNA-seq can calibrated, leading to increased 
predictive accuracy.

In this study, we present the Spatial Transcriptomics deconvolution using Graph 
Convolutional Networks (STdGCN) as a novel approach for ST data cell-type deconvo-
lution. Our model leverages graph convolutional networks (GCN), a widely used graph-
based deep learning model. Notably, STdGCN integrates the expression profiles from 
scRNA-seq data with spatial localization information from the ST data for cell-type 
deconvolution. By integrating expression and spatial information, STdGCN achieves 
accurate predictions of cell-type proportions in ST data. To evaluate the performance of 
STdGCN, we conducted benchmarking against 17 state-of-the-art models. The results 
demonstrate that STdGCN consistently outperforms the benchmark models across vari-
ous ST platforms. This highlights the superiority of STdGCN in cell-type deconvolution 
for ST data.

Results
STdGCN description

STdGCN is designed for cell-type deconvolution in ST data by using scRNA-seq data as 
a reference (Fig. 1). The underlying hypothesis is that both ST data and scRNA-seq data 
share common cell types, and their cell type gene transcript signatures exhibit similari-
ties. In short, the normalized gene expression of a spot can be considered a combination 
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of different cell types with varying proportions. The initial step of STdGCN involves 
identifying cell-type marker genes and generating pseudo-spots using the scRNA-seq 
data (Fig.  1A). Subsequently, it builds two link graphs to establish the GCN pipeline 
(Fig. 1B ~ C). The first link graph, known as the expression graph, is a hybrid graph com-
prising three sub-graphs, a pseudo-spot internal graph, a real-spot internal graph, and 
a real-to-pseudo-spot graph. Each sub-graph is constructed based on mutual nearest 
neighbors (MNN) using the expressed similarity between spots. The second link graph, 
the spatial graph, is built based on the Euclidean distance between real-spots in ST 

Fig. 1  Schematic view of the STdGCN framework. STdGCN is a cell-type deconvolution method designed for 
spatial transcriptomics data, using scRNA-seq data as the reference. The workflow of STdGCN involves several 
key steps. Firstly, STdGCN employs the scRNA-seq reference data to identify cell-type marker genes and 
generate a pseudo-spot pool (A). It then builds two link graphs: a spatial graph (B) and an expression graph 
(C). The expression graph is a hybrid graph composed of three sub-graphs, a pseudo-spot internal graph, a 
real-spot internal graph, and a real-to-pseudo-spot graph. These sub-graphs are formed using mutual nearest 
neighbors (MNN) based on expression similarity. Based on the two link graphs, a GCN-based model is utilized 
to propagate information from both real- and pseudo-spots. The output of STdGCN is the predicted cell-type 
proportions for each spot (D). Additionally, STdGCN provides visualizations of the predicted results for the 
real-spot dataset in two different formats
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data. During the execution of STdGCN, the input feature matrix is forward propagated 
through the expression GCN layers and the spatial GCN layers, respectively. The out-
puts of the two GCN layers, namely Exp-feature and Spa-feature, are then concatenated 
column-wise into a single matrix. This concatenated matrix is subsequently fed into fully 
connected layers to predict the cell-type proportions for each spot. To train the model, 
we divide the pseudo-spots into a training dataset and a validation dataset. Only pseudo-
spots in the training dataset are used for back propagation, whereas the validation data-
set serves the purpose of early stopping. Using this approach, the cell-type proportions 
of real-spots can also be updated through the GCN pipeline, benefiting the learning of 
the pseudo-spots (Fig. 1D). The details are described in “Methods.”

Benchmarks of STdGCN in different datasets

To assess the performance of STdGCN, we conducted a comprehensive comparison 
with 17 state-of-the-art deconvolution models, including stereoscope [15], RCTD [18], 
SPOTlight [16], SpatialDWLS [19], Cell2location [26], DSTG [20], CellDART [21], 
DestVI [22], STRIDE [23], Tangram [24], BayesPrism [25], AdRoit [17], SpatialDecon 
[28], SD2 [29], NMFreg [3], CARD [30], and SONAR [34]. We selected three different 
ST platforms with single cell level cell type annotations: seqFISH [35], seqFISH + [33], 
and MERFISH [36]. Additionally, we conducted a methods comparison using slide-seq, 
a sequencing-based platform with near single-cell resolution (see Additional file 1: Sup-
plementary Information) [37]. Synthetic multi-cellular ST datasets were generated using 
these platforms, allowing us to evaluate the performance of the models under controlled 
conditions (Fig. 2, “Methods”). Given that ST data and scRNA-seq data often originate 
from distinct datasets, we incorporated both internal and external single-cell reference 
of the seqFISH + dataset (“Methods”). To quantitatively assess accuracy of the 18 mod-
els, we employed three metrics: Jensen-Shannon divergence (JSD), root-mean-square 
error (RMSE), and Spearman correlation coefficient. Based on the three values, we 
ranked the models accordingly. Since each dataset consisted of multiple slices, the per-
formance of a model for a given dataset was determined by calculating the mean rank 
across all slices within that dataset.

Table 1 illustrates the performance of the 18 models. STdGCN emerged the best out-
comes, displaying the lowest average JSD in seqFISH, seqFISH + internal, and MERFISH 
datasets, as well as the lowest average RMSE in seqFISH and seqFISH + internal data-
sets. Specifically, in the seqFISH and seqFISH + datasets, STdGCN achieved the top 
ranking in both JSD and RMSE across all slices. Although STdGCN did not surpass other 
methods in Spearman’s correlation coefficient, its performance remained competitive. In 
the evaluating of seqFISH + using the external scRNA-seq dataset, STdGCN achieved 
2nd place in both JSD and RMSE metrics, and 4th place in Spearman’s correlation coeffi-
cient. Despite not the best one, STdGCN consistently demonstrated stable performance 
across all benchmarked methods.

To further evaluate the performance of the models, we investigated their effectiveness 
in spots with different cell numbers. We divided the spots into two categories: a smaller 
group consisting of spots with five or fewer cells and a larger group comprising spots 
with more than five cells. We then benchmarked the models in each of the two groups 
across all datasets. For most models, the average JSD and RMSE of the larger group were 
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lower than those of the smaller group (P value < 0.05, Wilcoxon test), and the Spearman’s 
correlation coefficient of the larger group were higher than those of the smaller group (P 
value < 0.05, Wilcoxon test) (Fig. 3A ~ D, Additional file 1: Figs. S1 ~ S2). The observations 
indicate that spots with smaller cell numbers pose greater challenges for accurate decon-
volution. Despite this difficulty, when comparing the relative performance between two 
groups, the average ranks of most methods remained consistent (Additional file 2: Tables 
S1 ~ S3). Remarkably, STdGCN consistently outperformed other models in both groups.

Cell–cell communication plays a vital role in multi-cellular organisms, and it is 
influenced by physical location within the cellular microenvironment. Spatially adja-
cent cells are more likely to interact with each other. Thus, accurate deconvolution 
of cell types enables the identification of co-localization and spatial interactions. In 

Fig. 2  Four representative multi-cellular synthetic benchmark ST slices corresponding to the four ST 
platforms. The scatter plots display the cell atlas of the mouse embryos sequenced with seqFISH (A), 
mouse preoptic region sequenced with MERFISH (C), mouse somatosensory (SS) region sequenced with 
seqFISH + (E), and mouse testis region sequenced with slide-seq (G). We resampled these datasets by 
dividing each slice into multiple square pixel areas (dash lines). Cells within each square pixel area were 
then merged into synthetic spots. Pie plots illustrate the cell-type proportions for each synthetic spot after 
resampling process (B, D, F, and H)
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Table 1  The average ranks of the 18 benchmarked models across the three datasets

Model seqFISH seqFISH +  seqFISH + _
external

MERFISH

JSD STdGCN 1.00 1.00 2.00 3.00

cell2location 9.83 5.00 12.00 17.93

CellDART​ 12.00 10.00 14.00 7.90

DestVI 5.00 18.00 18.00 15.43

DSTG 10.83 6.00 10.00 4.11

RCTD 3.33 5.50 4.00 3.42

spatialDWLS 5.83 7.50 1.00 6.64

SPOTlight 17.17 15.50 15.00 15.50

stereoscope 6.17 10.00 11.00 14.30

STRIDE 17.33 14.00 7.00 12.45

Tangram 12.67 14.00 13.00 10.06

Adroit 7.33 3.50 9.00 5.16

BayesPrism 13.67 5.50 6.00 13.33

SpatialDecon 5.50 11.50 8.00 8.67

SD2 15.33 13.50 17.00 14.92

NMFreg 16.17 17.00 16.00 11.68

CARD 9.83 10.50 3.00 5.25

SONAR 2.00 3.00 5.00 1.25

RMSE STdGCN 1.00 1.00 2.00 2.74

cell2location 8.67 3.50 9.00 16.87

CellDART​ 12.00 10.00 17.00 6.77

DestVI 4.50 18.00 16.00 15.83

DSTG 8.50 5.50 12.00 1.65

RCTD 3.67 6.00 3.00 5.36

spatialDWLS 9.17 8.50 6.00 8.29

SPOTlight 18.00 16.00 13.00 14.67

stereoscope 6.17 10.00 14.00 17.19

STRIDE 16.83 12.50 7.00 10.92

Tangram 13.50 15.00 11.00 11.57

Adroit 6.83 4.00 9.00 4.23

BayesPrism 13.00 5.50 5.00 13.24

SpatialDecon 5.83 12.00 8.00 8.05

SD2 14.83 13.50 18.00 14.13

NMFreg 16.17 16.50 15.00 11.15

CARD 10.33 9.50 1.00 5.25

SONAR 2.00 4.00 4.00 3.07
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light of this, we scrutinized the performance of the benchmarked models when deal-
ing with different number of cell types within a single spot. We divided the spots 
into four groups based on the number of cell types: singleton (one cell type), dou-
bleton (two cell types), tripleton (three cell types), and multiton (four or more cell 
types). Of the four groups, STdGCN consistently demonstrated strong performance 
(Fig. 3E ~ H, Additional file 1: Figs. S3 ~ S4, Additional file 2: Tables S4 ~ S6), and in 
most circumstances, STdGCN achieved the lowest JSD and RMSE scores.

Lastly, we assessed the models’ capability for predicting diverse cell types. For this 
analysis, we employed a binary JSD to measure the discrepancy between the pre-
dicted proportions and the actual proportions by summarizing the proportions of 
the remaining cell types within each spot (“Methods”). To measure the RMSE/Spear-
man’s correlation coefficient of a cell type, we exclusively calculated the RMSE/
Spearman’s correlation coefficient between predicted proportions and the real pro-
portions across all spots corresponding to that particular cell type within a given 
slice. In terms of the average ranks of the 18 models, STdGCN outperformed other 
models for most cell types (Fig. 3I, Additional file 1: Figs. S5 ~ S6). It is noteworthy 
that based on the average ranks of all cell types, STdGCN demonstrated a greater 
specialization in predicting cell types with higher frequencies (Additional file  2: 
Tables S7 ~ S9).

JSD Jensen-Shannon divergence, RMSE root mean square error

Table 1  (continued)

Model seqFISH seqFISH +  seqFISH + _
external

MERFISH

Spearman’s correlation 
coefficient

STdGCN 4.00 3.50 4.00 2.43

cell2location 9.17 7.50 14.00 10.41

CellDART​ 7.50 11.00 13.00 6.22

DestVI 7.00 18.00 18.00 14.21

DSTG 10.83 4.50 12.00 4.08

RCTD 14.17 3.00 3.00 6.86

spatialDWLS 1.00 1.00 1.00 4.23

SPOTlight 17.33 16.00 16.00 13.56

stereoscope 9.00 10.50 11.00 12.96

STRIDE 8.17 13.00 7.00 9.64

Tangram 15.17 12.50 9.00 10.88

Adroit 2.00 3.00 8.00 5.30

BayesPrism 11.83 10.00 6.00 14.86

SpatialDecon 3.00 11.00 10.00 10.25

SD2 15.83 14.00 15.00 16.20

NMFreg 17.50 17.00 17.00 12.88

CARD 7.17 9.50 5.00 8.72

SONAR 10.33 6.00 2.00 7.29
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Developing human heart spatial transcriptomic dataset

In order to show the utility of STdGCN, we first employed STdGCN on a developing 
human heart [38] to assess its performance on a real-word multi-cellular ST dataset. 
This study used a combination of spatial transcriptomics [39, 40], scRNA-seq, and in situ 
sequencing (ISS), to capture transcriptomic profiles in human embryonic heart tissues 
(Fig. 4A ~ D). Leveraging the scRNA-seq data as the reference, we employed STdGCN 
to infer the cell-type composition within the spatial transcriptomics dataset. Remark-
ably, the cell-type distribution predicted by STdGCN exhibited a high degree of con-
cordance with the ISS dataset (Fig. 4A, Additional file 1: Fig. S7). STdGCN accurately 

Fig. 3  Assessment of STdGCN and benchmarked methods for estimation of cell-type proportions. A, B, and 
C The bar plots compare the performance of models with different numbers of cells within a spot. We divided 
the spots into two groups: a smaller group (spots with ≤ 5 cells) and a larger group (spots with > 5 cells). Bar 
plots display the Jensen-Shannon divergence (JSD) of the benchmarked methods for the two groups, as 
well as the total spots across the three datasets. D, E, and F Comparison of the models in spots with different 
number of cell type mixtures. We divided the spots into four groups based on the number of cell types within 
a spot: singleton (one cell type), doubleton (two cell types), tripleton (three cell types), and multiton (four 
or more cell types). Bar plots display the JSD of the benchmarked methods for the four groups, as well as 
the total spots across the three datasets. G, H, and I Bar plots display the JSD of STdGCN and benchmarked 
methods for distinguishing diverse cell types across the three datasets
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identified the spatial localization patterns of various cell types within the heart tissue: 
epicardial cells were predominantly located on the outer surface of the heart tissue, atrial 
cardiomyocytes were primarily situated within the atrium, and smooth muscle cells were 
located in the aorta and pulmonary artery area (Fig. 4E ~ G). These predicted cell types 

Fig. 4  Performance of STdGCN on the developing human heart spatial transcriptomic dataset. A The spatial 
structure and cell-type distribution of cells identified by in situ sequencing (ISS) in a PCW6.5 heart tissue 
section. B UMAP plot of the cells as in A. C The pie plot displays the predicted cell-type proportions in each 
spot of the PCW6.5–6 heart tissue section. D UMAP plot of the cells from the scRNA-seq dataset. E, F, and 
G The scatter plot displays the predicted proportions of epicardium cells (E), atrial cardiomyocytes (G), and 
smooth muscle cells from the PCW6.5–7 heart tissue section and their annotated results in ISS data. H and 
I The scatter plots display the annotated results of Myoz2-enriched cardiomyocytes (H) and ventricular 
cardiomyocytes (I) in ISS data and the predicted proportions from STdGCN. J The Venn diagram displays the 
overlapping of cell-type marker genes between ventricular cardiomyocytes, Myoz2-enriched cardiomyocytes, 
and atrial cardiomyocytes after filtering (see “Methods”). K The heatmap displays the co-localization score for 
all deconvolved cell types in the three stages (PCW4.5–5, PCW6.5, PCW9) of heart tissue sections. Red arrows 
are cardiomyocytes and blue arrows are endothelial cells. M The distributions of ventricular cardiomyocytes 
in the ISS dataset
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were consistent with existing medical knowledge [38], providing compelling evidence 
for the efficacy of STdGCN in capturing the spatial organization of cell types within 
complex tissue environments.

In a previous review study [41], various models were compared in their ability to 
deconvolve the aforementioned dataset. The finding revealed that most models strug-
gled to distinguish between Myoz2-enriched cardiomyocytes and ventricular cardiomy-
ocytes (Fig. 3 in Chen et al. [41]) (Fig. 4H ~ I, Additional file 1: Figs. S8 ~ S9). It has been 
established that that the Myoz2-enriched cardiomyocytes are a subpopulation of cardio-
myocytes in the healthy heart, characterized by the expression of MYOZ2 [38, 42]. Nota-
bly, both the UMAP plots of the ISS dataset and the scRNA-seq dataset demonstrated 
that the expression level of Myoz2-enriched cardiomyocytes closely resembled that of 
ventricular cardiomyocytes and atrial cardiomyocytes (Fig. 4B and D).

We investigated their respective cell-type marker genes (see “Methods”) and found 
that 41.6% of the Myoz2-enriched cardiomyocyte marker genes were also shared with 
atrial cardiomyocyte marker genes, while 100% of the Myoz2-enriched cardiomyo-
cyte marker genes overlapped with ventricular cardiomyocyte marker genes (Fig.  4J). 
Notably, MYOZ2, which has been identified as the most significant marker gene for 
Myoz2-enriched cardiomyocytes (average log-fold change = 1.81, expressed in 99.0% 
Myoz2-enriched ventricular cardiomyocytes, FDR ≈ 1.08 × 10−89) [38, 42], also serves as 
a marker gene for ventricular cardiomyocytes (average log-fold change = 1.30, expressed 
in 92.7% ventricular cardiomyocytes, FDR ≈ 0) (“Methods”). The considerable overlap of 
marker genes between ventricular cardiomyocyte and Myoz2-enriched cardiomyocyte 
elucidates why the majority of models fail to effectively differentiate between the two 
cell types. Despite the challenge, we compared STdGCN with eight previously well-per-
formed models. The results showcased that STdGCN outperformed other models, suc-
cessfully distinguishing between the two cell types (Fig. 4H ~ I, Additional file 1: Fig. S5).

Studies have emphasized the crucial role of communication between endothelial cells 
and cardiomyocytes in cardiac development. Endothelial cells not only facilitate the 
transmission of oxygenated blood supply to cardiomyocytes, but also provide local pro-
tective signals that promote cardiomyocyte organization and survival [43]. To investigate 
the extent of endothelial-cardiomyocyte communication within the analyzed dataset, 
we explored the cell type co-localization score (“Methods”) across three developmental 
stages of heart tissue sections (PCW4.5–5, PCW6.5, PCW9) (Fig. 4K). The background 
co-localization score, representing the mean pairwise co-localization score across all 
cell types, for the three stages are 0.0927, 0.0784, and 0.0845, respectively. The heatmap 
shows a higher co-localization score between endothelial cells (including “Endothelium/
pericytes/adventitia” and “Capillary endothelium” in the dataset) and cardiomyocytes 
(including “Myoz2-enriched cardiomyocytes,” “ventricular cardiomyocytes,” “atrial car-
diomyocytes” in the dataset) compared to the background co-localization score. This 
finding aligns with previous research and underscores the significance of endothelial-
cardiomyocyte interactions in the context of this dataset.

Developing human breast cancer transcriptomic dataset

To assess the versatility of STdGCN, we then applied it to investigate the spatial organi-
zation of a human breast cancer ST dataset [44]. This dataset involved the analysis of 
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breast tumor samples using both scRNA-seq (Fig.  5A ~ B) and 10X Genomics Visium 
ST sequencing. By utilizing the scRNA-seq data as a reference, we obtained the cell-type 
proportions corresponding to each spot in the 10X Genomics Visium dataset (Addi-
tional file 1: Figs. S10 ~ S15).

By using STdGCN, we were able to quantitatively dissect the tumor microenvironment 
(TME) for these tissues in high resolution. For example, previous studies have high-
lighted the significance of tumor-infiltrating lymphocytes (TILs) as a strong prognostic 

Fig. 5  Performance of STdGCN on the human breast cancer 10X Genomics Visium dataset. A and B UMAP 
plots of the cells from the scRNA-seq dataset divided by patient and cell type. C The heatmap displays the 
co-localization score (“Methods”) for normal cells, cancer cells, lymphocytes (integration of B-cells, T-cells, 
and plasmablasts), stroma (integration of cancer-associated fibroblasts, perivascular-like and endothelial 
cells), and myeloid. D Mean predicted cell-type proportions for patient CID4465 (TNBC) and CID4535 (ER +). 
E, F, and G The scatter plot displays the predicted result for patient CID4535. H The heatmap displays the 
co-localization score for patient CID4535. I, J, and K The scatter plot displays the predicted result for patient 
CID4465. L The heatmap displays the co-localization score for patient CID4465
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marker for patient survival. In the case of locally developed breast cancer treated with 
neoadjuvant chemotherapy, the presence of TILs is a predictor of the response [45–47]. 
Leveraging the deconvolution results predicted by STdGCN, we compared the cell type 
co-localization score (“Methods”) between estrogen receptor-positive (ER +) samples 
and triple-negative breast cancer (TNBC) samples. The co-localization heatmap revealed 
higher TILs in ER + samples than TNBC samples, suggesting a more favorable prognosis 
for ER + samples (Fig. 5C). Additionally, the interactions between stromal cells, cancer 
cells, and lymphocytes have been reported to be important for maintaining the TME 
[48]. Cancer cells that interact with stromal cells can create favorable physical or molec-
ular signaling environments that promote tumor progression [49], while certain stro-
mal cells, such as cancer-associated fibroblasts (CAFs), can recruit immune cells to the 
tumor tissues and influence their behavior towards cancer cells [50]. Through STdGCN, 
we were able to analyze cell–cell interactions in spatial locations. For instance, we com-
pared the TME of an ER + patient (CID4535) with that of a TNBC patient (CID4465) 
(Fig. 5D ~ L). Despite similar overall proportions of cell types between the two patients 
(Fig.  5D), the spatial structure and co-localization heatmap revealed substantial dif-
ferences in their respective (Fig.  5E ~ L), indicating distinct microenvironmental char-
acteristics. Both patients have three regions on their slices, and we analyzed the TME 
variations across these regions. The average proportions of cell types and the co-local-
ization heatmaps reveal significant differences in the TMEs within individual patients 
(Additional file 1: Fig. S16). For patient CID4465, regions 1 and 3 have smaller propor-
tions of T-cells compared to region 2 and all regions of patient CID4535. Furthermore, 
all regions of patient CID4465 exhibit lower TILs compared to those in patient CID4535.

Discussion
ST profiles have significantly enhanced our understanding of tissue architecture at the 
cellular level. However, many existing ST profiling technologies lack sufficient single-
cell resolution. To this end, we introduce STdGCN, a graph-based deep learning frame-
work that leverages cell type profiles learned from single-cell RNA-seq to effectively 
deconvolve the cell type mixtures in ST data. In order to evaluate the performance of 
STdGCN, we conducted a comprehensive benchmarking study involving four ST data-
sets and compared its performance against 17 state-of-the-art ST deconvolution meth-
ods [3, 15–26, 28–30]. The models were ranked based on their performance metrics. 
Across all four benchmarked datasets, STdGCN demonstrated the most superior per-
formance in terms of JSD, RMSE, and Spearman’s correlation coefficient (Table 1, Addi-
tional file 2: Table S10).

To improve the performance of cell-type deconvolution, distinct designs were adapted 
based on the characteristics of ST datasets. First, STdGCN stands out from previous 
models by incorporating spatial structure information from ST data and expression 
profiles from scRNA-seq for cell-type deconvolution. This innovative approach capi-
talizes on the inherent similarity between spots within a spatial domain, allowing for 
precise calibration of predictions based on the expression profiles derived from scRNA-
seq data. Although STdGCN is not the first study to utilize a GCN module for cell-
type deconvolution, its novel architecture stands out by building the GCN pipeline on 
two link graphs—an expression graph and a spatial graph (Fig. 1B ~ C). This approach 



Page 13 of 24Li and Luo ﻿Genome Biology          (2024) 25:206 	

differentiates it from previously published studies. Next, to maximize the heterogene-
ity of the pseudo-spot pool, we developed a sampling-by-cell-type method to simulate 
pseudo-spots. This approach does not rely on cell-type distributions from scRNA-seq by 
assigning equal weights for each cell type. This effectively addresses the challenge of rare 
cell types being unlikely to be randomly selected using traditional methods. In addition, 
we imposed a maximum limit on the number of cell types within a single pseudo-spot 
to accurately mimic the characteristics observed in real-word ST data. To evaluate the 
extent of the impact of these approaches on the performance of STdGCN, we bench-
marked the complete STdGCN model against STdGCN utilizing the conventional 
pseudo-spot generation approach and STdGCN without considering the spatial graph 
in deconvolving cell types of the seqFISH + dataset (Additional file 2: Table S11). Among 
the three methods, the complete STdGCN model achieved the best performance. It is 
noteworthy that, compared with the spatial structure information, a better pseudo-spot 
generation strategy offered a much greater improvement to STdGCN.

The modular design of STdGCN provides users with a high degree of flexibility. While 
default parameters are provided, STdGCN allows users to fine-tune the model accord-
ing to the specific characteristics of their ST platforms. For example, in the preprocess-
ing module, users have the option to input either a raw count matrix or a normalized 
expression matrix from both ST data and scRNA-seq data. Additionally, users can uti-
lize their own genes of interest to customize the deconvolution process. The pseudo-
spot simulation module offers users the flexibility to select the desired cell number and 
cell-type number within a spot, adapting to the specific characteristics of their ST plat-
form. The number of simulated spots is also adjustable, allowing users to strike a balance 
between improved performance (i.e., more simulated spot number) and computational 
efficiency and memory usage. In the GCN module, users have the freedom to customize 
various aspects of the model, such as the weights of the link graphs, the depth of expres-
sion/spatial GCN layers, the depth of the fully connected neural network layers, and the 
dimensionality of the hidden layers. Lastly, STdGCN provides output in both csv table 
and the anndata format [51]. This enables users to seamlessly integrate the results with 
numerous downstream analysis tools, such as Scanpy, which are widely accessible and 
user-friendly.

In addition to evaluating model performance in deconvolution, we also consider com-
putational efficiency as an important factor affecting user experience. In this study, we 
implemented both parallel computing and GPU acceleration to enhance the computa-
tional efficiency of STdGCN. We conducted a comprehensive comparison of running 
times across various benchmarked methods for deconvolving two datasets: the cortex 
seqFISH + slice using an external scRNA-seq reference and the developing human heart 
ST dataset (Additional file  2: Table  S12). The cortex seqFISH + slice comprises only 
109 spots and six cell types, while the developing human heart ST dataset consists of 
3111 spots and 14 cell types. As anticipated, the running time for the developing human 
heart dataset is generally longer than that for the seqFISH + slice across most methods. 
Among these benchmarked methods, STdGCN exhibits consistent overall running times 
across both datasets. Although it may run slower than most methods on datasets with 
fewer spots and cell types, it significantly reduces processing time compared to many 
benchmarked methods when dealing with datasets containing more spots and cell types.
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Despite the aforementioned merits, STdGCN still has limitations. One limitation of 
STdGCN is that it simply concatenates the real-spot internal graph, based on ST spots’ 
expression levels, with the spatial graph derived from spots’ coordinates during the 
deconvolution process. When a spot is located at the boundary of spatial domains, mes-
sage passing from neighboring spots, especially those from different spatial domains, 
could potentially carry negative impacts. This can be mitigated by employing spatial 
clustering or spatial domain identification to refine the adjacency matrix, thereby dimin-
ishing inaccuracies or noise caused by boundaries. The second limitation is that the 
predictive performance of STdGCN varies across cell types. In particular, the relative 
performance of STdGCN in cell types with lower proportions is not as good as in the 
cell types with higher proportions (Additional file 2: Tables S4 ~ S6). This indicates that 
there is room for improvement in the current pseudo-spot generation method and the 
construction model of the link graph. Thus, our future work will focus on ameliorating 
the effectiveness of utilizing reference data.

In conclusion, STdGCN stands as the pioneering model that incorporates the spatial 
coordinates from ST data and cell type profiles learned from single-cell RNA-seq data 
for the purpose of deconvolving local cell-type proportions within complex tissues. By 
leveraging this innovative approach, STdGCN has the potential to greatly enhance our 
understanding of tissue spatial architecture and provide invaluable support for down-
stream analyses at the cellular level. With its ability to unravel the intricate composition 
of cell types within ST datasets, STdGCN opens new avenues for exploring the complex-
ities of tissue organization and advancing our knowledge of biological systems.

Conclusions
Spatially resolved transcriptomics combines high-throughput measurement of tran-
scriptomes with the preservation of spatial information about cellular organizations. In 
this study, we introduce STdGCN, a graph neural network model tailored for cell-type 
deconvolution of ST data, capable of leveraging abundant scRNA-seq data as a reference. 
STdGCN integrates expression profiles from single-cell data and spatial localization 
information from ST data to facilitate cell-type deconvolution. Extensive benchmarking 
experiments across multiple ST datasets demonstrated that STdGCN outperformed 17 
cutting-edge models. In the analysis of a human breast cancer Visium dataset, STdGCN 
effectively distinguished spatial distributions between stroma, lymphocytes, and cancer 
cells, facilitating tumor microenvironment dissection. Furthermore, in a human heart 
ST dataset, STdGCN identified changes in potential endothelial-cardiomyocyte commu-
nications during tissue development. In conclusion, STdGCN represents a powerful tool 
for unraveling the intricate interplay between cellular composition and spatial organi-
zation within complex tissue environments. This framework holds great promise for 
advancing our understanding of spatially resolved transcriptomics and its implications 
for various biological processes and disease states.

Methods
Benchmark data selection and preprocess

To curate the datasets for benchmark, we conducted a thorough review of two pub-
lished comparison studies on ST deconvolution [41, 52], as well as examined the 
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models benchmarked in this study. After strict comparison process, we selected four 
datasets from four ST platforms, including seqFISH, MERFISH, seqFISH + , and 
slide-seq (Additional file 1: Table S13 [53–55]). These datasets were chosen because 
they offer single cell-level resolution. Moreover, the selected datasets come with cell 
type annotations provided by the authors, enabling us to obtain the ground truth 
after simulating low-resolution spots. In addition, the selected datasets include both 
sequencing-based technologies and imaging-based technologies, with gene sizes 
ranging from hundreds to genome wide (> 20,000) and the spot size ranging from tens 
to thousands. This diverse range of characteristics allows for a comprehensive evalua-
tion of the models in various scenarios. Importantly, all four datasets contain multiple 
slices, which facilitates testing the robustness of the models across different samples. 
It is worth noting that the resolution of slide-seq approximates that of a single cell, 
but it is not at strictly single-cell resolution. Despite these limitations, it provides 
gene expression information at a genome-wide level, complementing other bench-
mark datasets. Consequently, we have chosen to utilize slide-seq data and regard it as 
a valuable resource for benchmarking spatial transcriptomic methodologies, and to 
avoid controversy, we put the benchmark of slide-seq data in Additional file 1: Sup-
plementary Information.

To create synthetic spots for analysis, we resampled the datasets by dividing each 
slice into multiple square pixel areas. Cells within each square pixel area were merged 
to form a synthetic spot. As the ST platforms used provided single-cell-level data, we 
had access to the exact cell-type proportions for each synthetic spot. The single-cell-
level data was also used as the internal single-cell reference in our study.

The seqFISH + dataset was obtained from Zhu et  al. [33] (access via Giotto package 
[56]: getSpatialDataset(dataset = “seqfish_SS_cortex”, method = “wget”)), which encom-
passes the detection of mRNAs for 10,000 genes corresponding to a section of the 
mouse somatosensory (SS) region. We divided the SS region into two slices based on 
the author’s annotation, including a cortex slice and a sub-ventricular zone (SVZ) slice. 
For the cortex slice, we selected 400 × 400 square pixel area as a synthetic spot, whereas 
for the SVZ slice we chose 200 × 200 square pixel area. Any spot with cell number below 
two was discarded. There were 109 cortex synthetic spots and 59 SVZ synthetic spots 
after resampling, respectively. Given that ST data and scRNA-seq data often originate 
from distinct datasets, we opted to incorporate an external single-cell reference from the 
SpatialDWLS study [19] for benchmarking purposes. This approach enabled us to thor-
oughly evaluate the performance of the benchmarking models.

The seqFISH dataset was obtained from Lohoff et al. [35] (https://​conte​nt.​cruk.​cam.​
ac.​uk/​jmlab/​Spati​alMou​seAtl​as2020/). This study detected mRNAs for 351 target genes 
in tissue sections of three mouse embryos at the 8–12 somite stage, with two slices 
obtained for each embryo. In terms of the cell types annotated by the authors from sin-
gle-cell transcriptome atlases, we removed the cell types with very small proportions 
(< 3%) for cell-type deconvolution. The coordinates of the cells were stored in columns 
“x_global_affine” and “y_global_affine” within the file “metadata.Rds.” For each slice, we 
selected the 0.1 × 0.1 square “global_affine” area as a synthetic spot. Any spot with cell 
number less than two was discarded. The number of predictive synthetic spots obtained 
for each slice after applying the filtering criteria ranged from 1279 to 2350.

https://content.cruk.cam.ac.uk/jmlab/SpatialMouseAtlas2020/
https://content.cruk.cam.ac.uk/jmlab/SpatialMouseAtlas2020/
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The MERFISH dataset was downloaded from Moffitt et  al. [36, 57] (https://​datad​
ryad.​org/​stash/​datas​et/​doi:https://​doi.​org/​10.​5061/​dryad.​8t8s2​48). This study detected 
mRNAs for a set of 155 target genes in the mouse preoptic region. Approximately 1.1 
million cells were measured across 181 slices obtained from 36 mice. Cell types with 
proportions smaller than 3% were removed for cell-type deconvolution. The coordinates 
of the cells were stored in columns “xcoord” and “ycoord” in the file named “Moffitt_
and_Bambah-Mukku_et_al_merfish_all_cells.csv.” For each slice, we selected a synthetic 
spot size of 50 × 50 square pixel area. Any spot with cell number less than two was dis-
carded. The final number of predictive synthetic spots for each slice after filtering ranged 
from 938 to 1247.

Preprocess of the human heart dataset

The human heart spatial transcriptomics dataset was obtained from Asp et al. [38]. This 
dataset contains three sequencing platforms: spatial transcriptomics [39, 40], scRNA-
seq, and ISS. The tissue sections were collected from human embryonic cardiac samples 
at three developmental stages in the first trimester: 4.5–5, 6.5, and 9 post-conception 
weeks (PCW). Herein, we employed STdGCN to infer the cell-type composition of the 
spatial transcriptomics data. This dataset consists of 19 slices, with four slices from 
4.5–5 PCW, nine slices from 6.5 PCW, and six slices from 9 PCW. During data decon-
volution, we considered only the spots located within the tissues. The coordinates of the 
spots can be obtained from their corresponding spot names. We used the scRNA-seq 
dataset provided in this study as the reference data. It is important to note that the spa-
tial transcriptomics dataset lacks single-cell resolution, making it impossible to obtain 
realistic cell-type compositions for the spots. Additionally, this study offers the differ-
entially expressed gene (DEG) analysis results based on the scRNA-Seq data (Table S3 
in Asp et al. [38]). To filter cell-type marker genes for Myoz2-enriched cardiomyocytes, 
ventricular cardiomyocytes, atrial cardiomyocytes, we retained genes with FDR (marked 
as “’p_val_adj’”) < 0.01, average log-fold change (marked as “’avg_logFC’”) > 1, fraction of 
cells expressing the genes in the cell type (marked as “pct.1”) > 0.7, and fraction of cells 
expressing the genes in the remaining cell types (marked as “pct.2”) < 0.3 from the down-
loaded DEG analysis table. The results following the filtration of Myoz2-enriched cardio-
myocytes, ventricular cardiomyocytes, and atrial cardiomyocytes are depicted in Fig. 4J.

Preprocess of the human breast cancer dataset

The human breast cancer 10X Genomics Visium dataset was obtained from Wu et al. 
[44]. The dataset consists of data from six breast cancer patients, including two ER+ 
samples and four TNBC samples. When performing data deconvolution, we considered 
only the spots located within the tissues. The coordinates of the spots can be found in 
the file “tissue_positions_list.csv.” Additionally, in the same study, the authors processed 
scRNA-seq from 26 breast tumor samples. For the purpose of deconvolution in our 
study, we employed this scRNA-seq data as the reference dataset.

Benchmark metrics

To assess the effectiveness of cell-type deconvolution algorithms across the syn-
thetic real-word datasets, we selected three metrics: JSD, RMSE, and Spearman’s rank 

https://datadryad.org/stash/dataset/doi:
https://datadryad.org/stash/dataset/doi:
https://doi.org/10.5061/dryad.8t8s248
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correlation coefficient. These metrics were chosen to quantify the disparities between 
the predicted cell-type proportions and the actual proportions within each spot.

The JSD is a symmetric form of the Kullback–Leibler (KL) divergence. Denote P 
and Q are the probability distributions representing the predicted and ground-truth 
results, respectively. The JSD can be expressed as:

where DKL is the Kullback–Leibler (KL) divergence, which can be expressed as:

Typically, the JSD is a nonnegative number, and a smaller JSD represents a higher 
similarity between the predicted result and the ground-truth, indicating a better 
performance of the corresponding method in accurately estimating the cell-type 
proportions.

To assess the performance of the models specifically for cell type A , denote the pre-
dicted and ground-truth proportions of a spot are P(A) and Q(A) . For the purpose of 
analysis, we considered the remaining cell types as a group, collectively referred to as the 
non-A type. Their proportions are denoted as 1− P(A) and 1− Q(A) , respectively. Equa-
tion (2) will be expressed as:

Based on Eq. (3), we can eventually get the binary JSD between predicted proportions 
compared to the ground truth of the cell type A.

We used the following equation to calculate RMSE:

When evaluating the performance of a model for deconvolving a spot, the variable K  
represents the number of cell types. Conversely, when assessing the performance of the 
models for a specific cell type, K  represents the number of spots within a slice. RMSE is 
a nonnegative value, and a smaller RMSE represents a lower dissimilarity between the 
predicted result and the ground truth.

The Spearman’s rank correlation coefficient can be expressed as:

where di = P(xi)− Q(xi) represents the difference between the two ranks of each cell 
type, and n is the number of cell types. The value rs ranges from − 1 to 1, with values 
close to 1 indicating similarity in ranks for the predicted value and ground truth, and 
values close to − 1 indicating dissimilarity in ranks between the predicted value and the 
ground truth.
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Cell type co‑localization score

Cell–cell interactions often occur via receptor–ligand pairs. Thus, identifying cell type 
co-localization provides potential cell–cell interactions within a tissue. To quantify the 
degree of co-localization between two cell types within a ST slice, we have developed a 
cell type co-localization score denoted as ( S(A, B) ). S(A, B) can be calculated using the 
following functions:

where SA = 1 denotes that the location has cell type A. The value of S(A, B) ranges 
between 0 and 1. A higher S(A, B) a higher probability of co-localization between the 
two cell types within a spot. Considering that the proportions of all cell types within 
a spot predicted by STdGCN are greater than 0, to ensure meaningful co-localization 
analysis, we introduce a threshold for S(A, B) calculations. When the predicted pro-
portion of cell type A within a spot is below the threshold, we set SA = 0 . We used a 
threshold of 0.15 for the 10X Genomics Visium human breast cancer dataset, and 0.1 for 
the developing human heart spatial transcriptomic. This choice was made based on the 
characteristics of the dataset and the platform used.

Implementation of STdGCN

Single‑cell data preprocessing and feature selection

The first step in the processing pipeline of STdGCN is to identify the cell-type marker 
genes from scRNA-seq data. The input of the single-cell expression matrix is flexible 
and can be used for either the raw count matrix or the normalized matrix. For the raw 
count matrix, we used the Scanpy package in Python to preprocess the data. We used 
the command “scanpy.pp.normalize_total” to normalize counts to a standardized value 
of 10,000 per cell. Subsequently, we logarithmized the data matrix using the command 
“sc.pp.log1p,” followed by “scanpy.pp.scale” to scale data to achieve unit variance and a 
mean of zero. During the preprocessing phase, we have incorporated options to allow 
users to make decisions regarding the filtering of highly variable genes and the regres-
sion of mitochondrial genes. These options provide flexibility based on specific analysis 
requirements. Following preprocessing step, we used the principal component analysis 
(PCA) (sc.tl.pca) for dimensionality reduction. To select cell-type marker genes for each 
cell type, we utilized logistic regression (sc.tl.rank_genes_groups(method = ‘logreg’)). 
The resulting gene features were obtained by aggregating the top “ n ” cell-type marker 
genes, where “ n ” represents the desired number of markers to be considered. To stream-
line the preprocessing and marker gene selection steps, we have integrated them into a 
single command named “find_marker_genes.” This integration enhances the ease of use 
and efficiency of the STdGCN pipeline.

Pseudo‑spot generation

The generation of pseudo-spots involves randomly selecting a mixture of cells from 
scRNA-seq data. In our experience, the heterogeneity of the pseudo-spot pool is a key 
factor in constructing an effective GCN link graph. Conventional methods for pseudo-
spot generation may result in an unbalanced pseudo-spot pool and limited heterogeneity, 

S(A, B) =

∑
allspotsSA = 1andSB = 1

∑
allspotsSA = 1orSB = 1
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particularly due to the unbalanced proportions of cell types in reference single-cell data. 
To address this issue, we designed a sampling-by-cell-type method for obtaining a more 
balanced pseudo-spot generation. Simulating pseudo-spots requires specifying three 
user-defined hyper-parameters: Nup , the upper limit of cell numbers in a pseudo-spot; 
Nlow , the lower limit of cell numbers in a pseudo-spot; and Kup , the upper limit of the 
number of cell types in a pseudo-spot. The use of Kup is influenced by the fact that the 
number of cell types within a spot is usually limited in real-word ST datasets, unlike bulk 
sequencing data. For each pseudo-spot simulation, we first generated a random number 
between 1 and Kup to determine the number of cell types ( k ) within a pseudo-spot. Sub-
sequently, we randomly selected k cell types from the entire cell types ( Kw ) to form the 
cell-type set for the corresponding pseudo-spot. We next randomly selected a number 
( Ns ) between Nlow and Nup to determine the cell number in this pseudo-spot. We then 
randomly picked up Ns cells from the selected cell-type set to construct the pseudo-spot. 
The expression level of the pseudo-spot was determined by the summation of the counts 
of the randomly selected cells. To streamline the entire process of pseudo-spot genera-
tion, we have implemented a single command called “pseudo_spot_generation” within 
the STdGCN framework.

Real‑spot and pseudo‑spot preprocessing and integration

The preprocessing steps for real-spots and pseudo-spots were performed in a similar 
manner to the reference single-cell data. After preprocessing, we retained the previ-
ously selected marker genes for downstream analyses. To facilitate data integration, we 
employed PCA for dimensionality reduction, allowing the mapping of real- and pseudo-
spots into a common latent space. The integrated dimensionality reduction matrix was 
used as the input for constructing the subsequent link graph.

Link graph construction

The STdGCN system includes two link graphs, an expression graph and a spatial graph. 
The expression graph captures the expression similarity between spots. It is a hybrid 
graph composed of three sub-graphs, a pseudo-spot internal graph, a real-spot inter-
nal graph, and a real-to-pseudo-spot graph. We employed the “cosine” distance to meas-
ure the distances between spots and the MNN [58] algorithm to establish links between 
spots. In MNN model, a link between two spots ( a and b ) if and only if spot a belongs 
to one of the nearest neighbors of spot b , and spot b is also one of the nearest neigh-
bors of spot a . For the real-to-pseudo-spot link graph, we applied the integrated dimen-
sionality reduction matrix of the two datasets as the input feature, with the parameter 
“nearest neighbors = 20” per cell. For the two internal link graphs, data integration was 
not required, we thus directly used the normalized expression matrix of the real-spot/
pseudo-spot as the input feature. The parameter “nearest neighbors” was set to 10 for the 
real-spot internal graph and 20 for pseudo-spot internal graph. The adjacency matrix of 
the hybrid expression graph ( Aexp ) is a binary matrix. Aexp

ab = 1 represents a link between 
two spots and vice versa.

The spatial graph ( Asp ) represents the spatial distances between real-spots. We cal-
culated the Euclidean distance between a given spot and all other spots ( Dab ) using 
their relative spatial coordinates. In our approach, we defined the distance between 
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two neighboring spots as one unit (= 1). To construct the spatial graph, we established 
links between spots that have distances smaller than a predefined radius ( Dupper ). The 
adjacency matrix of the spatial graph is defined as follows:

Unlike the expression link graph, which is represented as a binary matrix, the spa-
tial graph is a weighted link graph based on the spatial distance between spots.

Model description

The STdGCN is built on the GCN [59], a semi-supervised learning algorithm designed 
for graph-structured data. GCN is based on an efficient variant of convolutional neu-
ral networks that directly operate on graphs. Denoting V and E are the sets of nodes 
and edges in the graph G = (V, E) , the objective of GCN is to learn the graph repre-
sentations by combining node embeddings with those of their neighboring nodes. The 
model takes two components as input: a feature matrix ( X ) representing the embed-
dings of all graph nodes, and an adjacency matrix ( A ) depicting the structural con-
nections in the link graph. Each GCN layer can be written as a non-linear function:

where Hl is the output for the lth layer with Hl = X , Wl is the weight matrix for the 
lth layer that needs to be learned during the training, σ(·) is the activation function, 
and Ã = D−1/2(A/�+ I)D1/2 is the symmetric normalized adjacency matrix of A . The 
� = 20 is a stabilizing factor, as we have observed that incorporating this factor can 
increase the accuracy and robustness of STdGCN. Here, I represents the identity matrix 
and D is the diagonal degree matrix of (A/�+ I).

The STdGCN constructs a comprehensive and diverse graph, containing both pseudo-
spots and real-spots as individual nodes, enabling the adaptation of real-spots from 
pseudo-spots. The objective of STdGCN is to predict the cell-type proportions for the 
real-spots. Therefore, the label for each spot is a vector that includes proportions for 
all cell types ( Yprop ∈ R

(nr+np)×ntype ), where nr and np denote the real- and pseudo-spot 
numbers and ntype denotes the cell-type number. We used the expression level for the 
real- and pseudo-spots as the input matrix ( X ∈ R

(nr+np)×g ), where g represents the 
selected gene number. The input matrix was then forward propagated to two two-
layer GCNs using the two previously constructed link graphs, an expression graph 
( Aexp ∈ R

(nr+np)×(nr+np) ) and a spatial graph ( Asp ∈ R
(nr+np)×(nr+np) ), with the function:

to obtain an expression embedding ( Xexp ∈ R
(nr+np)×m ) and a spatial embedding 

( Xsp ∈ R
(nr+np)×m ), where m is the dimension of the embedding space and ELU(·) is the 

activation function that can be expressed as:
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)
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We next concatenated the two GCN output embedding matrix 
( Xcon = [Xexp,Xsp] ∈ R

(nr+np)×2m ) as the input feature and propagated it through two 
additional two-layer fully connected neural networks using the following function:

where a(l) and b(l) indicate the weight matrix and additive bias for the lth layer, respec-
tively, Ỹprop ∈ R

(nr+np)×ntype is the prediction of cell-type proportions, and softmax(·) is 
the activation function that can be expressed as:

We used the KL divergence with L2 penalty as the loss function during the training of 
STdGCN.

Parameter settings

Herein, we used a two-layer GCN architecture for the implementation of STdGCN, 
as we found that utilizing two GCN layers yielded superior performance compared 
to employing a single layer or multiple layers. To train STdGCN, we adopted stochas-
tic gradient descent (SGD) with a maximum of 3000 epochs (Python command: torch.
optim.SGD (model.parameters(), lr = 0.2, momentum = 0.9, weight_decay = 0.0001, 
dampening = 0, nesterov = True)). We implemented an early stopping mechanism where 
training would cease if the validation loss did not decrease for 20 consecutive epochs. 
We used a self-adaption method called orch.optim.lr_scheduler.ReduceLROnPlateau to 
adjust the learning rate during training. The reduced learning rate factor was 0.1 and the 
learning rate was reduced after 5 epochs without improvement.

Running time benchmark and computational resource

To evaluate the computational efficiency of cell-type deconvolution algorithms, we con-
ducted a comprehensive comparison of running time across the benchmarked methods 
for deconvolving the cortex seqFISH + slice using the external scRNA-seq reference. To 
enhance computational efficiency, we employed parallel computing and GPU accelera-
tion if these methods offered such options. The workstation used to test all methods was 
two Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (30 MB cache size; 24 cores in total) 
and 516 GB of memory. The GPU used was the Tesla V100S-PCIE-32GB. The operating 
system used was CentOS Linux 7.
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