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Abstract 

Single-cell atlases pose daunting computational challenges pertaining to the inte-
gration of spatial and temporal information and the visualization of trajectories 
across large atlases. We introduce StaVia, a computational framework that synergizes 
multi-faceted single-cell data with higher-order random walks that leverage the mem-
ory of cells’ past states, fused with a cartographic Atlas View that offers intuitive graph 
visualization. This spatially aware cartography captures relationships between cell 
populations based on their spatial location as well as their gene expression and devel-
opmental stage. We demonstrate this using zebrafish gastrulation data, underscoring 
its potential to dissect complex biological landscapes in both spatial and temporal 
contexts.

Background
The recent surge in the creation of single-cell atlases has ushered in a new era of under-
standing the complexities of life at the cellular level. These atlases are now instrumen-
tal for studying a wide range of tissues, organs, and even whole organisms to reveal 
the origins of cellular differentiation and functional diversity [1, 2]. Further combined 
with spatial and time-series studies, they offer a high-definition window into biological 
development over space and time [3–7]. However, the growing scale of single-cell atlases 
often poses daunting analytical challenges [8, 9]. Specifically, the elevated complexity of 
large-scale atlases in terms of heterogeneity, temporal longitude, spatial environments, 
and sample sizes makes it difficult to unambiguously capture the emergence of multiple 
specialized cell lineages and their differentiation pathways at a high resolution, not to 
mention the difficulty of intuitively visualizing these complex pathways at this scale.

Available TI methods face three pressing challenges, the first is the inability to resolve 
end-to-end differentiation pathways that preserve localized details of underlying trajec-
tories while maintaining a global view of their connectivity, resulting in differentiation 
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pathways for distinct lineages being intermingled (by deviating into unrelated inter-
mediate cell populations) or too myopic (failing to detect transition states). The use of 
first-order memoryless random walks employed by most TI methods (e.g., Palantir [10], 
MARGARET [11], CellRank [12], Via 1.0 [13]) makes them particularly susceptible to 
these misleading pathways. The second is that strategies to integrate available meta-
data (e.g., spatial or temporal information) that could aid in the analysis of the cellular 
landscape are not readily available, thus forgoing the opportunity to use these sources 
of complementary information. Third, current practices to visualize developmental 
landscapes rely on established dimension reduction visualization tools which primarily 
capture clusters of distinct lineages (e.g., UMAP [14], t-SNE [15]). These tools are not 
designed to display a single-cell embedding that can intuitively be mapped or linked to 
inferred continuous trajectories. On the other hand, methods relying on diffusion maps 
(e.g., Phate [16]) convey progression information at the expense of collapsing/superim-
posing multiple distinct lineages.

To address these challenges, we present StaVia, an automated end-to-end trajectory 
inference (TI) framework that uncovers cellular trajectories permeating large-scale sin-
gle-cell spatial and temporal atlases without sacrificing fine-grained details. To address 
the first obstacle, StaVia exploits a new form of lazy-teleporting random walks (LTRW) 
with memory to accurately pinpoint end-to-end trajectories in the atlas. Specifically, 
higher-order LTRW with memory are used to propagate information about a cell’s pre-
vious states when inferring subsequent states (e.g., during differentiation) (Fig. 1a). The 
inclusion of memory of past states critically alleviates issues seen in traditional first-
order memoryless RW methods where pathways deviate into unrelated intermediate cell 
populations, or conversely become so localized that they fail to detect transition states 
(Fig. 1b). Secondly, StaVia’s framework is also flexibly compatible with diverse input data 
types; in addition to RNA velocity, it offers seamless strategies to integrate spatial coor-
dinates and temporal information (or other sequential metadata) to guide the cartogra-
phy in a data-driven manner (Fig. 1a).

To address the third challenge of visually capturing complex TI landscapes, StaVia 
feeds forward the properties of the higher-order walks with memory and metadata to 
create a comprehensive cartographic Atlas View, which efficiently (both in terms of 
spatial layout and computational cost) integrates the high-resolution graph-edge infor-
mation with the cell type specificity of single-cell embeddings to visually chart the pre-
dicted trajectories of entire atlases in a unified snapshot (Fig. 1a). As a result, StaVia can 
simultaneously capture smooth sequential processes while maintaining the separation of 
distinct lineages—outperforming popular visualization tools (t-SNE, UMAP, Phate, etc.).

We use a murine gastrulation atlas [6] and the recent zebrafish developmental atlas 
(Zebrahub) [7] to show how the incorporation of second-order LTRWs with memory, 
together with sequential information and RNA-velocity in StaVia, allows us to compute 
and visualize multi-lineage differentiation in atlases, and capture pathways that cannot 
be charted by other methods. We also demonstrate StaVia’s spatially aware cartogra-
phy on a MERFISH dataset of the preoptic hypothalamus [17] and a spatio-temporal 
zebrafish gastrulation atlas ZESTA [18], where StaVia integrates information of a cell’s 
spatial context with gene expression, to uncover sub-types and inter-cluster relation-
ships that can only be captured when using the spatial information. Finally, a collection 
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of developmental cell atlases is used to benchmark the Atlas View to other popular visu-
alization methods, in which StaVia is the only method that successfully illustrates the 
temporal and lineage relationships in an 8-million-cell dataset of mouse gastrulation [9].

Results
StaVia enables high‑definition cartographic TI reconstruction across the entire single‑cell 

atlas

StaVia is a graph-based TI framework designed to tackle challenges posed by atlas-
scale data. It builds on our earlier VIA method [13] which models cellular processes as 
a random walk with elements of laziness and teleportation across cluster graphs [19]. In 
StaVia, we introduce higher-order walks with the memory of cells’ previous states, inte-
grated with cartographic views and enriched with information from available metadata 
(temporal or spatial), to reconstruct atlas-scale topologies coupled with automated pre-
dictions of diverse cell fates and their sequential specialization.

Advancing from VIA and other TI methods, StaVia’s contributions are threefold. First, 
StaVia uses high-order LTRWs with memory to infer complex trajectories by relaying 

Fig. 1 Overview of StaVia. a The StaVia graph is a flexible framework for single-cell data that can optionally 
incorporate any combination of the following data to infer cell transitions: sequential or spatial metadata 
(e.g., known stages, tissue coordinates), RNA-velocity, pseudotime, and lazy or teleporting behaviors. Based 
on an algorithm of higher-order lazy-teleporting random walks (LTRW) with memory, StaVia can generate 
single-cell embeddings with the underlying high-resolution connectivity of the single-cell KNN graph. This 
can be aligned with an edge-bundled cluster graph in which each node represents a cluster of single cells. 
The cluster graph and single-cell embedding can be overlaid to generate an Atlas View which offers an 
intuitive and comprehensive visualization of the computed trajectories. StaVia uses higher-order LTRW with 
memory to accurately infer complex trajectories. Previous states’ neighbors inform the decision-making 
process for subsequent transitions, i.e., to determine the transition probabilities of moving from the current 
state to the next states by introducing a memory factor a (“Methods”). b The Atlas View allows us to 
cartographically observe end-to-end pathways at a higher resolution. Higher-order LTRWs with memory 
ensure that pathways avoid detours to unrelated cell types and hence also increase the specificity of gene 
regulation along distinct lineages
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information about a cell’s previous states (Fig. 1b). This approach accurately pinpoints 
end-to-end differentiation paths and gene dynamics associated with a particular lineage. 
Forgoing the walk’s memory can obscure the distinction between the different pathways 
to cell fates in large atlases. Second, it allows flexible integration of data and metadata 
(e.g., time-series developmental labels from temporal atlases, spatial layout, gene/feature 
similarity, and single-cell RNA-velocity) to compute pseudotimes, cell fates, and lineage 
pathways (“Methods”) (Fig. 1a). Integrating available temporal data with the expression 
profiles allows us to stitch developmental points in a data-driven manner. Spatial infor-
mation is particularly challenging to incorporate when examining cellular landscapes 
based on their gene expression due to their highly non-linear nature. However, the 
microenvironments that cells occupy could provide valuable insight about their func-
tion. StaVia therefore provides a framework within which gene-expression and spatial 
information are jointly considered when charting the cellular landscape. Lastly, going 
beyond the common cluster graph visualization [13, 20], StaVia generates an Atlas View 
that simultaneously illustrates complex chronological patterns and distinct phenotypic 
diversity, which has been challenging in current TI methods. Both the spatial arrange-
ment of nodes and edges in StaVia’s high-resolution Atlas View (and its cluster graph), as 
well as their direction, connectivity, and weights, are guided synergistically by the results 
of the pseudotime, sequential metadata, and second-order LTRWs (“Methods”) (Fig. 1a).

Using higher-order walks with memory is an unexplored feature in existing TI meth-
ods which typically rely on first-order random walks where the prediction of future 
steps is independent of previous states (e.g., Palantir [10], MARGARET [11], CellRank 
[12], and Via 1.0 [13]. When applied to reconstructing biological pathways, memoryless 
methods tend to encounter two types of problems which we explain by way of analogy 
to a faulty navigation system on a road trip from City A to B. The first issue occurs when 
memoryless methods suggest a cell passes through an unrelated intermediate popula-
tion during development, akin to a GPS diverting us through an off-route City C. StaVia, 
uses higher-order LTRW with memory to act like an improved GPS that sense-checks 
directions, minimizing unnecessary detours, and ensuring a more accurate cell trajec-
tory. Now imagine the road trip involves a critical turn at Point D but the GPS is so 
focused on the immediate road that it misses this turn. Analogously, some TI methods, 
due to an overemphasis on localized pathways, may fail to identify key transition states 
in a cell’s developmental journey. StaVia’s “memory” feature is like an alert GPS that not 
only focuses on the road immediately ahead but also keeps track of the overall journey. 
It remembers where each cell has been and where it could be headed, making it less 
likely to miss critical turns (or transition states), and providing a more complete pic-
ture of the cell’s developmental journey. By integrating pseudotemporal forward biasing, 
RNA velocity, and prior random walk state information (memory), StaVia’s higher-order 
LTRWs provide a more realistic prediction model of cell developmental pathways, ena-
bling clear delineation of diverse lineages, transitional populations, and gene expression 
dynamics. (Fig. 1b).

Our robustness analysis shows that adjusting the memory level has a predictable and 
gradual impact on lineage definitions, simplifying the optimization (see “Methods” and 
Additional file  1: Fig. S5). Generally, increasing emphasis on memory in the LTRWs 
yields pathways that emphasize the role of predecessors and remain inwardly focused. 
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This translates to increased sensitivity to distinguishing related cell types and their gene 
expression dynamics (Fig. 1b). Conversely, reducing memory helps explore poorly con-
nected cell populations or those lacking precursors. The computational overhead from 
second-order LTRWs is minimal as they are conducted on the cluster graph level.

To generate StaVia’s cartographic Atlas View, we first create a single-cell embedding 
infused with second-order LTRW features learned from the TI cluster graph (see “Methods”).  
Specifically, based on the presence of sequential data (e.g. data labeled with different 
time points), the single-cell graph can be sequentially augmented and refined accord-
ingly. In the case of spatial data, spatial nearest neighbors are used to augment the gene 
expression graph. Furthermore, prior to clustering and graph construction, the gene 
expression is modified as the weighted average of a cell’s own cells and its spatial neigh-
bors when spatial data is being considered. We then use UMAP’s fuzzy simplicial set 
approach to align the LTRW-based cluster graph with a low-dimensional embedding 
(Fig. 1a). This single-cell embedding, a useful visualization in its own right, serves as the 
node layout for the Atlas View which arranges cell states and highlights edge connectivi-
ties (pathways) from the (spatial-temporally) augmented single-cell graph using an edge 
bundling method based on kernel density estimation (“Methods”). Directionality is pro-
jected on edges based on milestone pseudotime direction and RNA velocity. Note that 
the impact of high-order LTRWs with memory on the predicted end-to-end pathways 
can also readily be visualized in the Atlas View (Fig. 1b). For a detailed guide to param-
eter selection, see Additional file 1: Note S1.

StaVia captures a complete view of murine gastrulation

We employed StaVia on a scRNA-seq dataset of murine gastrulation [6], comprising 
89,297 cells from stages E6.5 to E8.5 post-fertilization at quarter-day intervals. Previ-
ous trajectory analysis on this dataset required subsetting various lineages and analyzing 
them individually with manual curation in order to identify developmental trajectories 
of interest. In contrast, StaVia, by integrating higher-order LTRW with memory, RNA 
velocity, and time-series annotations (i.e., E6.5 to E8.5), accomplishes a holistic mapping 
of the entire atlas in a single run, accurately capturing relevant trajectories sans manual 
subsetting and curation (Figs. 2 and 3).

The Atlas View (Fig. 2a) and the cluster graph (Fig. 3a) visualizations created by Sta-
Via illustrate the emergence of lineages within the entire dataset through a fanned-out 
structure that reflects the increasing separation between progressively specialized cells. 
The cluster graph (Fig. 3a), which forms the basis for the memory-infused second-order 
LTRW lineage probabilities as well as the layout and directionality of the Atlas View, 
captures the emergence of major lineages, their progressive separations towards cell 
fates (highlighted on the Atlas View Fig. 2a as underlined populations), and the correct 
placement of more subtle transition populations that exist at the boundaries of these 
major layers (e.g., neural mesodermal progenitors (NMPs) [23]). Interestingly, both the 
cluster graph and Atlas View are uniquely able to show that the gut arises from the vis-
ceral and definitive endoderm [24, 25]. They also visually indicate two hematopoietic 
sources, the first being erythroids from the primitive wave and the endothelial cells, 
which suggest the onset of the second wave (Figs. 2a, b and 3a) [26]. This structure is 
not easily observed in other cluster graphs (e.g., PAGA Fig. 3b) or in higher resolution 
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representations (e.g., UMAP, Phate), as evidenced by the comparative visualization anal-
ysis presented later (Fig. 8). See Additional file 1: Note S2 for details of these three devel-
opmental patterns as shown by the StaVia cluster graph and Atlas View and Additional 
file 1: Table S3a for a full list of supporting literature.

Next, we compared StaVia with a hybrid pipeline involving PAGA [20], scVelo [27], and 
CellRank [12], a state-of-the-art method that combines gene–gene feature distances with 

Fig. 2 StaVia Atlas View of mouse gastrulation. a StaVia Atlas View of murine gastrulation, colored by 
known stage with edge directions inferred using a combination of RNA velocity and pseudotime. Root 
state automatically detected as epiblast E6.5. Autodetected terminal cell fates are underlined. b Sequential 
order of hemogenic endothelial cell differentiation. The black arrow is based on the edge direction of the 
hematopoietic branch in a and shows that Runx1 precedes the upregulation of GFi1b, which is a direct target 
of Runx1 and critically down-regulates endothelial markers to induce the endothelial-to-hematopoietic 
transition (EHT) [21, 22]. c NMP cells colored red reside between neural-yellow and paraxial mesoderm-blue 
(lhs) the zoomed-in triangle of NMP cells express T brachyury. Of interest, the NMPs with a mesodermal 
tendency express Tbx6. NMPs with a more neural tendency express more Nkx1-2 [23]. d Dual source of gut 
formation with Ttr-positive cells at the visceral endoderm (VE), Sox17 expression for definitive endoderm (DE), 
and gut expressing Wnt5b [24, 25]
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directional information from RNA velocity for cell fate determination (see Additional 
file 1: Note S3 for details on the selection of benchmarked methods). Comparing StaVia’s 
cluster graph with PAGA’s (using CellRank’s initial states and scVelo’s RNA velocity [27]) 

Fig. 3 Comparison of TI graph structure and analysis. a StaVia cluster graph shows a directed trajectory using 
a combination of scRNA-velocity and pseudotime. Colored by known stage within the mesoderm, StaVia 
identifies cardiomyocytes, paraxial mesoderm, and mesenchymal cells; within the neuro-ectodermal branch: 
the surface ectoderm, brain, and neural crest (NC); and arising from the visceral and definitive endoderm, the 
gut. b scVelo directed PAGA with a similar number of clusters and also using force-directed layout—lower 
visualized edges results in several disconnected clusters. c Automatically predicted differentiation flow based 
on the cluster graph. d StaVia captures Sox9 upregulation preceding Sox10 in Neural Crest (NC) development. 
e StaVia end-to-end pathways from epiblast to cell fate for each germ layer. Each trend line corresponds 
to a lineage. The lineage of interest is highlighted by the color of the lineage-plot’s border and associated 
marker-gene, e.g., in StaVia the brain lineage is dark pink. When the color of the marker gene matches the 
color of the upregulated trend line, it signals that the correct trend is inferred and merits a checkmark. f 
CellRank: the lineage pathways to the brain (light blue) exhibits is an example of where the pathway fails to 
detect transition states due to over localization and the corresponding blue lineage trend is not upregulated, 
warranting a cross-mark. The gut pathway (brown trendline) is an example of deviation into unrelated 
intermediate states resulting in distinct pathways becoming blurred
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(Fig. 3b) (see Additional file 1: Table S1 for detailed parameter setting), we observe that 
the PAGA-scVelo plot is visually difficult to interpret due to edge congestion that can-
not easily be minimized. This is due to even conservative attempts of edge thresholding 
resulting in graph fragmentation. Importantly, the connectivity in the PAGA-scVelo plot 
misses key biological insights (e.g., lacks dual source of gut formation).

We subsequently compared the lineage probabilities from StaVia and CellRank 
towards different cell fates (Fig. 3e–f and Additional file 1: Fig. S3c), with StaVia com-
pleting the TI computation in 3 min, compared to CellRank’s 20 min (Additional file 1: 
Note S3). Notably, the single-cell probabilistic lineages in CellRank do not capture the 
end-to-end pathways from epiblast, through transition states to final cell fates. In most 
cases for CellRank, the lineage probabilities (Fig. 3f and Additional file 1: Fig. S3 for all 
lineages) are either very localized to cells at the corresponding final cell fate with no 
indication of past states (NMP, brain, presomitic/paraxial mesoderm (PSM)) or are very 
diffuse detouring through the entire landscape (gut, cardiomyocyte) falsely suggesting 
that unrelated intermediate cells have a high likelihood of differentiating towards these 
cell fates. The same issues of either blurring or over-localization during pathway predic-
tion are observed in Palantir, with manual setting of cell fates required to bypass incor-
rect automated predictions in Palantir as demonstrated in Additional file 1: Fig. S3, Fig. 
S7 and Fig. S19). In contrast, the graph structure presented by StaVia (Fig. 3a) and its 
LTRW traversal using memory enables us to more unambiguously retrace how these lin-
eages emerge (Fig. 3a, c, e and Additional file 1: Fig. S3).

At higher memory levels, the gene trends predicted for the brain lineage show distinct 
elevation of Fez1 and Pax6, crucial for neuroectoderm fate specification, neurogenesis, 
and forebrain patterning (Fig. 3e, Additional file 1: Fig. S4) [28, 29]. StaVia also reveals 
a noteworthy trend: Sox9 expression precedes Sox10 in neural crest (NC) precursors 
(Fig. 3d). This aligns with known data showing Sox9’s role in initiating premigratory NC 
cells, followed by Sox10, which fosters later NC development and cell emigration [30]. 
This Sox9-Sox10 sequence is not captured by CellRank (Additional file 1: Fig. S3).

Introducing memory in random walks delineates end‑to‑end pathways in murine 

gastrulation

We next investigated how the incorporation of memory into random walks improves cell 
fate mappings and their associated biological interpretation, by addressing the issue of 
too-localized or too-diffused paths seen in current methods. In the murine gastrulation 
dataset (and later Zebrahub), we compared the lineage pathways obtained using a first-
order and second-order LTRW with varying levels of memory (Mem = 1 (signifies no 
memory) to Mem = 50). Lower memory values lead to more diffuse pathways on StaVia’s 
Atlas View (Fig. 4 and Additional file 1: Fig. S4), confounding analysis of temporal gene 
dynamics. In contrast, higher memory values successfully distinguish adjacent cell fates, 
as shown by the temporal gene expression of the NMP, paraxial mesoderm, neural, and 
neural crest cell fates at E8.5 (Fig. 4a-b).

For the NMP lineage, nestled between the emerging PSM and neural cells, higher 
memory enables the delineation of the sequential cell pathway from the epiblast to cau-
dal epiblast and then to the boundary of the mesodermal and neuronal lineages for the 
biopotent NMP cell fate (Fig. 4a-iii). In contrast, lower memory values tend to include 
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unrelated cell populations. As a result, gene expression trends for NMP markers Hoxb9 
and Nkx1.2 [23] overlap for all these lineages at lower memory values, but at mem-
ory = 50, the NMP lineage alone shows distinct expression elevation (Fig. 4b, Fig. S4). 
The benefits of the memory mechanism are also evident in the E8.5 brain cells (Fig. 4a-
ii), where higher memory more accurately shows the brain lineage deriving from the 
epiblast, followed by cells in the anterior pole of the primitive streak [31].

StaVia displays holistic and high‑resolution transcriptomic landscape of the full Zebrahub

We proceeded to leverage StaVia to probe the full Zebrahub, a recent comprehensive 
scRNA-sequencing time course atlas of 120,000 zebrafish embryonic cells [7] (Fig. 5a). 
As current methods struggle to reconcile the extended temporal span and extensive cel-
lular information of the entire 10-hpf to 10-dpf (hour/day post-fertilization) dataset, 
Lange et al., limited their study to the subset of cells (only 30% of the cells in the time-
course study), omitting the peridermal and neuroectoderm lineages entirely. We show 
that StaVia successfully interrogates the complete dataset. Notably, Zebrahub’s neuroec-
toderm and periderm lineages are analyzed here for the first time with an example of the 
probabilistic pathway from each of these three layers (see the insets in Fig. 5a).

StaVia outperforms existing state-of-the-art methods, e.g., scVelo, in delineating 
the intricate cell differentiation trajectories. For instance, StaVia recapitulates that 
cross-talk between the major lineages (visualized as edges on both the Atlas View 
(Fig.  5a) and cluster graph (Fig.  5b)) is more prominent during earlier stages (e.g., 
neuro mesodermal progenitor pluripotent cell types like (NMPs) traverse two germ 
layers) and diminishes as cells become more specialized. Furthermore, the direc-
tion of differentiation is also more clearly captured by StaVia’s cluster graph (Fig. 5b) 

Fig. 4 StaVia Memory impact on lineage paths. a Increasing memory mitigates too-diffused pathways from 
epiblast towards specialized cell fates and consequently improves the associated gene trends specificity as 
shown in b. Gene expression trends along pseudotime for lineages NMP (grey), PSM (green), brain (pink), and 
neural crest (NC) (peach). Hoxb9 is an NMP marker and we expect the grey NMP gene expression to become 
comparatively more upregulated than the other three lineages. Similarly, we expect Meox1 as a PSM marker 
to be comparatively more upregulated
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than CellRank-scVelo-directed PAGA representation (Fig.  5c) and scVelo’s stream 
plot (bold black arrows in Fig.  5d). StaVia also detects more relevant late-stage cell 
fates (Figs. 6b and 7b), as well as the gene trends that distinguish these lineages from 
each other (see Additional file 1: Figs. S7-S9 for lineage comparisons on all detected 
cell fates, where those missed by CellRank are manually provided to allow compari-
son), avoiding the pitfalls of missing transition states and inconsistent directionality 
occurring in the scVelo stream plot (Fig. 5d). Again, StaVia’s TI runtime is fast, taking 

Fig. 5 StaVia for Zebrahub. a Atlas View of the entire Zebrahub bud stage to 10 dpf colored by germ layer. 
Black arrows highlight the direction of differentiation indicated by Atlas edges for major lineages in the 
mesoderm, neuro-ectoderm, and non-neuro ectoderm. (Insets) StaVia end-to-end paths from bud to cell 
from mesoderm, neuro-, and non-neural ectoderm show well-delineated pathways as a result of higher-order 
random walks. b StaVia directed cluster graph using scRNA-velocity and pseudotime colored by main tissue 
type (top) and known stage (bottom). Edge directions radiate outwards from the center. c scVelo-directed 
PAGA constructed with a similar number of clusters as StaVia and also using a force-directed layout, shows a 
congested edge-layout with tissue-specific groups poorly separated and no clear direction. (d) scVelo stream 
plot on UMAP cannot mark the emergence of lineages as clearly as the edges in the Atlas View. The black 
arrows trace similar lineages to those highlighted in the Atlas but do not transition through intermediate 
stages and often show conflicting direction
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4  min, compared to 30  min in CellRank which misses several cell fates (Additional 
file 1: Fig. S6).

StaVia distinguishes multiple mesodermal pathways in Zebrahub

StaVia uncovers a high-precision mesodermal differentiation flow (Fig. 6a-b) that cannot 
be recovered from the scVelo and PAGA maps. It accurately predicts that vascular and 
hematopoietic lineages are derived from the lateral plate mesoderm [34] while revealing 
that the paraxial mesoderm gives rise to somitic cells, precursors to the dermis and car-
tilage [35]. Critical to early embryonic development, bipotent NMPs located at the early 
bifurcation of the mesoderm and neuroectoderm are identified [36] (Figs.  5a and 6a). 
Again, this ability is attributable to the memory-centric graph traversal implemented in 
StaVia (see the impact of the memory on mesodermal differentiation analysis in Figs. 
S10-11).

Notably, StaVia accurately predicts that the pharyngeal arch is derived from the 
head mesoderm and the cranial neural crest [37, 38] (see the zoom-in Atlas View in 
Fig. 6a, differentiation flow in Fig. 6b and pathway in Fig. 6c). The upregulation of 
Dlx genes, as revealed by StaVia, marks the emergence of a pharyngeal population 
(Fig. 6c–d). This is in contrast to CellRank, which, lacking the memory mechanism, 
fails to distinguish Dlx expression patterns across mesodermal lineages, resulting in 
a homogenized expression that masks true cell fate distinctions (Fig. 6d, Additional 
file  1: Fig. S7 where cell fates missed by CellRank are manually assigned to allow 
full comparison). Furthermore, StaVia identifies Matrilin Matn as a gene marker 
to distinguish the cranial cartilage from the pharyngeal arches (Fig.  6d) [33]. This 

Fig. 6 Mesoderm development. a Zoom-in of mesodermal lineage highlighting paths to pharyngeal 
mesoderm and musculature. b Automated predicted differentiation flow of detected mesodermal and 
hematopoietic cell fates from early mesoderm 10 hpf to 10 dpf. c In StaVia, increasing memory shows clearer 
paths to cell fate of interest and avoids spillover into unrelated cell types. d Gene trends of mesoderm 
lineages for dlx4 (pharyngeal mesoderm marker) [32] and matn1 (cranial cartilage marker) [33] are correctly 
captured by StaVia, whereas CellRank’s lineages are incorrect (e.g., the muscle lineage upregulates matn1 in 
CellRank). e Correlation matrices for cartilage, muscle, dermis, and erythrocyte lineage pathways at different 
values of memory 1 to 100 shows stability of analysis when changing memory (Fig. S7 for all fates)
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distinction is lost in CellRank (Fig. 6d), which confounds the cartilage with smooth 
musculature. CellRank’s paths lack intermediate populations (Additional file 1: Fig. 
S7), showing either fate-localized lineage probabilities or diffuse pathways (Addi-
tional file 1: Fig. S6).

While increasing the memory for graph traversal can generally sharpen the speci-
ficity of lineage progression towards the desired cell fate (Fig.  6c and Figs. S10-11 
for other cell fates), excessive memory can constrain the pathway, as seen with the 
PM lineage at Mem = 100 (Fig. 6c), underscoring the need for a balanced application 
of this parameter. Our stability analysis (Fig. 6e and Additional file 1: Fig. S5) indi-
cates that adjusting memory has a predictable and controllable impact. A heuristic 
correlating known time-series labels with pseudotime across memory values aids in 
determining the optimal memory range, ensuring the accuracy of inference by Sta-
Via (see “Methods” and Additional file 1: Fig. S5).

Fig. 7 StaVia reveals Ectoderm differentiation in Zebrahub. a Zoom-in Atlas View of neurulation from 5-hpf 
to 10-dpf. “s” denotes somite-stage and “d” is days post fertilization (dpf ). b Predicted differentiation flow 
of non-neural ectoderm and neural fates. c–d End-to-end pathways from neural plate region at 10 hpf 
(5-somite) to c differentiating neurons and d forebrain (5–10 dpf ). Accompanying gene-expression trends 
for neural lineages, shows upregulation of marker genes. e RGC end-to-end pathway and its marker gene 
expression trends. f Zoom-in Atlas View of non-neural ectoderm regions shows the formation of bilayered 
epiderm and the differentiation of the placodes and their interactions with associated trigeminal neurons/
ganglia. g Pax2a expressed in the early epiderm and placode bipotent regions, Fgf3 restricted to placodes, 
and Capn9 concentrated on epidermal cells. h StaVia detects that the ionocyte fate (red dot) expresses more 
Igfbp5ag and Gcm2 than other non-neuro ectoderm lineages
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StaVia elucidates neurulation sequence and differentiation of radial glia

We analyzed neuro-ectodermal lineages in Zebrahub (Fig. 7a-e) using StaVia, marking 
the first analysis of these cells which have otherwise been omitted in prior analyses. It 
identifies four distinct cell fates in the 5- and 10-dpf neuronal branches: forebrain cells, 
radial glia, and differentiating neuron and cone retinal bipolar cells. This contrasts with 
CellRank’s identification of only the bipolar cells and radial glial cells (Additional file 1: 
Fig. S8 for the full set of cell fates). Crucially, StaVia successfully traces the neurulation 
sequence, from the neural plate through the neural tube cells’ progression to the dien-
cephalon, and culminating in the mature forebrain neurons [39] (Fig. 7a-b). Again, the 
use of memory enables us to identify gene expression trends specific to these cell fates. 
For instance, differentiating neurons are distinguished by the upregulation of Delta 
genes (Dla/Dlb) specific to the subventricular zone (Fig. 7c) [40], whilst the mature post-
mitotic neurons of the forebrain have elevated lhx9 and gad2 (Fig.  7d) CellRank’s dif-
fuse probabilities of the neurons blur gene trends, confusing differentiating neurons with 
other ectodermal fates (Additional file 1: Fig. S8) [40].

The zoomed-in Atlas View (red arrows in Fig. 7a) and probabilistic pathways (Fig. 7e) 
uniquely highlight how the multipotent radial glial cells (RGCs) give rise to both neu-
rons and glia. They are characterized by activated notch3 and s100b, indicative of early 
gliogenesis [41–43]. StaVia further captures that the early RGCs are partially diverted to 
the differentiating neurons through a neuroblast sub-branch, while the other RGCs con-
tinue to the 10-dpf state where they differentiate (indicated by minor sub-branches) into 
Muller glia, oligodendrocytes or neurons (Fig. 7a).

StaVia charts emergence of bilayered epidermis and placodes from Pax2 + field

StaVia’s Atlas View clearly separates the neural and non-neural ectoderm, enabling for 
the first time an unsupervised analysis of the Zebrahub non-neural lineages in the ecto-
derm (Fig. 7e-g). The identified edge connectivities capture how the ectodermal field of 
bipotent Pax2+ cells give rise to both the Fgf3+ otic placode and Capn9+ epidermis 
[44] (Fig. 7f ).

The high-resolution edges of the Atlas View present the emergence of otic placodes 
which later yield the otic vesicles (Fig. 7e black arrows) [45]. StaVia’s ability to capture 
localized details within a more global network is seen in the correct placement of the 
neuromasts (uniquely upregulating Fndc7a [46]) along the lateral line placode, with 
edges to the neuronal cranial ganglia population known to innervate them [47]. The 
formation of an early bilayered epidermis (Fig.  7e) from the extraembryonic envelop-
ing layer (EVL)/periderm, and the inner basal epidermis is also detected by StaVia. The 
epidermal cells are identified by markers Capn9, Anxa1b/c in StaVia (Fig. 7f, Additional 
file 1: Fig. S9) [44], but in CellRank are indistinguishable from neuromasts and ionocytes 
due to diffuse lineage probabilities (Fig. S9).

Notably, StaVia detects two small cell fates each comprising less than 0.3% of the 
cell atlas. One comprises cells in the pharyngeal epithelial lining (located towards 
the lower right of Fig. 7e) which are formed by peridermal cells invading the phar-
yngeal cavity and subsequently expanding along the midline until the esophagus-gut 
boundary [48]. The second is the ionocyte cell fate (expressing Igfbp5a and Gcm2 
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Fig. 7h), which are epithelial cells maintaining osmotic homeostasis [49]. The abil-
ity to pinpoint these cell fates in the context of the entire dataset echoes the key 
strength of combining the Atlas View with the specificity of random walk memory.

Systematic assessments of StaVia’s visualization

We systematically assessed the cartographic visualization performance of StaVia 
on six different single-cell transcriptomic datasets (Fig. 8a-e, Additional file 1: Figs. 
S12-S17). One of these is the 8-million-cell mouse gastrula to pup atlas [9] (Fig. 8e) 
which was only computationally accessible to StaVia and UMAP—with StaVia being 
able to capture the developmental relationships in a more unified manner. We also 
benchmarked StaVia with commonly used single-cell visualization methods: UMAP, 
Phate, diffusion maps, principal component analysis (PCA), force-directed layout 
(ForceAtlas2 [50]), and t-SNE [15]. To facilitate comparison with other methods, we 
use the single-cell embedding generated by StaVia (prior to the edge integration step 
that creates the Atlas View), together with a set of five metrics that were adapted to 
account for the suitability of an embedding towards TI visualization. These metrics 
assess the ability to (1) convey progression and (2) separate lineages/distinguish cell 
types (Fig. 8, Additional File 1: Fig. S13a-b and “Methods”).

We demonstrated that StaVia’s single-cell embedding can consistently portray intu-
itive trajectory patterns, in accordance with the experimental time points (Fig. 8a-d). 
StaVia also outperforms other competitive methods for faithful and robust TI visu-
alization as evidenced by the five metrics (see the radar plot comparison in Fig. 8a-
d). While UMAP [14] and Phate [16] are competitive methods for single-cell data 
visualization and have their respective strengths, we observed that Phate underper-
forms in being able to visually separate distinct cell types, although it significantly 
improves upon using selected diffusion components. Compared to Phate, UMAP 
scores well in delineating cell types, however suffers when it comes to visualizing 
connectivity between progenitor and progressively specialized cells. (See Additional 
file 1: Figs. S12-S13 for all 5 datasets colored by stage and major tissue type across 
benchmarked visualizations). StaVia’s strength is that it can simultaneously capture 
developmental chronology and continuity whilst maintaining visual separation of 
distinct cell types. We also note that the superior TI visualization in StaVia does not 
compromise the computation speed, compared to other methods (see Fig. S12b for 
comparison of runtimes).

We also examined the impact of individual steps in StaVia towards creating a TI-
compatible visualization (Additional File 1: Fig. S14 for detailed analysis of remov-
ing each step in the algorithm in turn and Additional File 1: Figs. S15-S16 for all 5 
datasets colored by stage and tissue type). Removing sequential augmentation of the 
single-cell KNN graph and skipping the TI cluster-graph-based initialization cause a 
significant drop in the ability to visualize progression. Keeping sequential augmenta-
tion but skipping the StaVia cluster graph initialization, which distills the underly-
ing trajectory, also has a dramatic effect as quantified by the lower scores related to 
capturing the temporal progression as well as the visual outputs which appear more 
disjoint.
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Fig. 8 Comparison of visualization methods (a–d). (i) StaVia embedding colored by known experimental 
time, (ii) comparison of sc-embeddings generated by different methods colored by tissue type, and (iii) 
radar plot scoring for each criterion. Read clockwise, we have blue metrics (measuring sequential integrity) 
quantified by the correlation of the known time-series labels to the geodesic and euclidean distances from 
the root to other nodes in the embedded space, and also, the 2D pseudotime uses the embedding as the 
input to StaVia rather than the original features/principal components (PCs) which would usually be used to 
compute the pseudotime for TI purposes. The second set of red metrics (separation of cell types/lineages) 
are measured by the cell-type F1 score when clustering the 2D input using the same number of clusters for 
all methods and cell fate—measures how many fates are correctly detected by StaVia on the sc-embedding 
input rather than a higher dimensional input. e 8 million cells of mouse gastrula to pup (E8.0 to E18.0) [9] by 
StaVia and UMAP colored by major tissue type and developmental stage. PHATE, t-SNE, and force-directed 
layouts were attempted on this mega atlas but failed even after 24–48 h of runtime and over 30 cores of 
parallel processing
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Spatio‑temporal cartography in StaVia captures relationships between cells across space 

and time

Spatial omics have expanded our understanding of tissue architecture by mapping cells 
in their native environments, considering both their physical locations and gene expres-
sion profiles. Yet, it remains challenging to truly integrate this spatial information with 
gene expression profiles, resulting in analyses remaining purely in the transcriptomic 
domain with resulting cluster annotations and observations subsequently merely being 
visually projected back onto the spatial tissue locations. This makes integrative spatial 
and gene expression analysis non-trivial as it is now known that cell clusters or subtypes 
can exhibit stark contrasts in their distribution across a tissue slice, depending on their 
microenvironmental neighborhood, be it highly localized or dispersed.

While our examples have until now focused on temporally varying processes, we show 
that StaVia can also be used to investigate spatial datasets to understand cellular land-
scapes based on a combination of their expression levels as well as characteristics of 
their spatial “habitats”. As a proof of concept, we use the pre-optic mouse hypothalamus 
dataset based on MERFISH (multiplexed error-robust fluorescence in situ hybridization) 
[17] and a spatiotemporal Stereo-Seq zebrafish gastrulation atlas ZESTA [18] to show 
that incorporating these spatial differences, in conjunction with gene expression, when 
clustering and capturing the connectivity landscape elucidates differences in cell type 
and function. Here, StaVia’s graph construction leverages a recent concept [51] to recali-
brate gene expression by considering a cell’s environment. Furthermore, StaVia also aug-
ments the gene-expression-based KNN graph with spatial neighbors when establishing 
cluster connectivity (see “Methods”). Hence, the StaVia graph unifies gene expression 
with the spatial reality of the tissue.

In the hypothalamus dataset, this approach yields several key results that distinguish 
it from the PAGA graph (Additional file 1: Fig. S19a) as well as earlier versions of VIA 
which did not leverage the spatial information: (1) the StaVia graph automatically gener-
ates and arranges clusters not only purely based on their expression-based cell type but 
also on their general tendency to occupy particular regions of the tissue section. While 
clusters themselves remain pure in terms of major cell classification, their cluster-level 
neighbors are often from a shared tissue “habitat”. The automated zoning of the tissue 
into neighborhoods of groups of clusters by the spatially aware cluster graph facilitates 
hypothesis generation and identification of potentially interesting sites or niches in a tis-
sue where different cell types are colocalized and potentially interact to yield location-
specific functions. In the StaVia cluster graph (Fig. 9a), we use the nomenclature of tissue 
sub-regions [52] (Fig.  9b) to roughly guide the reader regarding the identified StaVia 
zones. Cells found in the lower section of the tissue slice are generally placed lower in the 
StaVia graph, whilst those towards the ACA and PVA are found at the top of the StaVia 
graph. (2) StaVia identifies sub-types that are missed when omitting spatial information. 
The excitatory neurons are separated into multiple subtypes that are located within their 
respective zones on the cluster graph and express distinct DEGs (Fig. 9c). For instance, 
the oxytocin-positive excitatory cluster C42 is placed near the ependymal cluster C9. Oxt 
neurons are known to be found near ependymal cells [53], this linkage is not predicted 
when spatial information is left out of the computational analysis; both the oligodendro-
cyte and astrocyte population comprise two subtypes that present different spatial and 
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Fig. 9 Spatiotemporally aware StaVia cartography. a StaVia cluster graph of mouse hypothalamus preoptic 
region at bregma −0.289 mm. Clusters located in similar zones share spatial “habitats”. Clusters are colored 
by cell type composition; all subplots share a legend for cell type coloration. Scatter plots placed near zones 
in the graph show the placement of cells in a cluster according to their spatial location on the tissue slice. 
b MERFISH tissue slice at −0.289 mm colored by the cell type annotations as per [17], BNST bed nucleus 
of the stria terminalis, MPN medial preoptic nucleus, PVA paraventricular thalamic nucleus, ACA anterior 
commissure, PE periventricular hypothalamic nucleus, LPO lateral preoptic area, MPA medial preoptic 
area. c The top DEGs show clear differences in corresponding subpopulations. d StaVia cluster graph of 
the trajectory, colored by major cell type. Cell and cluster annotations are made of StaVia’s clusters using 
the DEGs and markers compiled by Liu et al. for each cell type (e) progression of key cell fates for 10 hpf 
onwards (since 3 to 5 hpf are a common origin for all cell fates) based on cluster connectivity in the StaVia 
graph. Colored regions in (sub-fig e) correspond to labeled clusters in the cluster graph (sub-fig d). Lowest 
row shows the normalized gene expression for each cell fate by a known marker gene (see Additional file 1: 
Table S3d for literature references of cell type markers). f lineage probabilities towards three cell fates colored 
onto the tissue slices to show the propensity of cells on the tissue in space-time of developing towards a 
particular fate (see Additional file 1: Fig. S20c for Palantir and CellRank lineage probabilities
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DEG characteristics, and notably, the sub-population originally annotated as “ambigu-
ous” seems to actually comprise of both inhibitory neurons (cluster C6 expressing Gad1 
I [54]) and oligodendrocytes (C24 and C15 clusters, expressing Mbp and Ermin [55]). 
The PAGA (Additional file  1: Fig. S19a) graph is an example of a graph that does not 
relay very much spatial information, given the lack of a framework to incorporate this, 
and has a more limited set of sub-populations even when graph and clustering param-
eters are adjusted to increase the resolution, thus failing to achieve the results outlined 
above by StaVia.

We next use ZESTA [18], an STOmics (spatiotemporal multi-omics) atlas of Zebrafish 
gastrulation from 5 to 24 hpf of 150,000 spots approaching single cell size at a resolution 
of 10 × 10 × 15 μm. ZESTA exemplifies the emerging trend of STOmics atlases on which 
StaVia can demonstrate its unique capability of integrating both spatial tissue coordi-
nates and real-time information in its trajectory analysis (Fig. 9d–f). StaVia arrives at a 
biologically sound representation of the chronology of germ layer differentiation in the 
first 24 h of Zebrafish development purely using the Stereo-seq data, without using sup-
plementary scRNA-seq data for the clustering or TI calculations.

This is in contrast to current analytical approaches for STOmics data [18] where the 
inferred trajectory is computed on a complementary scRNA-seq dataset, and the results 
are subsequently projected onto the spatial data for visualization. We ran StaVia exclu-
sively on the StereoSeq STOmics data and showed that the specification of germ layers 
into various cell types is captured correctly. The StaVia graph (Fig. 9d) shows the pro-
gressive commitment of pluripotent cell types towards different cell fates. Edges from 
early cells in each of the major tissue types are correctly connected to cells of the same 
tissue type of later stages (this is not the case in the PAGA graph Additional file 1: Fig. 
S20b where cells/clusters are predominantly connected by stage and not cell type). The 
clusters identified along the StaVia cluster graph as contributing to a lineage pathway are 
circled on the cluster graph and also colored directly on the tissue slices (Fig. 9e). The 
probabilities of cells moving towards a particular fate are also shown at each time point 
(Fig.  9f ). These two subfigures thus highlight the areas on each slice at different time 
points that are predicted by StaVia to contribute towards the cell fate under considera-
tion, showing progressive commitment of cells as it occurs on the tissue.

When running StaVia without the spatial information, but using only the temporal 
information, we see two main shortcomings (Additional file 1: Fig. S20): (1) earlier time 
points are not as well divided into different constituent cell types, which limits our abil-
ity to detect cell fate specification and cues at earlier stages and (2) certain sub-types 
are only delineated in the presence of spatial information, e.g., spatial information helps 
identify different clusters for the anterior and ventral spinal cord, which are distinct both 
in location and gene expression.

Comparison of StaVia with the PAGA graph (Additional file 1: Fig. S19b), as well as 
CellRank and Palantir (in terms of the inferred fate probabilities) (Additional file 1: Fig. 
S19c), further highlights StaVia’s strength in identifying sequential steps and intermedi-
ate stages. The PAGA graph does not accurately position the early time points (3 and 5 
hpf) in relation to the other clusters. Moreover, because there is limited connectivity 
between cells of earlier and later cells from the same tissue type, there is scant infor-
mation on how and which cells progress towards tissue-specialized fates. CellRank and 
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Palantir were unable to detect any intermediate states, as evident in Additional file 1: Fig. 
S19c for three different cell fates. Even when the resolution of the method was increased 
(which incurred a high runtime cost in CellRank), it only led to an increase in the num-
ber of predicted final states (several of these were not from 24 hpf despite using the same 
root cell information as StaVia), but did not result in the identification of the relevant 
transition populations and differentiation pathway between 3 and 24 hpf. By contrast, 
StaVia manages to identify cells from each developmental time that contribute to the 
final cell fate at 24 hpf (Fig. 9e-f ), demonstrating the unique capabilities of StaVia in tra-
jectory analysis.

Discussion
A salient feature of StaVia is the implementation of the second-order random walks with 
memory, vital to delineating the intricate end-to-end pathways of multiple lineages in 
the entire differentiation process. We demonstrated that without higher-order random 
walks with memory (by comparison to CellRank, Palantir, and by removing memory), 
lineage pathways run into two main issues: deviating into unrelated intermediate popu-
lations which entangles pathways and hinders lineage-specific insights or becoming so 
myopic in search paths that transition states are overlooked. The usefulness of StaVia’s 
random walks with memory to overcome these challenges without resorting to manual 
subsetting of stages/populations that would otherwise rob the atlas of its unique scale 
and perspective was demonstrated on the mouse gastrulation dataset. StaVia identified 
sequential transitions in hematopoiesis with new insights into hemogenic endothelial 
differentiation, NMP bipotency, and dual-source gut formation that are not detected by 
other methods unless manually curated and subsetted.

StaVia also facilitated the collective analysis of all cells in the recent Zebrahub atlas 
for the first time. The use of memory together with automated integration of time series 
information revealed insights into the bilayered epiderm formation, placode develop-
ment, and the differentiation of glial cells during neurulation. Moreover, StaVia’s runtime 
for retrieving lineage pathways is competitive, requiring a few minutes in comparison to 
CellRank which needed more than 30 min on the same dataset using the same hardware. 
Efficient processing and runtimes aid in the discovery process by allowing the analysis 
to be probed across parameters on a collective atlas level without requiring access to 
immense computational resources.

Current state-of-the-art methods (e.g., the scVelo-directed PAGA graphs and the 
RNA-velocity stream plots) quickly become congested in terms of edges or streamlines 
and struggle to convey biological transitions. For effective visualization of complex tra-
jectories at an atlas scale, it is imperative to establish a linkage between the overall net-
work structure and the fine-grained transcriptomic signature [56]. StaVia’s Atlas View 
does this with its high edge resolution and TI-based spatial layout of cells, providing 
perspective on biological chronology while preserving spatial proximity of similar cells, 
being uniquely able to visualize development in the 8-million-cell gastrulation atlas.

As shown on the spatial-temporal Zebrafish gastrulation data (ZESTA) and the pre-
optic MERFISH dataset, StaVia’s framework can integrate spatial information of cells 
on tissues, offering perhaps the first cartographic approach to spatial transcriptomics 
data that conveys both location and gene-expression based similarities of cell types. This 
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revealed several sub populations and intermediate transition states that eluded detection 
based purely on gene expression and also showed intra-cluster relationships between 
cell types based on physical location.

Conclusion
StaVia presents an advanced TI method integrated with a new visualization approach, 
tailored for cell atlases that encapsulate a high degree of complexity, be it diverse lineage 
representation, longitudinal temporal span, non-linear spatial layout, or sheer sample 
size. StaVia shows that biologically faithful TI can be performed on spatial omics data 
without requiring a scRNA-seq for prediction accuracy. As we anticipate an increase in 
the creation of cell atlases with both temporal and spatial emphases, StaVia’s capabilities 
in delineating and visualizing cellular trajectories in large-scale and complex datasets 
could spearhead bioinformatics strategies that enable a more comprehensive under-
standing of cellular differentiation, lineage trajectories, and disease progression.

Methods
Key steps in the TI algorithm and visualization in StaVia

StaVia is built upon our earlier work of Via [13] that models the cellular process as a 
modified random walk, called LTRW, transversing the cluster graph computed by a 
data-driven community-detection algorithm [19]. This model incorporates elements of 
“laziness” (staying at the current state) and “teleportation” (jumping to any other state), 
with predefined probabilities. Pseudotime and graph directionality are then calculated 
based on state hitting times and refined with Markov chain Monte Carlo (MCMC) simu-
lations. Here below are the key elements and steps relevant to the StaVia framework:

1. Represent single-cell data by a sequentially augmented graph: The first step is to rep-
resent the single-cell data by a single-cell KNN (scKNN) graph using the hierarchi-
cal navigable small world algorithm [19]. Subsequently, if sequential (temporal) data 
(e.g., data at different time points) is provided, then additional edges between cells 
in adjacent sequential groups are added. Edges between cells that are more than t_
threshold can also be optionally removed. In the case of spatial data, the input gene 
expression is first modified to a weighted average of a cell’s own cells and that of its 
spatial neighbors. The construction of a scKNN is done in this new gene expression 
space (following PCA) and then augmented by spatially adjacent neighbors added to 
the scKNN based on spatial proximity.

2. Build the cluster graph: Following this, a cluster graph is constructed where nodes are 
PARC-based clusters of single cells. These groups of nodes can also be pre-defined by 
the user. Similar to Via 1.0, a pseudotime based on LTRW is first computed and the 
edges are accordingly forward biased. In StaVia, when available, the edge directions 
are also determined by the scRNA velocity. The edge-weighting and direction given 
by scRNA velocity versus pseudotime is controlled by a user-defined parameter (set 
as 0.5, i.e., 50/50 weight, by default). Start states are predicted based on the absorp-
tion probability (when scRNA velocity is available) or defined by the user. Terminal 
states are computed similarly to Via 1.0 using node degree and connectivity proper-
ties.
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3. Compute the lineage pathways: Pathways (from the root to the terminals) are com-
puted using second-order LTRWs with memory conducted on a forward-biased 
(directed and weighted) cluster graph. These give us a collection of simulated second-
order random walks that describe the probabilistic pathways. The memory_param-
eter controls the weighting multiplier used on node edges.

4. Construct an edge-bundled cluster graph: The cluster graph’s node layout is com-
puted using the Fruchterman–Reingold method. Despite the relatively modest num-
ber of clusters, edge congestion quickly arises with pruning of edges being a subop-
timal way of reducing clutter. We therefore visualize edges using an edge bundling 
technique based on kernel density estimation (KDE) which transforms the graph into 
a density map and then moves edges towards the local density maxima to form bun-
dles [57, 58].

5. Construct a single-cell embedding for Atlas View: The underlying single-cell embed-
ding relies on UMAP’s implementation of minimizing the fuzzy set cross-entropy 
between the high- and low-dimensional representation. The cell–cell neighborhood 
used in the cost function computation is based on the sequentially (spatio-tempo-
rally) augmented scKNN graph. The initialization of the single-cell embedding is 
based on the layout of the forward-biased TI cluster graph.

6. Generate a complete Atlas View: The single-cell 2-D embedding layout, as described 
above, is clustered using kmeans (set to 150–1000 clusters depending on the desired 
granularity). A cluster graph is formed using the augmented sc-KNN graph and the 
edges are bundled using KDE. These are overlaid on the TI-cluster graph initialized 
single-cell embedding from step 4 to create the complete Atlas View. The bundled 
edges greatly aid in visually sharpening the spatial density of edges and emphasizing 
high-traffic edge patterns.

Second‑order LTRW in StaVia

The concept of second-order random walks has been used previously to define search 
neighborhoods in feature representations of networks which can subsequently be 
used for classification tasks [59–61]. We extend this idea to TI computation in StaVia. 
Here, we use a fast implementation of the node2vec algorithm [61] to compute second-
order walks on the directed cluster graph (used for lineage probability predictions and 
pseudotime).

The cluster graph constructed in StaVia is defined as a weighted connected graph G (V, 
E, W) with a vertex set V of n vertices (or nodes), i.e., V = {v1, . . . , vn} and an edge set E, 
i.e., a set of ordered pairs of distinct nodes. W is an nxn weight matrix that describes a 
set of edge weights between nodes i and j, wij ≥ 0 are assigned to the edges (vi, vj).

Assume the walker is currently on node vcur and has neighborhood Nv with three 
neighbors (vm, vn, vo) (Supplementary Fig.  18a). In the first-order case, the transition 
probability is given by

(1)p(vo, vcur) =
w vcur,vo

u′∈Nv
w(vcur,u′)
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where the probability is only conditioned on the current state. However, in the second-
order random walk, we adapt for StaVia’s lineage probability computations (Additional 
File 1: Fig. S18b), a bias factor alphaα ≤ 1 is applied to reweight edges depending on 
the previous state such that neighbors of the current node that are not neighbors of the 
previous node are considered “out-edges”. A node that is a mutual neighbor of the cur-
rent and previous nodes is an inward edge, with the return-edge being the case when 
the next node returns to the previous one. When α = 1 , this system reverts to the first-
order case. The original node2vec algorithm applies an additional biasing parameter for 
the return edge to discourage getting stuck in a loop that returns to the previous state. 
However, in our case, since we have a forward-biased weighted graph that already sup-
presses reverse behavior against the pseudotime, this additional biasing is not required. 
The transition probability in the second-order case is now given by

which generalizes to

and it has bias factor α , given by

Stability of the TI when changing the memory parameter and a short guide to select-
ing a suitable range is described below and in Additional file 1: Fig. S5.

Kernel density estimation (KDE)‑based edge bundling

The graph bundling for the cluster graphs and Atlas View uses a kernel density estima-
tion-based method [57, 58, 62]. Combining this with StaVia’s single-cell atlas embed-
dings aids in visually summarizing the edge density and highlighting pathways based 
on their traffic (cell–cell interactions). Briefly, the KDE edge bundling is an iterative 
algorithm that repeats the following set of steps on a graph drawing: first convolve the 
edges with a kernel to construct a density map. The density is a measure of the number 
of edges at that particular location in space. Next, compute the gradient of the density 
map �ρ and advect points x ∈ G in the direction of �ρ and do Laplacian filtering to 
smooth the edges. Repeat these steps, reducing the kernel bandwidth on each iteration. 
The effect will be to sharpen the density such that straight-lined unbundled edges will be 
drawn as tightly bundled curves.

Given a graph drawing G ⊂ R2 with edges E = {ei ⊂ R2} where x ∈ G2 , the density 
map is given by

The kernel used here is the Epanechnikov kernel

(2)p(vo|vcurr, vprev) =
α(vcur, vo)w(vcur, vo)

∑

u′ǫNv
α(vcur,u′)w(u′, vcur)

(3)p(vnext|vcur, vprev) =
α(vcur, vnext)w(vcur, vnext)
∑

u′∈Nv
α(vcur,u′)w(u′, vcur)

for (vcur, vnext) ∈ Nv , else 0

(4)α(vnext, vprev) =
1

Memory
, for (vnext, vprev) /∈ E else, 1 for (vnext, vprev) ∈ E

(5)ρ(x) =
∑N

i=1

∫

y∈ei

K

(

x − y

h

)
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The bandwidth is reduced by a factor � at each iteration, such that on the nth step, it 
will be hn = �

nhmax.

Robustness analysis of memory parameter

We have investigated the utility of incorporating random walks with memory in the con-
text of both mouse and zebrafish gastrulation, whereby gradually increasing the level of 
memory in the random walk improves end-to-end pathway mapping and the specificity 
of gene trends associated with the emergence of lineages. However, at very high levels of 
memory (e.g., memory = 100), some pathways can be too restrictive. We show that it is 
possible to narrow down or gauge an optimal range for the memory parameter by corre-
lating the known experimental times to the inferred pseudotime (computed at different 
memory values). For Zebrahub and mouse gastrulation, the correlation increases with 
memory, remaining elevated for an interval before decreasing at higher levels of memory 
Additional file 1: Fig. S5b-c. To show that the change incurred by memory is gradual and 
behaves in a stable manner, we also present a correlation analysis in Additional file  1: 
Fig. S5a of lineage probabilities for cell fates in the Zebrhub dataset at memory values 
{1,5,10,50,100}, where a value of 1 signifies no memory. These show that for a wide range 
of values, the analysis is highly correlated.

Metrics for quantitative analysis of visualizations

The metrics fall into either structural or cell-type measures. Structural metrics to assess 
how well a method visualization sequential information and progression include stand-
ard Pearson correlation r(x, y) in the following contexts:

• 2D-pseudotime: Time series label and StaVia-pseudotime, where StaVia-pseudotime 
is the inferred pseudotime by StaVia when the 2D embedding is given as the input to 
StaVia.

• Geodesic: Time series label and geodesic distance on the embedding from root to 
cells. The geodesic distance dgeo(u, v) between two nodes u and v on a weighted 
graph is the minimum sum of weights across all the paths connecting u and v.

• Euclidean: Time series labels and Euclidean distance on the embedding from root to 
cells. The Euclidean distance dEuc(u, v) between two cells u and v whose coordinates 
are given by the 2D embedding,

On the other hand, the metrics that assess how well a visualization method captures 
lineage divergence and respects cell type separation include:

(6)K (x) = 1− ||x||2

(7)r =

∑

(xi − x)
(

yi − y
)

∑

(xi − x)2
(

yi − y
)2

(8)dEuc(u, v) =

√

∑

u′∈Nv
(ui − vi)

2
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• Cell fate: Cell fate detection when running StaVia on the embedding. StaVia’s auto-
matic cell fate detection is applied to all embeddings (the same root state is pro-
vided in all cases). We compute the F1 score of detected cell fates with reference to 
expected cell fates (corresponding to the later stages of the dataset)

• Cell type: Use k-means clustering on the 2D embedding at a fixed number of clusters 
for all embeddings. For each dataset, the number of clusters is set to five clusters 
more than the number of given coarse-level annotations resulting in typically around 
15–20 clusters. Calculate the F1-score using the scoring method applied in Stassen 
2020 which assigns each cluster a majority reference population, aggregates the clus-
ters assigned to said reference population, and calculates the one-vs-all F1 score for 
each reference population. The mean score across reference populations is reported 
which avoids the issue of larger cell populations dominating the score. This approach 
prevents punishing a method for splitting a cell type into multiple clusters, which 
may well be the case since the annotations are coarse and would not necessarily cap-
ture subtypes. Since all methods are given the same number of k-clusters, it is still a 
fair comparison.

Spatially aware cartography construction in StaVia

Our strategy has two key elements which play a role in embedding spatial information 
into the cartography. The first element uses a concept (Singhal 2024) that recomputes 
the gene expression as a weighted average of a cell’s own expression plus that of its spa-
tial neighbors. The second component of the spatial integration is to augment the sin-
gle-cell gene-expression-based KNN graph with neighbors found in the spatial domain 
before computing inter-cluster connectivity. The average spatial location of clusters is 
subsequently used to initialize the layout of the StaVia graph.

Pre‑processing datasets

Mouse gastrulation [6]: scvelo’s filter_and_normalize function is used on the raw 
spliced and unspliced genes. Only genes (both in spliced and unspliced counts) that are 
expressed in 20 or more cells are retained, resulting in a matrix with 10,766 genes across 
89,267 cells. Each cell is normalized by the counts over all its genes. The last step is to log 
normalize the counts before PCA. The velocities are computed using scvelo’s stochastic 
mode as the dynamic mode is prohibitively slow for large datasets. PCA done on the full 
filtered gene set.

Zebrahub [7]: Single-cell sequencing of 120,437 cells from zebrafish embryonic devel-
opment across 10 time points from 10 hpf to 10 dpf. Cells expressing fewer than 200 
genes and genes expressed by fewer than 5 cells were removed. Each cell is normalized 
by the counts over all its genes, followed by log normalization. The top 5000 highly var-
iable genes are used for PCA. Due to the computational demands of scVelo for large 
datasets, we use the velocity matrix publicly available by Zebrahub which was computed 
using scVelo. Cell annotations were combined from the datasets for individual time 
points.

Ascidian Protovert [63]: Early phases of embryogenesis of ascidian protovertebrate 
with sequentially staged Ciona embryos, from gastrulation at the 110-cell stage to 
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neurula and larval stage. Individual h5 matrices for each time point are concatenated 
into an Anndata object containing 90,579 cells. Standard gene filtering (min_cells = 5, 
min_counts = 10) is done using scanpy and each cell is normalized by the counts 
over its genes followed by log normalization. Top 2000 highly variable genes are used 
towards PCA. Root cell is user defined based on timestamps as stage 1 epidermis cell.

Zebrafish [64]: 63,273 cells across 7 time points from the first 24  h of zebrafish 
embryo Same preprocessing as Ascidian Protovert data. Top 2000 highly variable 
genes are used towards PCA.

Mouse neuron (La Manno 2021): 292,495 cells from embryonic mouse brain from 
stages E8–E18. Same preprocessing as Ascidian protovert. scvelo is used to compute 
the scRNA velocity. Top 2000 highly variable genes are used towards PCA.

MERFISH [17]: MERFISH of 12 slices of mouse preoptic region 
1.8  mm × 1.8  mm × 0.1  µm thick of 160 genes chosen based on scRNA-seq marker 
gene panel and known functional gene panel. Figure  9 is 6500 cells from a naive 
female mouse slice at −0.289 mm bregma. Analysis of slices from other bregma shows 
similar spatially aware StaVia graphs and clustering tendencies.

ZESTA [18]: Stereo-seq dataset profiling 91 zebrafish embryo sections covering 
six time points during the first 24 h of development. Filtered data of individual time 
points (thresholded according to > 350 genes for the 15-µm bin) were available on the 
Zesta portal. These time points are merged, resulting in a total of 152,977 spots at a 
resolution of 10 × 10 × 15 μm3 (close to cellular size) with spatial coordinates for use 
in the StaVia analysis. The cell annotations provided by C.Liu are used as a starting 
point, with some refinements made based on finer clustering resolution in StaVia and 
known marker gene expression.

Mouse pup [9]: Three-level single-cell transcriptional profiling by combinato-
rial indexing (sci-RNA-seq3) profiling over 8 million nuclei from 83 staged embryos 
spanning late gastrulation (E8.0) to the end of gastrulation at E18.75, with 2-h tempo-
ral resolution during somitogenesis and 6-h resolution through to birth.

TI parameters for StaVia, PAGA, CellRank, and visualization parameters for all 
methods are provided in Additional file  1: Table  S1 and Table  S2 with the number 
of KNN and PCs consistent for each method and key parameters highlighted where 
changed from default in order to improve results. No batch correction based on 
experimental times was performed for the datasets during TI analysis or visualiza-
tion benchmarking. The UMAP embeddings used to present CellRank’s TI results 
use the UMAPs resulting from batch-corrected PCs used in the Zebrahub and Sala 
publications.
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