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Abstract 

In biomedical research, validating a scientific discovery hinges on the reproducibility 
of its experimental results. However, in genomics, the definition and implementation 
of reproducibility remain imprecise. We argue that genomic reproducibility, defined 
as the ability of bioinformatics tools to maintain consistent results across technical 
replicates, is essential for advancing scientific knowledge and medical applications. 
Initially, we examine different interpretations of reproducibility in genomics to clarify 
terms. Subsequently, we discuss the impact of bioinformatics tools on genomic repro-
ducibility and explore methods for evaluating these tools regarding their effectiveness 
in ensuring genomic reproducibility. Finally, we recommend best practices to improve 
genomic reproducibility.

Keywords: Reproducibility, genomics, bioinformatics tools, technical replicates, 
synthetic replicates

Background
Reproducibility is a cornerstone principle across various scientific disciplines, each 
adapting the concept to suit its specific nuances [1–4]. The topic of reproducibility has 
garnered significant attention as experts across fields highlight the need to establish 
standards for validating scientific findings. Definitions of reproducibility and related 
concepts, such as replicability and robustness often vary by discipline. In computational 
research, these concepts are often defined based on whether the code and data utilized 
are identical. For instance, Whitaker’s matrix [5] organized the concepts of reproduc-
ibility into a framework, where the interplay between code and data determines whether 
the findings are reproducible, replicable, robust, or generalizable. The matrix categorizes 
outcomes based on the consistency of the code and data used in research. On the other 
hand, Essawy et al. [2] present a hierarchical pyramid model of the reproducibility tax-
onomy for complex computational studies, outlining the progression from repeatability, 
runnability, reproducibility to replicability, each requiring increasing levels of effort and 
time (Additional file 1: Table S1).

†Serghei Mangul and Niko 
Beerenwinkel contributed 
equally to this work.

*Correspondence:   
serghei.mangul@gmail.com; 
niko.beerenwinkel@bsse.ethz.ch

1 Department of Biosystems 
Science and Engineering, ETH 
Zurich, 4058 Basel, Switzerland
9 Titus Family Department 
of Clinical Pharmacy, USC Alfred 
E. Mann School of Pharmacy 
and Pharmaceutical Sciences, 
University of Southern California, 
1540 Alcazar Street, Los Angeles, 
CA 90033, USA
Full list of author information is 
available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-024-03343-2&domain=pdf
http://orcid.org/0000-0002-9542-5292
http://orcid.org/0000-0002-4994-0234
http://orcid.org/0000-0002-2784-5308
http://orcid.org/0000-0001-8910-9851
http://orcid.org/0000-0003-3163-3161
http://orcid.org/0000-0003-4770-3443
http://orcid.org/0000-0002-0573-6119


Page 2 of 15Baykal et al. Genome Biology          (2024) 25:213 

In genomics, reproducibility hinges on both experimental procedures and computa-
tional methods, facilitating recent strides toward precision medicine [6]. The analysis of 
genomic data fuels tailored treatments and improved patient outcomes. Yet, ensuring 
the credibility and progress of genomic medicine demands reproducible results across 
laboratories.

The multifaceted nature of reproducibility in genomics research is reflected in its 
dependence on both experimental procedures and computational methods. This com-
plexity is underscored by the diverse steps involved in data production and analysis, 
spanning experimental procedures such as sample preparation and sequencing, as well 
as computational tasks like read alignment, variant calling, and gene expression analysis. 
Furthermore, the experimental variability occurring during the production of genomic 
data poses a considerable challenge for bioinformatics tools, as they are supposed to 
generate consistent genomic results under such variation.

This aspect is commonly referred to as methods reproducibility in experimental stud-
ies [4]. Methods reproducibility, as defined by Goodman et al. [4], pertains to the ability 
of precisely executing, to the highest degree possible, the experimental and computa-
tional procedures, using the same data and tools, in order to yield identical results [4]. 
In the context of genomics, methods reproducibility refers to obtaining the same results 
across multiple runs of the bioinformatics tools using the same parameters and genomic 
data (Fig.  1). Ideally, bioinformatics tools should also provide consistent results when 
analyzing genomic data obtained from different sequencing runs, including in different 
laboratories, but using the same protocols. A single, universally recognized term that 
describes the impact of bioinformatics tools on genomic results across such technical 
replicates is currently lacking. Pan et al. discuss reproducibility in the context of specific 

Fig. 1 Schematic representation of three key concepts: technical replicates, methods reproducibility, and 
genomic reproducibility. The same sample is processed (library preparation) and sequenced multiple times, 
possibly in different laboratories, but using the same experimental protocols and sequencing platform. 
The output of these sequencing runs are technical replicates represented as FASTQ files. Data analysis is 
performed for each technical replicate multiple times to assess consistency of genomic results, which 
refers to methods reproducibility. Genomic reproducibility, on the other hand, evaluates the consistency of 
genomic results across technical replicates
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bioinformatics tasks. For instance, the reproducibility impact of read alignment tools 
is referred to as “aligner reproducibility,” while the reproducibility of structural vari-
ant callers is termed “caller reproducibility” [7]. The authors assess the consistency of 
these bioinformatics tasks across multiple tools and datasets. The closest definitions for 
this assessment were introduced by Goodman et al. [4] as results reproducibility and by 
Gundersen [8] as outcome reproducibility. Results reproducibility is the ability to obtain 
the same results when independent studies on different datasets are conducted with pro-
cedures closely resembling the original study [8]. However, the concept of results repro-
ducibility was defined to target the reproduction of an experiment including a handful of 
statistical tests, rather than the analysis of high-dimensional and heterogeneous multi-
omics data produced regularly by large collaborative genomics initiatives today. There-
fore, we propose the term genomic reproducibility which measures ability to obtain 
consistent outcomes from bioinformatics tools using genomic data obtained from dif-
ferent library preparations and sequencing runs, but for fixed experimental protocols 
(Fig. 1).

We explore various interpretations of reproducibility before focusing on its specific 
application within genomics, with the goal of refining key terminology in this con-
text. Our focus extends to the pivotal role of bioinformatics tools and their impact on 
genomic reproducibility, followed by an evaluation of methodologies for assessing these 
tools. Additionally, we examine relevant studies and technical replicate datasets as valu-
able resources for assessing genomic reproducibility. In conclusion, we propose action-
able best practices to enhance genomic reproducibility.

Reproducibility in genomics
Genomic reproducibility faces challenges at two pivotal junctures. The initial stage 
involves pre-sequencing and sequencing, where technical variability might emerge. Sub-
sequently, during computational analysis and interpretation of genomic data, stochastic 
algorithms can introduce uncertainties, further impacting reproducibility. In the con-
text of DNA sequencing, technical variability can arise from the use of diverse sequenc-
ing platforms [9] and from differences between individual flow cells [7, 10, 11]. Even if 
the sequencing protocol is kept identical across multiple runs, experimental variation is 
still expected as a result of the random sampling variance of the sequencing process and 
variations in library preparation [12–14]. In light of this, the objective of bioinformat-
ics tools should be to accommodate and tolerate such experimental variation, aiming 
to generate consistent results across different sequencing runs and library preparations, 
which means achieving genomic reproducibility.

In genomics, replicates are classified into two types, biological replicates and techni-
cal replicates [15]. Biological replicates utilize multiple biological samples sharing identi-
cal conditions to quantify the inherent biological variation among them. On the other 
hand, technical replicates are obtained from the same biological sample sequenced mul-
tiple times, using the same experimental and computational procedures. They are used 
to assess and account for variability arising from the experimental process itself, such 
as inconsistencies in sample handling, instrument performance, or measurement tech-
niques. Below, we focus on the best practices of using and simulating technical replicates 
to assess genomic reproducibility. Importantly, when assessing genomic reproducibility, 
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we do not rely on gold standards, as the focus is not on the performance of the tools but 
on their capacity to maintain consistent results across technical replicates.

In practice, controlling conditions of sequencing experiments is challenging and high 
levels of experimental variations may compromise the ability of bioinformatics tools to 
maintain consistent results across technical replicates. In order to evaluate the perfor-
mance of bioinformatics tools in terms of genomic reproducibility, one can consider 
technical replicates that specifically capture the variations among sequencing runs and 
library preparation techniques. This approach intentionally disregards other potential 
factors that could confound the results, such as sequencing protocols and platforms, 
allowing technical replicates acquired under the same sequencing protocols to be uti-
lized to evaluate bioinformatics tools’ impact. However, generating technical replicates 
can escalate both the financial burden and logistical complexity of genomic experiments. 
In certain cases, obtaining them may be impractical or ethically prohibitive, particularly 
in clinical settings.

Bioinformatics tools can remove but also introduce unwanted variation
Bioinformatics tools play a crucial role in analyzing and eliminating undesired variation 
in genomic data. Variations in genomic data can arise due to multiple sources, such as 
experimental noise, sequencing errors, or biological artifacts. For example, homopoly-
mer compression is employed to mitigate errors in regions with repeating nucleotide 
sequences by simplifying these sequences to enhance alignment accuracy [16]. Fur-
thermore, normalization processes are used to remove batch effects or technical biases, 
ensuring that systematic errors do not confound the results [17]. Despite their critical 
roles, these tools are imperfect and can introduce various kinds of variation, both deter-
ministic and stochastic [18].

Deterministic variations include algorithmic biases, leading alignment algorithms 
to favor certain sequences over others. For example, BWA [19] and Stampy [20] dem-
onstrate a reference bias in favoring sequences containing reference alleles of a known 
heterozygous indel [20]. Additionally, data processing decisions such as setting a low 
threshold for quality filtering can include low-quality reads prone to sequencing errors, 
thus introducing further unwanted variation [21].

Stochastic variations in bioinformatics tools, on the other hand, stem from the intrin-
sic randomness of certain computational processes, such as Markov Chain Monte Carlo 
and genetic algorithms. Consequently, these variations may produce divergent outcomes 
even when identical datasets are analyzed under identical conditions.

Genomic reproducibility of read alignment tools and variant callers
While bioinformatics tools aim to increase the accuracy of genomic data analysis and 
reduce sequencing errors, they can also introduce additional variation due to their 
built-in biases. For example, one of the challenges of read alignment tools is capturing 
and reporting reads mapped to repetitive regions of the reference genome, known as 
multi-mapped reads [22]. There exist different strategies to deal with the uncertainty of 
multi-mapped reads: some tools ignore these reads entirely (e.g., SNAP [23]), and oth-
ers employ a deterministic approach to identify the best possible position among all the 
matching positions (e.g., RazerS [24] and mrFAST [25]), and finally, BWA-MEM [19] 
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reports these multi-mapped reads with a mapping quality of zero. In the case of multi-
mapping, allowing users to set a seed for a pseudo-random generator can restore the 
reproducibility of stochastic alignment strategies.

According to one study, random shuffling of reads affects Bowtie2 [26] and BWA-
MEM [19] differently [27]. Bowtie2 is able to produce consistent alignment results 
irrespective of the order of the reads, while BWA-MEM [19] can show variability in 
results when the sequence of reads is altered. Specifically, BWA-MEM displayed vari-
ability under specific test conditions where reads were segmented and processed inde-
pendently. This deviation from BWA-MEM’s typical integrated parallel processing can 
alter the calculated size distribution of the read inserts, as the analysis relies on smaller 
groups of shuffled data. This approach, although not commonly used, highlights the 
potential for irreproducible mapping results with BWA-MEM with respect to read 
order. Such variations could also influence the consistency of structural variant detec-
tion. Alkan et al. also found that structural variant calling tools produced 3.5 to 25.0% 
of different variant call sets with randomly shuffled data compared to the original data 
[27]. Furthermore, another study highlights that detecting structural variants varies sig-
nificantly across different SV (structural variant) callers and even among the same call-
ers when different read alignment tools are used [7]. It was previously shown that these 
variations were mainly attributed to duplications in repeat regions [27]. These studies 
demonstrate the potential impact of bioinformatics algorithms on the reproducibility of 
genomic results and emphasize the significance of assessing it with replicates.

Opportunities to assess the impact of bioinformatics tools on genomic 
reproducibility
Ongoing efforts in genomics include ensuring whole-genome sequencing (WGS) repro-
ducibility, with notable initiatives including the Genome in a Bottle (GIAB) consortium, 
hosted by the National Institute of Standards and Technology (NIST), and the HapMap 
project. The complementing efforts were performed within consecutive phases of the 
US FDA-led MicroArray/Sequencing Quality Control Project (MAQC/SEQC), which 
is helping improve microarray and next-generation sequencing technologies and foster 
their proper applications in discovery, development, and review of FDA-regulated prod-
ucts. In the MAQC-IV/SEQC phase, the aim was to assess the technical performance 
of next-generation sequencing platforms by generating benchmark datasets with refer-
ence samples and evaluating the advantages and limitations of various bioinformatics 
strategies in RNA and DNA analyses. The impact of various bioinformatics approaches 
on the downstream biological interpretations of RNA-seq results was comprehensively 
examined and the utility of RNA-seq in clinical application and safety evaluation was 
assessed. In SEQC2, which is the next phase of SEQC, the focus has been placed on tar-
geted DNA- and RNA-seq to develop standard analysis protocols and quality control 
metrics for fit-for-purpose use of NGS data to enhance regulatory science research and 
precision medicine. On the other hand, consortiums such as the GIAB, and the Hap-
Map projects provide reference materials that are used to evaluate genomic reproduc-
ibility in various studies. In Table  1, DNA and RNA-seq technical replicate datasets 
from major consortiums and studies are compiled, which can be used to assess genomic 
reproducibility.
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Technical replicates of the Ashkenazi Trio dataset were generated to assess the perfor-
mance of DNA sequencing platforms [9]. This involved generating triplicates of inter-
laboratory and intra-laboratory paired-end and single-end DNA-seq samples using 
five Illumina and three ThermoFisher Ion Torrent platforms. This dataset can serve 
as a valuable resource for assessing genomic reproducibility by examining the perfor-
mance of DNA-seq alignment tools and structural variant callers using both paired-end 
and single-end triplicate samples. The Chinese Quartet dataset, the HapMap Trio, and 
a pilot genome NA12878 are datasets with technical replicates that have been gener-
ated for structural variant detection studies [7, 31]. Pan et al. used technical replicates 
from the Chinese Quartet to assess reproducibility across three different labs using dif-
ferent alignment and structural variant callers [7, 31]. These technical replicates were 
sequenced from three different labs as triplicates representing different runs of sequenc-
ing. The same dataset was used to evaluate how sequencing centers, replicates, align-
ment tools, and platforms affect SV calling in NGS [31]. Additionally, The HapMap 
Trio and the NA12878 datasets were employed in a separate SV calling study to exam-
ine reproducibility across various factors, including sequencing platforms, labs, library 
preparations, alignment tools, and SV calling tools [7]. Technical replicates consist of 
triplicates of short-reads which can again be used to assess genomic reproducibility and 
the findings can be compared to the findings available in SV calling studies [7, 31]. Lastly, 
we mention an RNA-seq dataset provided by the SEQC consortium [32], which has been 
employed to assess the reproducibility of RNA-seq experiments [17, 33] and also the 
impact of RNA-seq data analysis tools on gene expression analysis [18]. Four samples 
were sequenced in 4 technical replicates each. The whole experiment was replicated in 
6 different sites worldwide and another 5th replicate was created by a vendor and sent 
to labs for sequencing. All RNA-seq technical replicates used in these studies are made 
publicly available, serving as a valuable resource for assessing genomic reproducibility.

Synthetic replicates
In certain conditions, such as when the number of technical replicates is limited for a 
specific type of genomic data or when reproducibility assessment requires a more con-
trolled environment, synthetic replicates may be employed instead of technical repli-
cates. This approach allows for a more controlled examination of the impact of specific 
alterations in the data. Synthetic replicates are generated in silico to mimic the variations 
of sequencing output expected from technical replicates. In practice, it is impossible to 
computationally reproduce all variations among technical replicates, but different tech-
niques exist to generate synthetic replicates that reflect some of the variations.

One approach to create synthetic replicates is randomly shuffling the order of the 
reads reported from a sequencer (Fig. 2a), which reflects the randomness of events in 
a sequencing experiment, such as DNA hybridization on the flow cell [27]. Another 
technique is to take the reverse complement of each read (Fig.  2b) to assess strand 
bias [34] when the reference genome is double-stranded. The bias arises due to a pro-
nounced overabundance in one direction of NGS sequencing reads either forward or 
reverse, compared to the opposite direction [35]. This problem may lead to unwanted 
variation, which can impact genomic reproducibility. Yet another technique is boot-
strapping (Fig. 2c) reflecting random sampling variance, which is a widely used type of 
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synthetic replicate employed in many genomics, transcriptomics [36], and metagen-
omics [37] studies. Subsampling (Fig. 2d) is another type of synthetic replicate, which 
involves randomly selecting a subset of reads from the original dataset. This method 
simulates different levels of sequencing depth and coverage from the stochastic nature 
of sequencing.

Both technical replicates and synthetic replicates have their own advantages and 
limitations. Technical replicates contribute to a more realistic and reliable assess-
ment by accounting for inherent variability in experimental procedures, such as dif-
ferent sequencing runs, and enabling rigorous statistical analysis. On the other hand, 
synthetic replicates offer a controlled evaluation of tools since the modifications 
applied to the data are known, allowing for a precise assessment against a ground 
truth. Hence, utilizing both types of replicates can be useful in assessing genomic 
reproducibility.

Fig. 2 Schematic representation of generating synthetic replicates. Based on a given dataset consisting of 
five reads R1, …, R5 (left) four different types of synthetic replicates (right) are created by either randomly 
shuffling the order of the five reads (a), or by taking the reverse complement of each read (b), or by 
bootstrapping, i.e., resampling of the five reads with replacement (c), or by subsampling, i.e., selecting a 
subset consisting of three reads from the original five reads (d)
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Challenges in encoding and comparing structural variants
A fundamental hurdle in achieving reproducibility with structural variant callers lies 
in the inherent ambiguity of encoding genomic variants, stemming from biological 
complexities rather than technical limitations. While indels (insertions and deletions) 
can be left-aligned or normalized to a standard representation to facilitate compara-
bility, complex alterations such as large deletions, insertions, duplications, inversions, 
and translocations present unique characteristics that complicate their consistent 
encoding and comparison across different replicates and bioinformatics tools. For 
instance, what one tool interprets as a single large deletion might be seen as multiple 
smaller deletions by another, due to differences in read alignments. Translocations 
further exemplify these difficulties, especially when they involve subtle additional 
changes, such as small insertions at the junction points, which might be detected 
by some tools but overlooked by others. These complexities significantly challenge 
assessing the genomic reproducibility of structural variant callers.

Moreover, the detection and characterization of SVs are intricately linked to the 
performance of read alignment processes. Inaccuracies or variability in aligning 
sequencing reads to the reference genome can have profound downstream effects on 
the identification and interpretation of SVs.

Best practices to improve genomic reproducibility
We have compiled a set of recommended standards and guidelines aimed at pro-
moting genomic reproducibility (Table  2). These recommendations are based on 
the expectation that bioinformatics tools already adhere to existing dependency and 
workflow management standards, enabling their identical execution in different set-
tings [38]. Dependency management systems like conda, along with shared comput-
ing environments and containers such as Docker and Apptainer (formerly Singularity) 
[39–41] play a crucial role in ensuring consistent software environments.

We suggest the following best practices for the development and application of 
bioinformatics tools to ensure genomic reproducibility. First, tools should be docu-
mented sufficiently, including detailed explanations of all parameters, their default 
settings, usage examples, and guidelines. This documentation assists users in select-
ing appropriate parameter values, which is essential for reproducibility. Furthermore, 
tool developers should clarify the relationship between parameter selection and 
reproducibility in the documentation to facilitate accurate and consistent results.

The second essential requirement involves incorporating functionality that allows 
users to specify random seeds. By implementing this feature, developers provide 
users control over the random results generated by non-deterministic algorithms. 
This control is vital for ensuring that the same set of input data consistently produces 
the same output, enabling methods to assess reproducibility. This consistency is the 
cornerstone for enabling reliable methods to assess genomic reproducibility system-
atically. By setting seeds, researchers can replicate runs of bioinformatics tools under 
the same conditions, thereby validating the reliability of the results and facilitating a 
transparent evaluation of genomic reproducibility.
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Another recommendation pertains to the performance assessment of the bioinfor-
matics tool. It is essential to conduct controlled experiments using synthetic repli-
cates, technical replicates, or a combination of both. The result obtained from these 
experiments, along with any observed discrepancies or variations, should be thor-
oughly reported. This comprehensive reporting enables researchers to evaluate the 
performance and reliability of the tool accurately.

Bioinformatics tool developers can enhance reproducibility by providing result visu-
alization from replicates. However, effectively handling visualization and communicat-
ing results poses challenges due to the extensive scale and complexity of the genomic 
data involved. These challenges can be overcome by employing suitable visualization 
techniques and dimensionality reduction methods. Through careful analysis of patterns 
of discrepancies from the visualizations, researchers can gain valuable insights into the 
reliability and consistency of the results produced by the tool.

Given the vast array of bioinformatics tools and methods available, comprehensible 
benchmarking becomes increasingly important [40, 42]. Benchmarking can not only be 
used to assess performance against a ground truth, but also to assess reproducibility even 
in the absence of a ground truth. Reproducibility benchmarking studies are designed to 
evaluate the consistency of tools when used across synthetic and technical replicates. 
This dual approach thoroughly illuminates the reliability of tools by rigorously evalu-
ating their performance across diverse scenarios—including variations in parameter 

Table 2 Recommended genomic reproducibility standards. The “Standard” column lists the names 
of the standards aimed at ensuring genomic reproducibility. The “Guideline” column describes 
the methodologies for attaining the respective standard. The columns “Essential” and “Desirable” 
columns categorize the levels of significance attached to each individual standard

Standard Guideline Essential Optional

Documentation - Document all the parameters of the tool, including 
their names, descriptions, acceptable values, and default 
settings
- Provide detailed explanations of each parameter and its 
impact on the analysis or processing
- Include usage examples and guidelines to help users 
choose appropriate parameter values
- Highlight the relationship between parameter selection 
and reproducibility

x

Random seeds - Implement functionality to define random seeds for any 
random process involved
- Document how specified random seeds impact results
- Provide examples for selecting appropriate random 
seeds to ensure genomic reproducibility assessment

x

Assessment of reproducibility - Conduct a controlled experiment using synthetic repli-
cates or technical replicates or ideally both
- Report results obtained from the replicates, including 
any observed discrepancies or variations
- Improve algorithms if needed to ensure genomic 
reproducibility

x

Visualization of reproducibil-
ity performance

- Generate visual representations, such as plots and heat-
maps, to examine results obtained from replicates
- Clearly describe the purpose and interpretation of each 
visualization

x

Benchmarking - Design reproducible benchmark studies to assess 
genomic reproducibility

x
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settings and random outputs generated by different seed values. Such detailed evalua-
tions are pivotal for pinpointing and mitigating the inherent uncertainties in parameter 
selection and the inherent randomness of algorithms, thereby ensuring that tools can 
reliably reproduce results under similar conditions.

While establishing the reliability of tools through rigorous benchmarking is vital, it’s 
equally essential to acknowledge the potential limitations that may arise, particularly 
regarding the selection of cell lines for experimentation. One significant challenge is 
the potential presence of somatic mutations within these cell lines, which can introduce 
biases in evaluating tool performance. These mutations, occurring during the lifetime of 
the cell, can inadvertently influence experimental outcomes, leading to skewed results.

To mitigate these challenges and ensure the benchmarking studies themselves are 
reproducible, it is imperative that they adhere to clear guidelines. These guidelines 
should cover the documentation of methodologies, parameters, and experimental con-
ditions in detail, facilitating the replication of studies by other researchers [40, 42]. 
Incorporating workflow management systems can further bolster the reproducibility of 
benchmarking studies by automating and documenting the analytical processes, thereby 
enhancing the consistency and transparency of genomic research.

In addition to structured benchmarking, community-driven and continuous bench-
marking efforts can play important roles in advancing bioinformatics tools. For example, 
continuous benchmarking, as supported by Omnibenchmark [43], enables researchers 
to monitor tool efficacy amidst evolving datasets and computational landscapes, adapt-
ing to emerging challenges and driving progress in genomic research. This ongoing 
process reinforces the foundation of genomic reproducibility, promoting transparency, 
accountability, and adaptability within the scientific community. Embracing this struc-
tured and iterative approach to benchmarking enhances the reliability of bioinformatics 
tools and fortifies the foundation of genomic reproducibility.

Conclusion
Reproducibility is critical in all fields of science, engineering, and medicine to ensure 
the reliability and integrity of findings and the safeness of their applications. However, 
there are various challenges and limitations to achieving reproducibility in practice. The 
field of genomics faces several hurdles to reproducibility due to rapid advancements in 
sequencing technologies and data generation. Each new technology introduces unique 
biases and sources of variation, which need to be carefully considered and addressed 
during data analysis. Additionally, genomic studies often involve complex bioinformatics 
pipelines, which are susceptible to errors and require rigorous validation.

Bioinformatics tools have made significant contributions to mitigating some of these 
challenges and enhancing genomic reproducibility. These tools facilitate the stand-
ardization and automation of data processing, analysis and visualizations, minimizing 
human error, and increasing the reliability of results. However, bioinformatics tools are 
not without limitations and can even introduce unwanted variations that compromise 
genomic reproducibility. The use of technical and synthetic replicates presents valuable 
approaches for evaluating essential aspects of bioinformatics algorithms and their influ-
ence on genomic reproducibility.
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The use of technical replicates offers advantages, as it captures the diversity across 
different sequencing runs. In order to correctly assess bioinformatics tools in terms 
of genomic reproducibility, it is important to acknowledge that despite efforts to con-
trol experimental conditions, variations can arise due to factors such as human errors 
in sample preparations or unknown batch effects. These confounding factors and other 
experimental parameters such as variations in sequencing platforms can influence 
genomic results. We recommend the use of technical replicates to capture variations 
arising from different runs of sequencing and different library preparations.

Additionally, it is vital to understand the extent to which non-deterministic algorithms influ-
ence genomic results and to tailor the assessment of genomic reproducibility accordingly. It is 
important to note that while setting seeds ensures consistent results under the same conditions 
and facilitates reproducibility, it may also mask underlying variability across different seeds. 
This type of variability, if substantial, raises critical questions about genomic reproducibility.

Synthetic replicates are a fast and cost-efficient way of generating replicates in genomics. 
They cannot fully represent real data variation as they capture only some of the differences 
produced between different sequencing runs. However, they provide a useful and easily  
accessible way of assessing necessary features of bioinformatics algorithms and the way 
they impact on genomic reproducibility. When evaluating genomic reproducibility through 
synthetic replicates, employing shuffling and reverse complementing facilitates meaningful 
comparisons in read alignment. This approach enables a direct assessment of read align-
ments present across synthetic replicates, enhancing the effectiveness of the analysis, as 
the set of reads is consistent across replicates. In contrast, subsampling and bootstrapping  
challenge such direct comparisons; subsampling involves selecting a portion of the original 
reads, and bootstrapping changes the read composition by resampling with replacement. 
Despite this, subsampling offers valuable insights by allowing the evaluation of bioinformatics  
tools across different subsets of reads, serving as an indirect measure of reproducibility. Boot-
strapping provides a way to simulate various sampling scenarios, creating numerous pseudo-
replicates. This method enables the exploration of the inherent variability and stability  
in read alignment and variant detection processes under different sampling conditions. By 
repeatedly analyzing these varied samples, researchers can better understand how changes in 
read frequency and composition affect the reproducibility and accuracy of genomic analyses.

While we recommend testing tools across synthetic and technical replicates, significant 
concerns arise from the inherent uncertainty when using different bioinformatics tools or 
adjusting their settings, which leads to substantial variability in results [44]. This variability, 
and how method choice contributes to it, can be exploited to achieve desired outcomes, which 
can harm reproducibility [45] selectively. These considerations extend beyond the scope of our 
study but remain highly relevant and important in the broader context of genomic analysis.

Precision medicine heavily relies on accurate and reliable genomic information. How-
ever, the reliability of genomic results can only be ensured if they are reproducible by 
bioinformatics tools. As such, it is essential to consider reproducibility as a key evalu-
ation criterion when assessing the quality of these tools. We recommend that both 
developers and users of bioinformatics tools follow the guidelines in Table 2 to ensure 
genomic reproducibility. By implementing these guidelines, we can improve the reliability 
of analyzing genomic data, and facilitate the successful translation of precision medicine 
to clinical practice.
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