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Abstract 

The rapid rise in the availability and scale of scRNA-seq data needs scalable methods 
for integrative analysis. Though many methods for data integration have been devel-
oped, few focus on understanding the heterogeneous effects of biological condi-
tions across different cell populations in integrative analysis. Our proposed scalable 
approach, scParser, models the heterogeneous effects from biological conditions, 
which unveils the key mechanisms by which gene expression contributes to pheno-
types. Notably, the extended scParser pinpoints biological processes in cell subpopula-
tions that contribute to disease pathogenesis. scParser achieves favorable performance 
in cell clustering compared to state-of-the-art methods and has a broad and diverse 
applicability.

Background
The scRNA-seq technology has emerged as a popular and powerful tool for profiling the 
transcriptomic landscape of individual cells within complex and heterogeneous systems. 
It has been revolutionizing our ability to dissect and understand various aspects of biol-
ogy at the single-cell level, including developmental biology [1] and gene regulation [2], 
and has opened new avenues for exploring developmental biology, gene regulation, tis-
sue heterogeneity, disease mechanisms, and evolutionary dynamics.

The scRNA-seq study usually involves the integrative analysis of transcriptomic data 
of individual cells measured with different technologies and derived from multiple tis-
sues [1] of individuals with different phenotypes [2–4] across statuses [5] and even spe-
cies. Indeed, the integrative analysis of heterogeneous scRNA-seq data to identify cell 
types or states and to compare gene expression across biological conditions has tremen-
dous potential to transform our understanding of complex and heterogeneous biological 
systems [6]. A successful example of this practice is that joint analysis of scRNA-seq data 
from multiple melanoma tumors identifies an immune resistance program in malignant 
cells, which predicts clinical responses to immunotherapy in melanoma patients [7]. 
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However, the heterogeneous variation due to different sequencing experiments and dif-
ferent biological conditions, including donors, tissues, or phenotypes, makes the inte-
grative analysis challenging.

Methods have been developed for the integrative analysis of scRNA-seq data [8–14]. 
Computational approaches, including BBKNN [8] and FastMNN[11], are proposed, 
which assume that the batch effect in scRNA-seq data is almost orthogonal to the bio-
logical variation [11]. Thus, their abilities to correct batch effects originating biologically 
are limited [15]. Seurat [12] matches cell states across biosamples by a shared correlation 
space defined by canonical correlation analysis. LIGER [6] employs nonnegative matrix 
factorization (NMF) to delineate shared and dataset-specific features of cells across 
biosamples. Harmony [9] integrates scRNA-seq data by projecting cells into a shared 
embedding. Scanorama [13] leverages the matches of cells with similar transcriptional 
profiles across biosamples to perform batch correction and integration. Most of the 
above methods focus on batch effect correction and cell identity annotation. They do not 
model the heterogeneous variation from different biological conditions and thus lack 
interpretability on how biological conditions affect the gene expression of cells. Moreo-
ver, it is also meaningful to model the effect of biological conditions on different cell sub-
populations to elucidate the specific cell subpopulation and its related biological process 
that contributes to the disease pathogenesis.

To fill in the gap and address the above challenges, we develop a general and flexible 
statistical framework, scParser, which is based on an ensemble of matrix factorization 
and sparse representation learning. scParser directly models the variation from differ-
ent biological conditions (e.g., donor, disease status, experimental time points) via gene 
modules, which bridge gene expression with the phenotype of interest and unveil the rel-
evant biological processes together with their contributing genes. The rationale behind 
our modeling is that the biological conditions affect the activities of certain biological 
processes, which in turn affect gene expression; the gene modules in scParser are learnt 
adaptively from the data and encode the biological processes that are affected by the bio-
logical conditions. We also develop an extended version of scParser, which further mod-
els the interactive effects of biological conditions on different cell subpopulations and 
pinpoints the relevant biological processes within the specific cell subpopulation that 
may contribute to the disease pathogenesis. Empowered by gene modules, scParser can 
boost the signal of disease-associated genes. In addition, scParser can correct for batch 
effects and achieves favorable performance in cell clustering. To make scParser scalable 
to large-scale datasets, we incorporate a batch-fitting strategy. Importantly, the wide 
applicability of our proposed framework has been demonstrated via extensive applica-
tions to various biomedical studies.

Results
Overview of scParser

We propose a flexible computational method scParser (sparse representation learning for 
scalable single-cell RNA sequencing data analysis), presented in Fig. 1. Here we use donors 
and phenotypes (e.g., disease status) as an example of biological conditions. The RNA 
expression profiles of cells from different donors with different phenotypes are profiled 
(Fig.  1A). To facilitate interpretation, scParser models variation from multiple biological 
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conditions (e.g., donor and phenotype) with matrix factorization and models cellular varia-
tion with sparse representation learning (Fig. 1B).

More specifically, the expression level of gene m for cell i , zim , which is obtained from 
donor j with phenotype t , is modeled as

where dj , pt , vm are vectors of length K1 , si, gm are vectors of length K2 . The donor and 
phenotype information of samples is known. Here we name the above formulation as the 
vanilla scParser. The equation above has the following matrix form

where VK1×M is the key component in scParser and represents K1 metagenes/gene 
modules (here we use the two phrases metagenes and gene modules interchangeably), 
and M is the total number of genes. These gene modules in the matrix V  summarize 
the expression patterns of thousands of genes to a few metagenes/gene modules (as K1 
is much smaller than M ), which provides a high-level summary of the gene activities 
affected by the biological conditions; DN1×K1 and PN2×K1 are matrices for the latent rep-
resentations of N1 donors and N2 phenotypes, respectively; DN1×K1 and PN2×K1 can also 
be interpreted as the expression level of the K1 gene modules in the N1 donors and N2 
phenotypes; SN×K2 ,GK2×M denote latent representations for N  cells and M genes after 
modeling variation from donors and phenotypes; XD,XP are indicator matrices of the 

zim ≈ d
⊺

j vm + p
⊺

t vm + s
⊺

i gm,

(1)Z ≈ XDD + XPP V + SG,

Fig. 1 Overview of scParser. A The scRNA-seq data is obtained from biosamples from multiple biological 
conditions. Variations from biological conditions (e.g., donor and phenotypes) and technical artifacts may 
bring about batch effects in the scRNA-seq data. B scParser models the variation from donor and phenotype 
with matrix factorization and cellular variation with sparse representation learning. After cell population 
annotation, an extension of scParser enables revealing the effects of biological heterogeneous conditions 
(e.g., phenotypes) on different cell populations. C The output from scParser enables various interpretive 
data analyses, such as cell population annotation, connecting gene expression to biological conditions via 
biologically meaningful gene modules, revealing the heterogeneous effect of phenotypes on different cell 
populations via gene modules, and uncovering donors’ molecular characteristics



Page 4 of 28Zhao et al. Genome Biology  (2024) 25:223

donor and phenotype labels for the cells, and they have N  rows and N1 and N2 columns, 
respectively. The objective function for the equation with matrix representation is as 
follows:

where �1,�2,α are tuning parameters, and � · �F represents the Frobenius norm. c is a 
constant, restricting the scale of Gk , the k th row of G . Alternating block coordinate 
descent (BCD) is utilized to optimize the objective.

The outputs from scParser provide informative inputs for various downstream analy-
ses (Fig. 1C): cell populations/types can be identified with the cell latent representation 
matrix S from Eq. 1, the connection between gene expression and biological conditions 
can be uncovered via biologically meaningful gene modules using P and V  , the effect 
of phenotypes on gene expression can be revealed with P ∗ V  , and the molecular char-
acteristics of donors can be characterized with D . In addition to the vanilla version of 
scParser, we also developed an extension of scParser that models the heterogeneous 
effects of biological conditions on cell populations (details in the “Methods” section) 
after cell identity annotation with S . Notably, the extended scParser pinpoints the related 
biological processes in the specific cell subpopulations that may contribute to disease 
pathogenesis.

Datasets

In our applications, we applied scParser to the three scRNA-seq datasets from studies 
on the pancreas of type 2 diabetic and normal donors (T2D dataset) [2], human airway 
epithelium of donors with different smoking habits (Smoking dataset) [5], and periph-
eral blood cells of patients experiencing mild to severe COVID-19 infection (COVID-19 
dataset) [3]. The number of cells in these datasets ranges from ~6000 to over 30,000. 
To demonstrate the scalability of scParser, we further applied scParser with the batch-
fitting strategy to the immune dataset, offering scRNA-seq data of > 300,000 immune 
cells from 16 different tissues of 12 donors [1], and the GBM (glioblastoma) data cover-
ing > 200,000 human glioma, immune, and stromal cells from GBM patients [4]. In our 
applications, we first applied the vanilla scParser. With the cell populations annotated 
after fitting the vanilla scParser, we employed the extended scParser.

scParser connects gene expression to phenotypes through gene modules

The vanilla scParser captures variation from heterogeneous biological conditions in 
scRNA-seq data with biologically meaningful gene modules, which serve as a bridge to 
connect gene expression to phenotypes via path analysis. The path analysis empowered 
by gene modules gives us deeper insights into the underlying biological context/process 
where genes participate in disease pathology, which is usually not provided in standard 
differential expression (DE) analysis.

L(D,P,V , S,G) = 1
2

∥∥Z −
(
XDD + XPP

)
V − SG

∥∥2
F
+

1
2�1

(
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)
+
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[
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2
2 ≤ c,∀k = 1, . . . ,K2,
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Let us use the T2D dataset from the study [2] for demonstration. The gene modules 
M1 and M2 connect the eight selected most variable genes with diabetes status (Fig. 2A). 
As revealed by the biological process (BP) enrichment analysis on top genes in gene 
modules M1 and M2, M1 encodes the BPs related to insulin and peptide secretion, and 
M2 encodes the BPs involved in the regulation of transcription in response to stress and 
response to unfolded protein.

On the one hand, we observed that the expression of M1 is much higher in normal 
than in diabetes: 1.34 vs. 0.97 (Fig. 2A), suggesting that normal patients have a higher 
activity level of BPs in insulin and peptide secretion than diabetic patients. This obser-
vation is also consistent with the fact that type 2 diabetic patients can have impaired 
insulin secretion. Additionally, the genes that have large loading in M1 include INS (the 
loading is 1.14), CHGB (the loading is 0.93), and FXYD2 (the loading is 0.47). This sug-
gests that these genes may affect type 2 diabetic patients through BPs in insulin and pep-
tide secretion. In fact, the role of these genes in type 2 diabetes is supported by previous 
studies: INS encodes insulin [16], FXYD2 was suggested to be a novel target for diabetes 
[17], and loss of CHGB impairs glucose-stimulated insulin secretion [18].

On the other hand, we see that the expression of M2 is much higher in diabetes com-
pared to normal: 1.10 vs. 0.62 (Fig. 2A), implying that the diabetic has a higher level of 
BPs in response to unfolded protein, compared with the normal. This is also supported 
by the finding that response to unfolded protein leads to endoplasmic reticulum (ER) 
stress [19], which contributes to insulin resistance [20]. Moreover, the loadings of FOS 
and JUN are high for M2 (0.58 and 0.56, respectively). This implies that the two genes 
(FOS and JUN) may contribute to type 2 diabetes via BPs in the regulation of transcrip-
tion in response to stress and response to unfolded protein. The implication is also con-
sistent with the finding that the AP-1 transcription factor, which is composed of c-Jun, 
encoded by gene JUN [21], and c-Fos, encoded by gene FOS [22], is necessary for the 
induction of the ER stress [23], which contributes to pancreatic β-cell loss and insulin 
resistance [24].

In brief, scParser summarizes the expression patterns of thousands of genes to a few 
metagenes/gene modules, which provides a high-level summary of the gene activities. 
These metagenes represent the genes that collectively carry out certain biological func-
tions. Hence, the path analysis empowered by scParser via gene modules not only identi-
fies the genes associated with the disease status but also unearths the relevant biological 
context/process through which the genes participate in the disease pathology. Notably, 
these gene modules are learned adaptively from the data.

scParser facilitates the identification of phenotype‑associated genes and their enriched 

biological processes

The changes in gene expression across different phenotypes can be unveiled by P ∗ V  , 
which is the product of the phenotype representation matrix P and the gene module 
matrix V  in Eq. 1. We also name P ∗ V  as the adjusted expression profiles for phenotypes 
because the unwanted variation from donors is controlled in them. The product P ∗ V  
together with the matrices P and V  facilitates the identification of phenotype-associated 
genes.
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Fig. 2 Various downstream analysis with outputs from the vanilla scParser in our applications. A The path 
diagram links the expression of the eight selected most variable genes to diabetes status via two gene 
modules in the application to the T2D dataset. B Changes in the expression of the most variable (top 10) 
genes across control, mild, and severe COVID-19 from the analysis of the COVID-19 dataset are shown. C 
Changes in the expression of the most variable (top 10) genes across different types of GBM from the analysis 
of the GBM dataset are shown. The words “LGG”, “ndGBM,” and “rGBM” stand for low-grade gliomas, newly 
diagnosed GBM, and recurrent GBM, respectively. D The top 20 severe COVID-19-associated genes ranked by 
adjusted p-values are displayed. E The top 20 recurrent GBM-associated genes ranked by adjusted p-values 
are presented. F The up-regulated BPs enriched by genes in the upper 5% quantile of the differences in 
the adjusted expression profiles between mild COVID-19 and normal are shown. G The up-regulated BPs 
enriched by genes in the upper 5% quantile of the differences in the adjusted expression profiles between 
severe and mild COVID-19 are shown. H The up-regulated BPs enriched by genes in the upper 5% quantile of 
the difference in the adjusted expression profiles between the recurrent GBM and newly diagnosed GBM are 
shown
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We first demonstrate it with the application to the COVID-19 dataset. The top variable 
genes, which are identified by inspecting P ∗ V  , show dynamic changes across severe 
COVID-19, mild COVID-19, and normal (Fig. 2B). Besides, we identified the genes asso-
ciated with the disease status by examining the correlation between the rows of P and the 
columns of V  [25]). The top identified genes, including HBB (Fig. 2B and D) and GRINA 
and FTL (Fig. 2D), are shown to be differentially expressed between severe COVID-19 
cases and normal in independent studies [26–28]. Additionally, the high expression lev-
els of HBB, HBA1, and HBA2 (Fig. 2B) in severe COVID-19 patients are supported by 
the evidence that the level of hemoglobin, whose subunits are encoded by HBB, HBA1, 
and HBA2, was found to be significantly higher in severe COVID-19 patients than in 
mild COVID-19 ones and normal controls [29].

To further verify the usefulness of the adjusted expression profiles for phenotypes 
P ∗ V  , we conducted additional experiments with disease targets provided by Open Tar-
gets [30]. First, we extracted target genes for COVID-19 from Open Targets, where the 
associations between COVID-19 and target genes are indicated by scores (from 0 to 1). 
Then, we also computed the absolute expression difference of genes across phenotypes 
(mild COVID-19 vs. normal, and severe COVID-19 vs. mild COVID-19) using P ∗ V  . 
Subsequently, we examined the correlation between the absolute expression difference 
of genes across phenotypes and the association scores provided by Open Targets.

We found that there is a positive correlation between them: p-values for a positive cor-
relation between the absolute gene expression difference in mild COVID-19 vs. normal 
and the association score in Open Targets are 0.0005 for both Kendall and Spearman 
correlation, and p-values for a positive correlation between absolute gene expression dif-
ference in severe vs. mild COVID-19 and the association score are 6.47E−05 for Kendall 
correlation and 6.919E−05 for Spearman correlation, respectively. These findings sug-
gest that the genes that have a bigger difference in expression levels across phenotypes 
tend to have a higher association score with the corresponding disease.

To complement path analysis by considering all gene modules, BP enrichment analysis 
can be performed on the list of genes that demonstrate the greatest difference across 
COVID-19 statuses with the adjusted expression profile P ∗ V  , which controls for the 
variation of donors. The up-regulated BPs in cells from donors with mild COVID-19 
compared to those from the normal include the viral life cycle, viral process, response to 
viral, and the BPs related to immune response, such as (myeloid) leukocyte and neutro-
phil chemotaxis (Fig. 2F), suggesting elevated viral activity and immune response in mild 
COVID-19 patients compared to the normal; in the comparison of cells from severe 
COVID-19 cases to those from mild COVID-19 ones, the BPs related to apoptotic sign-
aling pathways are activated (Fig. 2G), consistent with the previous finding that T cell 
apoptosis characterizes severe COVID-19 [31].

We also implemented the analyses on the glioblastoma (GBM) dataset. There is a 
wider difference in gene expression between glioblastoma (GBM) and low-grade glio-
mas (LGG), compared to that between recurrent and newly diagnosed GBM (Fig. 2H). 
Also, some listed top genes (FTL [32], FTH1[33], GAPDH [34], and VIM [35]) (Fig. 2C 
and E) are shown to be associated with GBM. Moreover, recurrent GBM shows higher 
levels of BPs related to inflammation and immune response compared with newly diag-
nosed GBM (Fig. 2H). The result is also supported by Open Targets [30]: p-values for a 
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positive correlation between absolute differences in gene expression between recurrent 
GBM and newly diagnosed GBM and the association score of genes for GBM are 0.0122 
for Kendall correlation and 0.0123 for Spearman correlation, respectively.

scParser can also boost the signal of phenotype-associated genes by removing the 
variation of the less relevant gene modules (Additional file  1: section S1): after filter-
ing less relevant gene modules, the absolute gene expression differences between disease 
statuses (computed with P ∗ V  ) have a more significant and higher positive correlation 
with the association scores provided by Open Targets and that the BPs enrichment anal-
ysis also becomes statistically more significant. In addition, we implemented transcrip-
tion factor (TF) enrichment analysis to identify potential drivers for the changes in gene 
expression across biological conditions in the T2D, Smoking, and GBM datasets, and 
most TFs identified in our analyses are supported by previous studies (Additional file 1: 
section 12).

scParser pinpoints the relevant biological processes in cell subpopulations that contribute 

to disease pathogenesis

Previously, we presented how biological conditions affect gene expression through gene 
modules in the vanilla scParser. However, it is important to note that the same biologi-
cal condition may exert heterogeneous effects on different cell populations. Motivated 
by this, we develop the extended version of scParser, defined in Eq. 6 in the “Methods” 
section, which directly models the interactive effects of biological conditions on different 
cell subpopulations annotated with S in Eq. 4. The matrices W  and V  from Eq. 6 enable 
path analysis. We use the results from our application to the T2D dataset for demonstra-
tion. We first show that path analysis informs us of the difference in biological functions 
for three subpopulations of beta cells (B1, B2, and B3) in normal controls (Fig. 3A), and 
then demonstrate that path analysis can unveil the relevant biological processes that are 
affected in B1 beta cells in diabetic patients that may contribute to the disease pathogen-
esis (Fig. 3B).

More specifically, we focus on two gene modules M1 and M2. As revealed by enrich-
ment analysis on top genes in M1 and M2, BPs encoded by M1 involve the secretion of 
hormones and peptides (not including insulin), but BPs encoded by M2 further include 
insulin secretion. We first looked at the three subpopulations of beta cells (B1, B2, and 
B3) in normal controls to study their difference. The subpopulation B3 has lower load-
ings in M1 and M2 (−2.31 and 0.23, respectively), compared to those for B1 (0.47 and 
1.54, respectively) and B2 (1.31 and 0.37, respectively) (Fig. 3A), and the loading of M1 
and M2 are also different between B1 and B2 (Fig. 3A). This evidence suggests that the 
beta cell populations from the normal show heterogeneity in biological functions: B1 
and B2 (especially B1) may have much higher levels of insulin secretion (encoded in gene 
module M2) than B3.

To further investigate the role of the beta cell populations in diabetes pathogenesis, 
we next focus on comparing beta cells B1 in normal vs diabetes through path analysis 
(Fig. 3B) because B1 has a very high loading in M2 in the normal and it may play a 
key role in insulin secretion. We see that the expression of M2 for B1 is much higher 
in the normal than in the diabetic: 1.54 vs. 0.87 (Fig.  3B), suggesting that B1 from 
the diabetic has a lower level of BPs in insulin secretion, compared to that from the 
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normal. This implies that B1 may be directly associated with diabetes pathogenesis. 
This implication is consistent with the fact that T2D is due to the dysfunction of beta 
cells [36].

Besides pinpointing the relevant biological context/process shown above, scParser 
quantifies the contribution of individual genes to the biological context/process (Fig. 3). 
As mentioned previously, the gene module M1 encodes BPs for the secretion of hor-
mones and peptides (not including insulin), and M2 further encodes BPs in insulin 
secretion. The genes (RBP4, IAPP, PCSK1, and INS) with large loadings on M1 (Fig. 3) 
either encode peptide hormone or participate in peptide hormone secretion, as shown 
in previous studies [16, 37–39]. In addition, the loadings of INS and IAPP are high for 
M2, and the loading of RBP4 is negative for M2 (Fig.  3). The three genes (INS, IAPP, 
RBP4) were shown to associate with insulin secretion in previous studies [16, 39, 40], 
where RBP4 is negatively associated with insulin secretion [40], explaining its negative 
loading in M2. The findings imply that these genes may contribute to heterogeneity in 
the function of beta cells and participate in the contribution of the cell populations to 
the diabetes status through BPs involved in insulin, peptide, and hormone secretion.

In brief, the extended scParser reveals the key biological context/process in the cell 
subpopulation that contributes to the disease status. In addition, it sheds light on the 
involvement of genes in the key biological context/process. This unique advantage of 
scParser provides us with a much deeper understanding of the contribution of cell 
populations to disease pathology via gene modules.

Fig. 3 Further exploratory analyses with cell population representations from scParser in the application to 
the T2D dataset. A The path diagram shows that scParser links the expression of 8 beta cell marker genes to 
the three beta cell populations (B1, B2, and B3) from the normal via two gene modules. B The path diagram 
shows that scParser links the expression of 8 beta cell marker genes to the beta cell population (B1) across 
diabetes status via two gene modules
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scParser reveals the heterogeneous effects of biological conditions on different cell 

subpopulations or types

In the previous subsection, the heterogeneous effects of biological conditions on cell 
subpopulations have been demonstrated with two gene modules with the T2D dataset 
as an example. To complement the path analysis by considering all gene modules, we 
computed the adjusted expression profiles for cell subpopulations (types) under dif-
ferent biological conditions with W ∗ V  , which is the product of the representation 
matrix for cell subpopulations (types) under different biological conditions W  and the 
gene module matrix V  in Eq. 6. The product of W ∗ V  reveals expression dynamics of 
genes in cell subpopulations (types) across biological conditions and identify the phe-
notype- or disease-critical cell populations by BP enrichment analysis.

Let us first demonstrate the results from our application to the T2D dataset. The 
top variable genes in the beta cell subpopulation B1, which are obtained by examin-
ing the rows of W ∗ V  corresponding to B1, show distinct differences across diabe-
tes status (Fig.  2B). Some identified genes (MTRNR2L1 [41], CPE [42], RBP4 [43], 
FXYD2 [44, 45], and CHGB [18]) are shown to play an important role in beta cells 
and be involved in diabetes (Fig. 4A), suggesting the contributing role of beta cells in 
diabetes. Then, the BP enrichment analysis on the list of top variable genes for each 
cell subpopulation (type) across diabetes status was conducted to reveal the effects 
of biological conditions on the cell subpopulation (type). Here the list of top variable 
genes is obtained with the adjusted expression profile W ∗ V  corresponding to the 
cell subpopulation (type), which controls for the variation of donors. We observed 
that the levels of BPs in the secretion and regulation of insulin are lower in the two 
beta subpopulations (B1 and B2) from diabetic donors, compared to normal controls 
(Fig. 4C and D). However, this finding is not observed for the other three cell types 
(Additional file 1: Fig. S1A, S1B, and S1C) and the beta cell subpopulation B3 (Addi-
tional file 1: Fig. S1D). This implies that the two beta cell subpopulations are directly 
associated with diabetes.

Meanwhile, the average proportions of B1 and B2 are greater in normal controls 
(35.00% and 8.88%, respectively) than in diabetes (30.56% and 4.58%), and the average 
proportion of B3 is smaller in normal controls (5.29%) than in diabetes (8.99%). (Addi-
tional file 2: Table S1). This leads to the finding that diabetes is associated with a decrease 
in the subpopulations of beta cells (B1 and B2) that secrete insulin and an increase in the 
subpopulation of beta cells (B3) that have a low level of insulin secretion.

To verify the finding above, we first obtained a list of eight genes, which are shown 
to associate with insulin resistance, T2D, or insulin secretion, through literature 
search (RBP4 [46–48], NPY [49, 50], DLK1 [51–54], PCSK1 [55, 56], MAFA [57–59], 
SIX3 [60–62], PFKFB2 [63–65], TMEM37 [66]). Then, we conducted two-sided t-tests 
to compare the expression levels of these genes between normal controls and diabe-
tes across all six cell populations, including the two beta cell populations (B1 and B2) 
(Additional file 2: Table S2). The p-values tend to be much smaller in B1 and B2 than 
in other cell populations (Additional file 2: Table S2). In brief, the additional experi-
ment supports the conclusion above. This phenomenon is supported and systemati-
cally reviewed by the study [67], suggesting that beta cells are morphologically and 
functionally heterogeneous and that this is strongly associated with diabetes.
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We also performed the above analysis to the COVID-19 datasets. The relationship 
between the three genes listed in Fig. 4B (HBB, HBA1, and HBA2) and severe COVID-
19 has been discussed in our previous section, and two other identified genes (TNFAIP3 
[68] and GNLY [69]) were reported to play an important role in COVID-19 (Fig. 4B). 
Further, we observed that the BPs related to the differentiation of T and lymphocyte cells 

Fig. 4 scParser reveals the heterogeneous effects of biological conditions on different cell populations 
(types). A The figure shows the changes in expression of the most variable (top 10) genes for the beta cell 
subpopulation (B1) across diabetes status with the T2D dataset. B The figure shows the changes in expression 
of the most variable (top 10) genes for the T cell population across normal, mild COVID-19, and severe 
COVID-19 with the COVID-19 dataset. C The figure shows the down-regulated BPs enriched by genes in 
the lower 5% quantile of the difference in the adjusted expression profiles for B1 between the diabetic and 
normal conditions. D The figure shows the down-regulated BPs enriched by genes in the lower 5% quantile 
of the difference in the adjusted expression profiles for B2 between the diabetic and normal conditions. E The 
up-regulated BPs enriched by genes in the upper 5% quantile of the difference in the adjusted expression 
profiles for T cells between severe and mild COVID-19 are displayed. F The up-regulated BPs enriched by 
genes in the upper 5% quantile of the difference in the adjusted expression profiles for monocytes between 
severe and mild COVID-19 are displayed
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are up-regulated in monocytes from severe COVID-19 donors, compared to monocytes 
from mild ones (Fig. 4F). More importantly, the BPs involved in response to viral are up-
regulated in T cells in the comparison (Fig. 4E), and the levels of the BPs related to inter-
leukin-2 production, which plays a key role in the human immune system, are also high 
in T cells, but not in monocytes (Fig. 4E and F). This may suggest that monocytes pro-
mote the differentiation of T cells and that T cells play a key role in the human immune 
response to severe COVID-19.

To further verify the association of monocytes and T cells in severe COVID-19 
patients, we conducted the following analysis. Specifically, we first computed the abso-
lute differences in gene expression between severe and mild COVID-19 (here W ∗ V  is 
used for the gene expression level for cell populations across COVID-19 status, which is 
adjusted for the variation of donors) for T cells and monocytes, and then computed the 
correlation between the absolute expression differences and the scores of genes associ-
ated with COVID-19 provided by Open Targets [30]. Our results show that there are 
statistically significant and positive relationships between the absolute expression differ-
ence for T cells (PKendall = 0.0170 and PSpearman = 0.0192) as well as monocytes (PKendall = 
0.0091 and PSpearman = 0.0080) and the gene association scores for COVID-19, corrobo-
rating the role of monocytes and T cells in COVID-19. On the one hand, the important 
role of monocyte cells in T cell formation has been supported by the literature [70–72]: 
monocytes play an important role in the formation of memory T cells [72], and mono-
cyte‐derived cell populations promote the differentiation of  CD4+ T cells [71] and  CD8+ 
T cells [70]. Additionally, the contributing role of monocytes in COVID-19 pathogen-
esis is supported by the literature [73, 74]. On the other hand, the relationship between 
severe COVID-19 and T cells is also supported by the literature [31, 75–77]: T cells play 
a crucial protective role in the human immune response to COVID-19 [75–77], and T 
cell apoptosis characterizes severe COVID-19 infection [31]. These findings support the 
conclusion above that monocyte cells may promote the differentiation of T cells and that 
T cells may play a key role in the immune response to severe COVID-19.

scParser reveals the molecular characteristics of donors

Here we demonstrate how scParser can help reveal the molecular characteristics of 
donors with the application to the GBM dataset. First, we directly plotted the donor 
representations of 11 newly diagnosed GBM donors (Additional file 1: Fig. S2). Donors 
01, 06, and 10 show obvious differences in molecular characteristics compared with the 
other eight donors (Additional file 1: Fig. S2). For demonstration, we focus on discuss-
ing the molecular differences of these donors with metagenes 12, 13, and 15, and the 
biological meaning of the metagenes is revealed with enrichment analysis. A joint analy-
sis of the figure and results from enrichment analysis suggest that donor 1 may suffer 
a poor progression of GBM, donor 6 may experience more severe hypoxia than other 
donors, and donor 10 has a stronger immune response and a lower level of gliogenesis 
and axonogenesis than other donors. Technical details of enrichment analysis and result 
interpretation are provided (Additional file 1: section S2). However, due to a lack of clin-
ical information on these donors to validate our findings, further investigation is needed 
to explore our findings.



Page 13 of 28Zhao et al. Genome Biology  (2024) 25:223 

Comparative study of scParser on cell type annotation

In addition to the interpretability empowered by gene modules presented above, 
scParser also helps annotate cell types. To evaluate its ability in annotating cell popula-
tions, we compared it against eight methods in cell identity annotation, including Seurat 
V3 [12], LIGER [78], Harmony [9], BBKNN [8], ComBat [79], FastMNN [11], scIN-
SIGHT [29], and Scanorama [13].

Practically, we implemented the clustering procedure in SCANPY [80] and Seurat [12] 
for all methods for a fair comparison, where we performed cluster analysis on the low-
rank embeddings from each method using Louvain clustering [81]. We considered the 
number of cell types provided by the original data as the expected number of clusters. In 
practice, we adjusted the resolution until the expected number of clusters was attained. 
Then, we assessed the clustering performance of the methods with adjusted Rand index 
(ARI), adjusted mutual information (AMI), normalized mutual information (NMI), and 
homogeneity score. In the comparison, we considered the cell types annotated in origi-
nal studies as true labels and ignored the unannotated observations. To clarify, the cell 
types provided in the original studies are annotated by differential analysis with marker 
genes. For visualization, we employed UMAP [82] to obtain two-dimensional embed-
dings and plotted them against annotated cell types.

Here we compared the performance of scParser against that of the eight methods 
on the COVID-19, T2D, and Smoking datasets (Fig. 5A) and the performance of batch 
scParser on cell type annotation on the Immune and GBM datasets (Fig. 5B). Details of 
the five datasets are provided in the “Datasets” section.

In general, across the four different evaluation metrics, scParser achieved the start-of-
the-art clustering performance (Fig. 5). In terms of the T2D dataset, it outperforms all 

Fig. 5 Comparative study of scParser against other eight methods in cell type annotation. A The clustering 
performance of scParser was compared to that of the other eight methods in terms of ARI, AMI, NMI, and 
Homogeneity score with the COVID-19, T2D, and Smoking datasets. The words “COVID-19”, “T2D”, and 
“Smoking” stand for the COVID-19, T2D, and Smoking datasets, respectively. B The clustering performance of 
batch scParser is compared to that of the other eight methods in terms of ARI, AMI, NMI, and Homogeneity 
score on the GBM and Immune datasets. The performance of Combat and scINSIGHT are not shown due to 
the scalability issue
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other methods in the dataset in terms of ARI, NMI, and AMI (Fig. 5A). In the COVID-19 
and Smoking datasets, scParser achieved cluster performances comparable to the state-
of-the-art methods (Fig. 5A). Moreover, batch scParser outperforms all other methods 
in terms of ARI (Fig. 5B). Regarding the other three evaluation metrics, the performance 
of batch scParser is similar to that of other methods (Fig. 5B). In the application of scIN-
SIGHT to the other four datasets except for the COVID-19 dataset, it failed to yield 
results in two days, so we stopped the program for time consideration.

In our visual comparison of scParser with the three methods (LIGER, Seurat, and 
Harmony) recommended for scRNA-seq data integration by [83], we found that four 
methods demonstrate a similar performance on the COVID-19 dataset (Additional 
file 1: Fig. S3A). In the analysis of the T2D dataset, Harmony and scParser outperform 
the other two methods, and scParser seems to perform better in separating A (alpha) 
and B (beta) cells (Additional file 1: Fig. S3B). Specifically, LIGER cannot well distinguish 
PP cells from B cells, and Seurat fails to distinguish PP cells from a subpopulation of A 
cells (Additional file 1: Fig. S3B). Moreover, quantitative measurement of these methods 
in separating A, B, and PP cells with silhouette scores also confirms our observation, 
with the silhouette scores equal to 0.26, 0.22, 0.23, and 0.14 for scParser, LIGER, Seu-
rat, and Harmony, respectively. All methods perform similarly in the Smoking dataset 
(Additional file 1: Fig. S3C), and this is also indicated by Fig. 5A. Batch scParser achieved 
a similar performance in cell type annotation, compared with the other three methods 
(Additional file 1: Fig. S3D and S3E).

We noticed that the clustering performance for different methods varies across differ-
ent datasets when different evaluation metrics are used (Fig. 5). Hence, for each evalu-
ation metric above, we followed the idea from the previous study [84] to calculate the 
averaged ranking for each method across the five datasets as its overall performance 
(Additional file 1: section S3). The idea of the overall ranking follows the recommended 
practice for ranking methods in performance comparison from the study [85]. scParser 
demonstrates the highest average ranking across the five datasets for all four evaluation 
metrics (Additional file  1: section S3), suggesting that scParser has a superior overall 
performance over other methods in cell clustering.

In summary, scParser achieves state-of-the-art performance in cell type annotation 
in each application and demonstrates superior overall performance over other methods 
in cell clustering. The batch-fitting strategy improves the scalability of scParser with-
out impairing its performance in cell-type annotation. Further experiments also show 
scParser demonstrates satisfactory performance in batch effect correction (Additional 
file 1: section S3).

Computational time and memory usage

scParser is a computationally efficient framework for interpretable studies of scRNA-seq 
datasets. The computational time for scParser with the whole data-fitting strategy on the 
COVID-19 data, the T2D dataset, and the Smoking dataset is ~20 min, ~1 h, and ~2.5 h, 
respectively, and the memory consumption of scParser for the applications is less than 5 
G. For the batch scParser with 20 batches, it takes roughly 6 h and 12 G memory to com-
plete the analyses with the GBM and Immune datasets.
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Discussion
The interpretability and broad applicability of scParser in scRNA-seq data analysis have 
been demonstrated through comprehensive applications. Specifically, scParser was 
applied to three scRNA-seq datasets, and batch scParser was employed on two other 
scRNA-seq datasets of over 200,000 cells. The outputs from these applications enable 
various interpretative data analyses. Firstly, scParser enables connecting gene expres-
sion to diabetes status via biologically meaningful gene modules by path analysis and 
revealing changes in the expression of genes across COVID-19 infection outcomes and 
GBM stages. Moreover, enrichment analyses of the most variable genes across biological 
conditions reveal the effect of COVID-19 outcomes and different GBM stages on cells. 
Additionally, the ability of scParser to discern subtle changes in gene expression across 
adjacent time points with the iPSC dataset [86] has been demonstrated (Additional file 1: 
section S5). Secondly, it captures the heterogeneous effects of biological conditions on 
cell populations via biologically meaningful gene modules. Hence, scParser pinpoints 
the biological context in cell subpopulations that contribute to disease pathogenesis via 
the gene modules by path analysis. Moreover, putative phenotype- or disease-critical cell 
populations are identified by comparing the adjusted expression profiles (provided by 
scParser) for cell populations across phenotypes or disease status. Thirdly, donor rep-
resentations from scParser characterize the molecular aspects of donors with GBM. 
Fourthly, scParser is computationally efficient in analyzing scRNA-seq data. Empirical 
studies show that scParser completes analyzing scRNA-seq data with different cell num-
bers and gene numbers in a reasonable time (Additional file 1: section S7). Additionally, 
scParser is robust to the sparsity due to dropout events in scRNA-seq data (Additional 
file  1: section S8). Lastly, scParser has a favorable performance in cell clustering and 
demonstrates a satisfactory performance on batch effect correction.

In brief, scParser has the following virtues: (1) scParser is a general, flexible, and scal-
able framework for scRNA-seq data analysis, in which the heterogeneous variation from 
biological conditions is modeled via biologically meaningful gene modules. In scParser, 
biological conditions can be defined upon study design and research question; (2) two 
fitting strategies offered by scParser make it tailored for analyzing scRNA-seq data of 
various sample sizes; (3) Empowered by gene modules, scParser can boost the signal of 
disease-associated genes; (4) the extended scParser models the heterogeneous effects of 
biological conditions on different cell populations, thus providing us with insights on 
the contributing role in disease pathology; (5) the output from scParser enables various 
interpretative analyses via biologically meaningful gene modules; and (6) scParser dem-
onstrates unique properties, compared to the standard Seurat pipeline and scINSIGHT 
[29] (Additional file 1: section 15).

We noticed that D,P in the vanilla scParser are not identifiable. The issue can be 
alleviated by the following practices. On the one hand, the ridge penalty on D and P 
can relieve it. In practice, the hyperparameter �1 for the ridge penalty for P,D across 
our applications ranges from 10 to 50, suggesting that the elements of P,D are shrunk 
towards 0. Moreover, the Frobenius norm of D is larger than that of P ( N1 > N2 ), so 
the ridge penalty pushes the elements of D closer to 0, compared to D . On the other 
hand, we initialize D to 0 and always update P before the update for D in model fitting. 
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Therefore, intuitively, the update for D is computed on the residuals of XPP . We think 
that this will further alleviate the identifiability of D and P.

The scRNA-seq technology has been widely used to understand gene regulation across 
heterogeneous biological systems at the single-cell level [1, 3–5, 7, 87]. However, most 
existing computational methods for scRNA-seq data analysis focus on data integration 
and do not model the variation from biological conditions. Therefore, their ability to 
understand the heterogeneous effects of biological conditions at the single-cell level is 
limited. scParser offers an efficient and scalable solution to fill the gap in scRNA-seq data 
analysis. With a rapid rise in the scale of scRNA-seq data, scParser further incorporates 
batch-fitting strategy to accommodate scRNA-seq data of arbitrary sample size. Its wide 
applicability in biomedical data analysis has been demonstrated through comprehensive 
applications. With these virtues, scParser will benefit researchers in the biomedical field. 
Further extensions include analysis of other single-cell omics.

Conclusions
This article proposed a computational framework, scParser, for integrative scRNA-seq 
data analysis. scParser captures variation from heterogeneous biological conditions 
with matrix factorization and decomposes the cellular variation with sparse representa-
tion learning simultaneously. The gene modules empowered by scParser connect gene 
expression to disease status via gene modules. The extended scParser models the hetero-
geneous effects of biological conditions on different cell populations, thus pinpointing 
the relevant biological context/processes through which cell subpopulations contribute 
to the disease pathogenesis and identifying the putative cell populations associated with 
biological conditions. The outputs from scParser provide informative inputs for various 
interpretative analyses. Its wide applicability in biomedical data analysis has been dem-
onstrated through comprehensive applications.

Methods
Here we propose a novel statistical approach, scParser, to decompose cellular variations 
in scRNA-Seq samples with considering heterogeneous variations from multiple bio-
logical conditions (e.g., donor, tissue, phenotype) in low-rank latent spaces to facilitate 
downstream analysis. In scParser, we integrate matrix factorization to capture variation 
from biological conditions with sparse representation learning to obtain embeddings 
of cells. In the employment of sparse representation learning, we introduce elastic-net 
regularization to encourage sparsity on the low-rank embeddings of cells to facilitate cell 
clustering and norm constraint to ensure each dimension with equal scale.

The scParser model and its extension

For illustration, let ZN×M denote the matrix of log-normalized scRNA-Seq expression 
levels of N  samples of M genes. The N  samples can originate from several biological 
conditions (e.g., individuals, phenotypes, tissues, disease phases, or different time 
points). Here we use donor and phenotype for demonstration. The samples come from 
N1 donors with N2 phenotypes. Thus, the expression level of gene m for cell i from donor 
j with phenotype t , zim , can be modeled as
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where dj , pt , vm are vectors of length K1 , si, gm are vectors of length K2 . The donor and 
phenotype information of the samples is known. For simplicity, we name the formula-
tion above as vanilla scParser. The rationale behind our modeling is that biological con-
ditions (e.g., donor and phenotype) affect activities of the common transcription factors 
(TFs) or biological processes/signals, which in turn affect the expression of genes. In 
practice, we also observed that increasing model complexity by modeling variation from 
donor and phenotype in two separate latent spaces does not lead to explaining more 
variations. Therefore, we capture variation from donors and phenotypes in a shared 
low-rank latent space. An extra benefit of this practice is that it can reduce model com-
plexity and improve optimization efficiency without impairing model interpretability. 
Intuitively, after modeling the heterogeneous biological variation across biosamples, we 
capture the cellular variation across biosamples in another low-rank latent space. This 
practice allows us to model the cellular variation more independently and also increases 
model flexibility, compared to restricting our modeling in only one latent space. In our 
implementation, we considered the option to restrict vm and gm to be the same. Thus, the 
last term on the right of Eq. 2 helps obtain the low-rank embeddings of cells. In scParser, 
biological conditions can be defined based on the research questions and study design, 
and the number of biological conditions can be further increased.

The objective function for Eq. 2 is formulated as

In the equation, gmk is the k-th element of gm , and c is a constant (usually 1). We 
introduce the elastic net penalty on the cell representation si to encourage sparsity 
to facilitate cell clustering. Moreover, the norm constraint is imposed to ensure the 
same scale of each latent dimension in decomposing cellular variation. Equation 3 can 
be represented with matrix operation as follows:

where XD,XP are indicator matrices of N  rows and N1 and N2 columns, respectively, 
which are the dummy variables for N  samples. DN1×K1 ,PN2×K1 ,VK1×M are matrices 
of latent representations of N1 donors, N2 phenotypes, and M genes, respectively, and 
denote SN×K2 ,GK2×M latent representations for N  cells and M genes after modeling var-
iation from donor and phenotype. c is a constant, restricting the scale of Gk , the k-th row 
of matrix G . Each row of VK×M represents a gene module, encoding certain biological 
processes, where the genes can be up-regulated and down-regulated. For a given gene 
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module, the positive loadings of the genes stand for the up-regulation of corresponding 
genes, and the negative loadings represent the down-regulation of corresponding genes.

The above formulation can be extended to explore the heterogeneous effects of biolog-
ical conditions on different cell populations after cell type annotation with S from Eq. 4. 
To exploit this idea, we model the expression level of gene m in cell population k , which 
comes from sample i obtained from donor j with phenotype t , zim as

where dj ,wkt , vm are vectors of length K  , and wkt is the latent representation for 
cell population k from donors with phenotype t , which captures the interactive effect 
between phenotypes and cell populations while controlling variation from donors. In 
Eq.  5, the biological condition and cell populations can be defined based on research 
questions. The extension above provides a useful tool to explore the heterogeneous 
effects of biological conditions on different cell populations, which can be annotated 
with other methods. Throughout this study, we name the new formulation as extended 
scParser.

The objective function for Eq. 5 with matrix notation is defined as

Here XW  and W (N 2∗Nc)×K1 denote the indicator matrix of N  rows and N2 ∗ Nc col-
umns and latent representations for Nc cell populations under N2 biological conditions, 
respectively. Other notations are the same as in Eq. 4.

Model fitting

Alternating block coordinate descent (BCD) is employed to optimize Eqs. 4 and 6. Prac-
tically, each time we update a set of independent parameters with all other parameters 
fixed. In each iteration of BCD, we update each set of parameters of our model sequen-
tially and repeat the process until the stopping criteria are met. Note that we always 
update P before the update for D in practice.

Optimize with the whole data strategy

With the objective function defined by Eqs. 4 and 6, we can easily derive closed forms for 
updating dj , pt , vm . Specifically, we have the following update for vm

For the objective function defined by Eq. 4, U = XDD + XPP and Z̃ = Z − SG ; for the 
objective function is defined by Eq. 6, U = XDD + XWW  and Z̃ is equal to Z . Under 
both situations, Z̃m is the m-th column of Z̃ . Similarly, the update for dj is
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where Z̃ = Z − SG − XPPV  and Z̃ = Z − XWWV  for the objective function defined by 
Eq. 4 and Eq. 6, respectively, Bj is the set of indices of cells from donor j , and Nj is the 
number of elements in Bj . Likewise, the update for pt is

where Z̃ = Z − SG − XDDV  for the objective function defined by Eq. 4, Bt is the set of 
indices of cells from donors with phenotype t , and Nt is the number of elements in Bt . 
Finally, the update for wkt is

where Z̃ = Z − XDDV  for the objective function defined by Eq. 6, Bkt is the set of indi-
ces of cells of cell type k from donors with phenotype t , and Nkt is the number of ele-
ments in Bkt.

When optimizing Eq.  4 with respect to G , the Lagrange dual proposed in the study 
[88] is employed. The Lagrange dual for our problem is of the following form

Here W = Z̃⊺S , Z̃ = Z − XDDV − XPPV  , Q = S⊺S , and � is a K2 × K2 diagonal 
matrix with dual variables ψ expanding along its diagonal. By taking derivative with 
respect to G , we have

Then, by substituting Eq. 8 into Eq. 7, we have the following dual for our problem
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where �(t−1),H (t−1),∇(t−1) are the diagonal matrix of ψ , gradient, and Hessian matrix 
at iteration t − 1 , respectively. In practice, we alternatively compute the updates for G,� 
until the sum of the squared difference in � between two consecutive iterations is less 
than a predefined threshold ( 10−4 is used in our studies). Further details on the deriva-
tion of Lagrange dual are provided (Additional file 1: section S10).

When optimizing Eq. 4 with respect to si , the i-th row of S , our objective function 
can be simplified to

Here Z̃ = Z − XDDV − XPPV  , and Z̃i is the vector of the i-th row of Z̃ . To solve 
the problem, random coordinate descent (RCD) with strong rules is employed, which 
was proposed in our previous study [89]. Since the subproblems defined for each row 
of S are independent, we update si in parallel in practice.

Theoretically, we proved that the BCD proposed above guarantees to reduce our 
objective defined by Eq. 4 at each iteration and that it converges to the local optimum 
of the objective in a finite number of steps. In our empirical study on its convergence 
speed, scParser has a satisfactory convergence speed in analyzing scRNA-Seq data. 
Details on the proof and empirical study are provided (Additional file 1: section S6).

Optimize with the batch‑fitting strategy

When the sample size of data is huge, optimizing scParser with the whole data is 
memory-demanding and computationally intensive. To relieve this issue, we propose 
a batch-fitting strategy to optimize scParser. Practically, we split the whole data into 
several batches and optimized our object function with one batch each time to lower 
the memory consumption and computation burden.

The key to perform batch optimization in scParser is to propose a surrogate that 
asymptotically converges to the solution to Eq. 4. As inspired by one previous study 
[90], we define the following surrogate for our objective

Here k is the number of batches, Ij denotes the set of indices of cells from batch 
j , and PIj ,DIj , SIj denote the latent representations for phenotypes, donors, and cells, 
respectively, that are obtained for batch j . Technically, the surrogate for Eq. 6 is a sub-
problem of Eq. 10, so we focus on optimizing our objective defined by Eq. 10 and do 
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not diverge to discuss the technical details in optimizing the surrogate for Eq. 6. Algo-
rithm 1 below is proposed to optimize the surrogate defined by Eq. 10.

Algorithm 1 Batch scParser

In Algorithm 1, we noticed that Ak ,Bk ,Ek , Fk carry information for the same batch 
from all previous iterations. Actually, the information from early iterations is out-
dated. Mairal et al. [90] suggested removing the old information from the matrices to 
accelerate convergence. Owning to the design of our algorithm, we use the following 
equations to exploit this idea:

Here D′
k ,P

′
k , S

′
k are the matrices for donor, phenotype, and cell representations, 

respectively, for batch k at iteration t − 1 . With a slight abuse of notation, Z̃′
Ik

 in the 
2nd and 4th lines of the above equation is computed with the equations in lines 6 and 
12 in Algorithm 1, respectively.

In practice, we carried out an additional experiment to show that scParser can 
handle the extreme case in which the data is divided by samples with another batch-
fitting strategy, which has been incorporated into our software scParser (Additional 
file 1: section S4). In the experiment, the performance of batch scParser with random 
shuffling is slightly better compared to that of batch scParser with batch assigned 
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according to the samples. Therefore, it is recommended to employ scParser with ran-
dom batch assignment, as it is slightly more computationally efficient and less mem-
ory demanding than scParser with the by-sample batch assignment.

Initialization, hyperparameter tuning, and the stopping criteria

In scParser, all latent variables ( P,V , S,G ) except D are initiated from the normal distri-
bution N (0, 0.001) , and D is initialized to a zero matrix. For initiating si in Eq. 10 in opti-
mization, we use the solution for si from the previous iteration as a warm start.

For model selection in scParser, grid search is utilized to select hyperparameters 
�1, �2,α,K1,K2 . When the number of observations is huge (e.g., ≥ 500,000), we randomly 
and evenly draw a small proportion (e.g., 0.1) of cells from scRNA-Seq samples as a data-
set for model selection. Then, we randomly draw 10% of elements from the dataset as a 
test set. For each combination of candidate hyperparameters, we run alternating BCD 
several iterations (e.g., 20) and choose the one with the best performance in terms of 
root-mean-square error (RMSE) on the test set.

The robustness of scParser to the hyperparameters �1, �2,α has been demonstrated by 
additional experiments (Additional file 1: section S9). In the experiments, we observed 
that scParser is insensitive to �1 and favors α = 1 . Thus, we set α equal to 1 to simplify 
model selection. Meanwhile, we found that our two hyperparameters K1 and �1 are 
somewhat redundant since one can increase K1 and �1 simultaneously without changing 
model complexity. Therefore, we set K1 = K2.

The detailed procedure for model selection is as follows. First, we set �1, �2 to a small 
number (e.g., 0.01 ) to avoid singularity in matrix inverse, α is fixed to 1 , and choose 
the ranks K1 = K2 from the sequence from 10 to 40 with step size 2 with grid search. 
After choosing the ranks, we define a broad parameter grid for �1, �2 and perform a grid 
search. One may also refine the parameter grid based on the performance of the param-
eter grid on the test set. Finally, we select the parameters �1, �2 with the best perfor-
mance on the test set and run scParser with the selected parameters on the whole data 
matrix until the stopping criteria are met.

In our study, the stopping criteria are defined as

where Li(·) is the loss at iteration i . To reduce computational burden, we calculated it 
every 10 iterations. σ is a predefined threshold and set to 10−7 in our experiments.

Cell clustering and cell type annotation

Practically, we implemented the clustering procedure in SCANPY [80] and Seurat [12] 
for all methods for a fair comparison. For scParser, we computed the neighborhood 
graph of cells using SCANPY [80] with the low-rank embeddings from scParser with 
the parameter n_neighbors set to 20 and default settings for other parameters and per-
formed Louvain clustering [81] directly on the neighborhood graph. In the clustering, 
we considered the number of cell types provided by the original data to be the expected 

|Li(·)− Li−10(·)|

Li−10(·)
< σ ,
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number of clusters. Note that the cell types provided by original studies are annotated by 
marker genes with differential expression analysis.

In searching for a desired number of clusters, we first defined two parameters, min_
resolution (usually set to 0) and max_resolution (usually set to 1), and ran the Louvain 
clustering algorithm with the resolution parameter equal to max_resolution. If the 
number of clusters obtained equals the expected cluster number, we stop searching 
and report the clustering result for further analysis; otherwise, we update the resolu-
tion parameters according to the following strategy and perform Louvain clustering 
again with the updated max_resolution. If the number of clusters we obtain is greater 
than expected, we redefine the max_resolution to be (min_resolution+ max_resolu-
tion)/2; if the number of clusters we obtained is less than expected, we set the value 
of min_resolution to be max_resolution and double the value of max_resolution. We 
recursively adjust the resolution parameter of the Louvain clustering algorithm until 
the expected number of clusters is attained.

The cell types of clusters are annotated with the cell types provided by original 
studies. If there are multiple cell types for one cluster, the cell type of the cluster is 
determined by the major cell types. For cell type annotation visualization, we fur-
ther embedded the graph in two dimensions using UMAP [82] and plotted the two-
dimensional embeddings against cell types annotated by original studies.
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