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Abstract 

Background:  A number of deep learning models have been developed to pre-
dict epigenetic features such as chromatin accessibility from DNA sequence. Model 
evaluations commonly report performance genome-wide; however, cis regulatory 
elements (CREs), which play critical roles in gene regulation, make up only a small 
fraction of the genome. Furthermore, cell type-specific CREs contain a large proportion 
of complex disease heritability.

Results:  We evaluate genomic deep learning models in chromatin accessibility 
regions with varying degrees of cell type specificity. We assess two modeling direc-
tions in the field: general purpose models trained across thousands of outputs (cell 
types and epigenetic marks) and models tailored to specific tissues and tasks. We 
find that the accuracy of genomic deep learning models, including two state-of-
the-art general purpose models―Enformer and Sei―varies across the genome 
and is reduced in cell type-specific accessible regions. Using accessibility models 
trained on cell types from specific tissues, we find that increasing model capacity 
to learn cell type-specific regulatory syntax―through single-task learning or high 
capacity multi-task models―can improve performance in cell type-specific accessible 
regions. We also observe that improving reference sequence predictions does not con-
sistently improve variant effect predictions, indicating that novel strategies are needed 
to improve performance on variants.

Conclusions:  Our results provide a new perspective on the performance of genomic 
deep learning models, showing that performance varies across the genome and is par-
ticularly reduced in cell type-specific accessible regions. We also identify strategies 
to maximize performance in cell type-specific accessible regions.

Keywords:  Deep learning, Chromatin accessibility, Variant effect prediction

*Correspondence:   
pooja.kathail@berkeley.
edu; gabriel.loeb@ucsf.edu; 
nilah@berkeley.edu

1 Center for Computational 
Biology, University of California, 
Berkeley, Berkeley, CA, USA
2 Department of Electrical 
Engineering and Computer 
Sciences, University of California, 
Berkeley, Berkeley, CA, USA
3 Division of Rheumatology, 
Department of Medicine, 
University of California, San 
Francisco, CA, USA
4 Institute for Human Genetics, 
University of California, San 
Francisco, CA, USA
5 Department of Epidemiology 
and Biostatistics, University 
of California, San Francisco, CA, 
USA
6 Bakar Computational Health 
Sciences Institute, University 
of California, San Francisco, CA, 
USA
7 Parker Institute for Cancer 
Immunotherapy, San Francisco, 
CA, USA
8 Chan Zuckerberg Biohub, San 
Francisco, CA, USA
9 Division of Nephrology, 
Department of Medicine, 
University of California, San 
Francisco, CA, USA
10 Cardiovascular Research 
Institute, University of California, 
San Francisco, CA, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-024-03335-2&domain=pdf
http://orcid.org/0000-0001-9628-8229


Page 2 of 22Kathail et al. Genome Biology          (2024) 25:202 

Background
Gene expression is regulated by nearby cis regulatory elements (CREs) such as promot-
ers and enhancers. These CREs can be identified through functional epigenetic features 
such as chromatin accessibility, transcription factor (TF) binding, and histone marks. 
In the past several years, a number of deep learning models have aimed to predict and 
interpret these epigenetic features directly from DNA sequence [1–9]. A key application 
of these models is to probe the functional consequences of genetic variation within reg-
ulatory regions, particularly disease associated genetic variation. Current models have 
shown some promise in identifying causal variants within GWAS loci and annotating 
the mechanisms by which these variants act to modulate disease risk [1–4, 8]. Due to the 
wide variety of architectures and training procedures used by these models, a growing 
body of work seeks to perform systematic evaluations of the performance and limita-
tions of genomic deep learning models for various tasks [10–15].

Genomic deep learning models are typically trained to maximize predictive perfor-
mance on genome-wide assays. These genome-wide performance metrics place equal 
weight on all genomic regions and may not be representative of performance within 
functional regulatory regions. CREs and, in particular, cell type-specific CREs play criti-
cal roles in gene expression regulation and are known to harbor a large fraction of the 
heritability of complex diseases [16]. For this reason, we seek to further understand the 
advantages and limitations of current models with regard to their performance in regu-
latory regions with functional and disease relevance.

Here, we benchmark the performance of current genomic deep learning models in 
accessible regions with varying degrees of cell type specificity (Fig. 1A). We focus our 
analysis on predictions of chromatin accessibility, since accessibility characterizes 
potentially active CREs, and large chromatin accessibility datasets are publicly avail-
able for a diverse array of cell types, including at single-cell resolution, making it pos-
sible to robustly assess predictive accuracy in cell type-specific accessible regions. We 
first study two recent state-of-the-art models: Enformer and Sei [7, 8] (Fig. 1B, C). Both 
Enformer and Sei are trained using multi-task learning over a large number of cell types 
and epigenetic marks, a common paradigm in the field. This approach was introduced 
by DeepSEA [1], which utilized 919 functional genomics tracks, and has been extended 
by Enformer and Sei to 5313 and 21,907 tracks, respectively. Enformer predicts tran-
scriptional activity, histone marks, TF binding, and chromatin accessibility and incor-
porates long-range sequence context up to 100 kb away. Sei predicts histone marks, TF 
binding, and chromatin accessibility across more than 1300 cell lines and tissues; to our 
knowledge, it is the genomic deep learning model trained on the largest set of chromatin 
accessibility profiles (2372 profiles in total).

Although many genomic deep learning models are multi-tasked, no existing evalua-
tions explore the impact of multi-tasking on predictions in cell type-specific regions. In 
the absence of shared underlying features between tasks, it is possible for multi-tasking 
to decrease overall performance, a phenomenon known as negative transfer [17, 18]. 
Relatedly, even if cell types share regulatory grammar that may benefit from multi-task 
training, model capacity may be insufficient to learn the sequence features specific to 
each cell type as the number of cell types increases. Using custom models trained and 
evaluated on cell type-specific ATAC-seq data from primary kidney and immune cells, 
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we evaluate the effect of negative transfer and model capacity on predictive accuracy 
in cell type-specific accessible regions by evaluating the performance of single-task and 
increased capacity multi-task models.

Another limitation of typical modeling assessments is that predictive performance 
is quantified by comparing experimental measurements to predictions made using the 
reference genome sequence. This type of evaluation―which we refer to as “reference 
accuracy”―does not directly measure a model’s ability to predict the effects of genetic 
variants. Using GWAS, eQTL, and allelic imbalance data, we evaluate variant effect pre-
dictions in accessible regions with varying degrees of cell type specificity.

Our evaluations provide insight into the performance of current state-of-the-art 
genomic deep learning models in accessible regions, and suggest strategies to maximize 
performance in cell type-specific accessible regions.

Results
Evaluating state‑of‑the‑art models in cell type‑specific accessible regions

Cell type-specific accessible regions harbor much of the common genetic varia-
tion explaining heritability of human complex traits and diseases [16]. Therefore, 
we sought to characterize the ability of two state-of-the-art genomic deep learning 

Fig. 1  Overview of data processing and model evaluation. A Schematic overview of the data preprocessing 
and evaluation pipeline used in this study. Cell type-specific and ubiquitous peak sequences were annotated, 
and models were evaluated independently in these genomic regions. Models were evaluated on both 
“reference accuracy” (the models’ ability to predict experimentally measured accessibility from the reference 
genome) and “variant effect accuracy” (the models’ ability to predict allele-specific differences in accessibility). 
B Four previously published datasets are used in subsequent analyses. The experimental assays and 
number of chromatin accessibility profiles are shown. Only chromatin accessibility profiles from ATAC-seq or 
DNase-seq are analyzed in this work. C For each of the four datasets, the majority of test set sequences are 
cell type-specific. Distributions shown are over test set sequences that had a peak in at least one chromatin 
accessibility profile in the dataset
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models―Enformer and Sei―to predict chromatin accessibility in cell type-specific 
accessible regions. Both models reportedly make highly accurate chromatin accessibil-
ity predictions as measured by the concordance between experimental and predicted 
accessibility across the whole genome. However, since cell type-specific and ubiquitously 
accessible regions are regulated by different proteins and sequence determinants, model 
accuracy may differ in these regions.

We first verify the trait-relevance of cell type-specific accessible regions in the 
Enformer training data, which includes 684 DNase-seq and ATAC-seq experiments 
from the ENCODE and Roadmap Epigenomics consortia [19, 20]. We categorize the 684 
experiments (tracks) into 9 tissue categories, mirroring the categorization in [21], and 
divide the accessible regions (peaks) present in each tissue category into high and low 
cell type specificity subsets based on their overlap with peaks in the other accessibility 
tracks (the  “Methods” section). For seven UK Biobank traits, we assess enrichment of 
trait heritability within these peak subsets using partitioned LD score regression [16]. 
We find that the high cell type specificity peaks from trait-associated tissues are highly 
enriched for trait heritability (Fig. 2A).

To quantify the performance of Enformer and Sei in accessibility peaks with varying 
degrees of cell type specificity, we divide the test sequences for each model into bins 
based on the number of cell types in which that sequence has a peak in the experimen-
tal accessibility data. For the Enformer model, which predicts a continuous value cor-
responding to peak height, we report the Pearson correlation between the predicted 
and experimental accessibility for the test sequences in each bin (Fig. 2B) as well as the 
precision per peak for the cell types predicted to have the highest accessibility (Addi-
tional file 1: Fig. S1). For the Sei model, which predicts a probability of the presence of a 
peak, we report the AUC and AUPRC for the predictions in each bin (Additional file 1: 
Fig. S2). We observe that both Enformer and Sei make highly accurate predictions for 
sequences in the lowest cell type specificity bin (Enformer median Pearson R 0.76; Sei 
median AUC/AUPRC 0.99/0.99). However, the performance of both models drops on 
sequences that are cell type specific (Enformer median Pearson R 0.10; Sei median AUC/
AUPRC 0.75/0.70 for the highest cell type specificity bin). To evaluate whether this drop 
in performance can be explained by lower experimental reproducibility for cell type-
specific peaks, we select five representative Enformer DNase tracks for which isogenic 
replicate data is available on ENCODE. For these tracks, we compare Enformer’s per-
formance in each cell type specificity bin to the correlation in peak heights between iso-
genic replicates for the same set of peaks (Additional file 1: Fig. S3). We observe only a 
slight decrease in isogenic replicate correlation for high cell type specificity peaks, which 
does not explain the dramatic drop in predictive accuracy.

Because the regulatory grammar at gene-proximal elements, such as promoters, is 
distinct from that at distal regulatory elements, we next ask whether reduced per-
formance at cell type-specific peaks is driven by distance between the peak and a 
gene transcription start site (TSS). We first evaluate the performance of Enformer 
for peaks stratified into three roughly equally sized TSS distance bins and observe 
that while performance does decrease slightly for distal peaks (Additional file 1: Fig. 
S4A, “All”), this decrease is minimal compared to the differences observed across the 
cell type specificity bins. Furthermore, stratifying by both TSS distance and cell type 
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specificity demonstrates that cell type specificity and not TSS distance has a major 
impact on performance. Model predictions in high cell type specificity peaks are simi-
larly poor regardless of whether the peaks are proximal or distal to a TSS (Additional 
file  1: Fig. S4A). As a higher fraction of cell type-specific peaks are distal to a TSS 
(Additional file 1: Fig. S4B), cell type specificity may contribute to the decreased per-
formance at distal peaks.

Having established that Enformer and Sei’s reference accuracy is lowest in peaks with 
the highest degree of cell type specificity, we next evaluate whether this trend in perfor-
mance extends to the models’ ability to predict the functional effects of single nucleotide 

Fig. 2  Evaluating state-of-the-art models in cell type-specific peaks. A Cell type-specific peaks from 
trait-associated tissues represented in the Enformer training data are enriched for trait heritability. We 
categorize the 684 Enformer accessibility tracks into 9 tissue categories, mirroring the categorization 
in [21], and divide the accessible regions (peaks) present in each tissue category into high and low cell 
type specificity subsets based on their overlap with peaks in the other accessibility tracks (the “Methods” 
section). We compute heritability enrichments using the following trait-tissue associations―Height: 
musculoskeletal-connective, BMI: central nervous system, Asthma: blood/immune, Diabetes: pancreas, 
Eczema: blood/immune, Smoking status: central nervous system, Heel T-score: cardiovascular. B Enformer’s 
chromatin accessibility prediction performance (reference accuracy) is poor in high cell type specificity 
peaks and highly accurate in low cell type specificity peaks (regions that contain a peak in greater than 300 
chromatin accessibility profiles). Distributions shown are over all 684 Enformer accessibility output tracks. 
For the Sei model, which predicts the probability of the presence of a peak, we report the prediction AUC 
and AUPRC stratified by cell type specificity in Fig. S2 (Additional file 1). C Enformer and Sei classify high 
posterior inclusion probability eQTLs (PIP > 0.9) versus a matched negative set of low PIP eQTLs (PIP < 0.01) 
(using positive and negative variant sets obtained from [7]). Both models have reduced performance when 
classifying eQTLs in cell type-specific accessibility peaks. D Limited discrimination of trait-associated variants 
by Enformer variant effect predictions. Variants in chromatin accessible regions were subset to those with 
high Enformer SNP Accessibility Difference (SAD) scores (top 50% of Enformer SAD scores). Enrichment of 
these variants for trait heritability was assessed using partitioned LD score regression. We additionally report 
heritability enrichment for the top 10% of variants based on Enformer SAD scores in Fig. S6 (Additional file 1)
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polymorphisms (SNPs) or “variant effect accuracy.” We perform two evaluations to 
assess variant effect accuracy, using both eQTLs and GWAS heritability enrichment.

First, we utilize fine-mapped eQTLs from the Genotype-Tissue Expression (GTEx) 
Consortium [22]. We divide the positive set of fine-mapped GTEx eQTLs with high pos-
terior inclusion probability (PIP > 0.9) into bins based on the cell type specificity of the 
accessibility peak they overlap. Using variant effect predictions for all accessibility tracks 
from either Enformer or Sei, we train random forests to classify the positive set eQTLs 
in each bin versus a matched negative set of low PIP eQTLs (PIP < 0.01) (Fig. 2C), fol-
lowing a methodology similar to [7]. We use only chromatin accessibility variant effect 
predictions from Enformer and Sei in these evaluations, since our goal is to understand 
how chromatin accessibility predictions vary in regions with varying degrees of cell type 
specificity. We observe that both Enformer and Sei perform best at classifying eQTLs 
in the low cell type specificity bin (Enformer median AUPRC 0.93; Sei median AUPRC 
0.96), with decreasing performance in high cell type specificity bins (Enformer median 
AUPRC 0.71; Sei median AUPRC 0.71 in the highest cell type specificity bin). These 
results suggest that variant effect prediction remains more challenging within cell type-
specific peaks.

In a similar manner, we test each model’s ability to predict the direction of effect―the 
eQTL sign―of high PIP eQTLs in accessible regions with varying degrees of cell type 
specificity (Additional file 1: Fig. S5A,B). Avsec et al. [7] showed that Enformer’s vari-
ant effect predictions are somewhat predictive for this task, but much less than for clas-
sifying high vs. low PIP eQTLs. As with the previous classification task in Fig. 2C, we 
use only chromatin accessibility variant effect predictions in this evaluation. We observe 
that both Enformer and Sei perform most poorly on direction-of-effect prediction in the 
high cell type specificity bin (Enformer median AUC 0.59; Sei median AUC 0.58), with 
improving performance in low cell type specificity bins (Enformer median AUC 0.77; Sei 
median AUC 0.73 in the lowest cell type specificity bin).

Overall, we find that Enformer and Sei’s ability to predict variant effects on gene 
expression decreases for variants within cell type-specific accessibility peaks. We con-
sider the possibility that these differences in performance could be explained by dif-
ferences in distance to the TSS or effect size of the eQTLs. We observe only small 
differences in TSS distance or effect size distributions for eQTLs in high or low cell type 
specificity bins (Additional file 1: Fig. S5C,D). Therefore, it is unlikely that systematic dif-
ferences in effect size or TSS distance entirely explain the differences we observe in the 
ability of Enformer and Sei to predict cell type-specific eQTLs.

As a second assessment of variant effect accuracy, we test whether variants with larger 
predicted differences in accessibility are enriched for trait heritability within each of the 
high and low cell type specificity peak subsets from the heritability analysis in Fig. 2A. 
We subset the variants in these peaks into two groups―those with low versus high 
absolute SNP accessibility difference (SAD) scores―based on Enformer’s variant effect 
predictions. Using partitioned LD score regression, we assess enrichment of trait herit-
ability among the variants with high Enformer SAD scores. For the majority of tested 
traits, we find that variants with high (top 50%) Enformer SAD scores in cell type-spe-
cific peaks are more enriched for trait heritability than all variants in cell type-specific 
peaks (Fig. 2D). For some traits―including Heel T-score―Enformer’s SAD scores are 
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less effectively able to identify the trait-relevant variants within cell type-specific peaks 
(Fig.  2D). Subsetting the variants in low cell type specificity peaks to those with high 
Enformer SAD scores is less informative for identifying trait-relevant genetic variation, 
but this is likely due to the fact that the low cell type specificity peaks are less enriched 
for trait heritability to begin with. To verify that the above findings are robust to the 
threshold used to define high SAD score variants, we also analyze the subset of variants 
with the top 10% highest Enformer SAD scores (Additional file 1: Fig. S6).

Taken together, these results indicate that state-of-the-art models have decreased ref-
erence accuracy in cell type-specific accessible regions, and their ability to make accu-
rate variant effect predictions within these regions may depend on the specific task or 
phenotype of interest.

Multi‑task models trained on related cell types exhibit poor cell type‑specific accessibility 

prediction

In addition to evaluating state-of-the-art genomic deep learning models trained on large 
compendia of data from diverse cell types, we also consider an alternate direction in the 
field - training bespoke deep learning models on smaller datasets to interrogate a spe-
cific biological system or disease [23–26]. Unlike Enformer and Sei―which are tasked 
with learning the regulatory grammar of a wide array of cell types―these bespoke mod-
els are usually trained on a small number of related cell types, which may share more 
regulatory logic. We reasoned that this framework might be more amenable to learning 
cell type-specific regulatory syntax and sought to also benchmark the performance of 
such bespoke models in cell type-specific accessible regions.

To this end, we utilize two ATAC-seq datasets―single-cell ATAC-seq of primary 
human kidney tissue from three donors [27] and bulk ATAC-seq of 25 primary human 
immune cell types, sorted by flow cytometry, from four human blood donors [28] 
(Fig. 1B, C). In each dataset, accessibility peaks were grouped into disjoint clusters based 
on their accessibility profiles across cell types. This clustering results in one cluster for 
each dataset corresponding to ubiquitously accessible peaks and additional clusters dis-
playing cell type specificity. To verify the disease-relevance of the cell type-specific peaks 
in both ATAC-seq datasets, we estimate the enrichment of trait heritability in these 
ubiquitous or cell type-specific accessibility clusters using partitioned LD score regres-
sion for the kidney function marker creatinine (for the Loeb et al. [27] data) or immune-
related traits (for the Calderon et al. [28] data) in the UK Biobank. In the Loeb et al. [27] 
data, we find that tubule cell type-specific peak clusters―accessible specifically in proxi-
mal tubule, distal tubule, or loop of Henle cells―are significantly enriched for creatinine 
heritability (18-fold enrichment in proximal tubule specific peaks, 15-fold enrichment in 
distal tubule/loop of Henle specific peaks) (Fig. 3A), similar to the enrichment of ubiq-
uitous peaks. In the Calderon et al. [28] data, we find that cell type-specific peak clus-
ters are significantly enriched for heritability of the immune-related traits asthma and 
eczema (14-fold average enrichment in myeloid-specific peaks, 29-fold average enrich-
ment in NK cell-specific peaks, and 49-fold average enrichment in T cell-specific peaks) 
(Fig.  3A). In ubiquitous peaks, we observe no evidence of significant immune-related 
trait heritability enrichment.
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For each dataset, we then train a set of multi-task convolutional neural networks 
(CNNs) to map input DNA sequences (1344bp) to continuous measures of chromatin 
accessibility (normalized ATAC-seq read counts) in each cell type. Our architecture 
is based on an updated version of the Basset model [2]. We train three replicates of 
each model to assess uncertainty in model predictions. All models achieve a refer-
ence accuracy on held out test chromosome sequences (Additional file  2: Table  S1, 
Table S2) that is comparable to the results reported in previous work [3]. Quantifying 
the predictive performance of these multi-task models in cell type-specific and ubiq-
uitous peaks separately, we observe that performance in cell type-specific peaks (0.39 
avg. Pearson R for Loeb et al. [27]; 0.30 for Calderon et al. [28]) is markedly lower than 
in ubiquitous peaks (0.69 avg. Pearson R for Loeb et al. [27]; 0.68 for Calderon et al. 
[28]) (Fig. 3B, C). As a measure of uncertainty in model predictions, we compute the 
coefficient of variation for each sequence across the three trained model replicates. 
We find that predictions across the different models are significantly more variable 
for sequences in cell type-specific peaks than sequences in ubiquitous peaks (Fig. 3D). 
These results indicate that deep learning models trained using multi-task learning on 
related cell types also have decreased performance and greater uncertainty within cell 
type-specific peaks.

We next investigate whether various characteristics of cell type-specific peaks 
might explain some of the differences in model performance. We first test for sys-
tematic differences in the degree of accessibility between cell type-specific and ubiq-
uitous peaks by quantifying the distribution of peak heights, since many ubiquitous 
peaks are at promoters and many cell type-specific peaks are at distal enhancers. We 
find that cell type-specific peaks tend to have lower peak heights than ubiquitous 
peaks in the single-cell Loeb et  al. [27] data (Additional file 1: Fig. S7A), but we do 
not observe a similar trend in the bulk Calderon et al. [28] data (Additional file 1: Fig. 
S7B). After controlling for this bias in the Loeb et al. [27] data, we still observe a drop 

Fig. 3  Multi-task accessibility prediction models of related cell types exhibit poor cell type-specific peak 
prediction. A Kidney tubule cell type-specific accessibility peaks are significantly enriched for heritability of 
the kidney function biomarker creatinine (Loeb et al. [27] data) and immune cell type-specific accessibility 
peaks are significantly enriched for autoimmune trait heritability (Calderon et al. [28] data). B Scatter plots 
of experimentally measured versus predicted accessibility in cell type-specific and ubiquitous peaks for one 
cell type―Loop of Henle―in the Loeb et al. [27] data. Plotted points are sequences from the held out test 
chromosomes. C Multi-task model reference accuracy is poor in cell type-specific peaks for multi-task models 
trained on either the Loeb et al. [27] data or the Calderon et al. [28] data. Reference accuracy is measured as 
the Pearson correlation between experimentally measured versus predicted accessibility. Error bars represent 
the standard deviation over three replicate models. D Multi-task model predictions across replicate models 
are significantly more variable for sequences in cell type-specific peaks versus sequences in ubiquitous 
peaks. Variability is quantified as the coefficient of variation for each sequence across three model replicates 
(one-sided Mann-Whitney U test with Benjamini-Hochberg multiple testing correction). E Experimentally 
measured and predicted accessibility profiles from the Loeb et al. [27] data for a region around NR2F1. The 
ubiquitous peak near the center of the coverage track is well-predicted in all cell types by the multi-task 
model, while the cell type-specific peak on the 5′ end of the coverage track is not predicted to be a peak 
in any cell type. F Experimentally measured and predicted accessibility profiles from the Calderon et al. [28] 
data for a region around ERAP2. The ubiquitous peak on the 3′ end of the coverage track is well-predicted in 
all cell types by the multi-task model. The two cell type-specific peaks towards the 5′ end of the coverage 
track are predicted to be peaks in all three cell types by the same model, although there is no measured 
accessibility in these regions in DCmye cells

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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in performance in cell type-specific peaks when compared to height-matched ubiqui-
tous peaks (0.39 vs 0.50 avg. Pearson R) (Additional file 1: Fig. S7C).

We also investigate whether ubiquitous peaks have more easily recognizable sequence 
features than cell type-specific peaks, which might make them easier for a model to 
learn. We find that ubiquitous peaks have slightly higher GC content than non-ubiq-
uitous peaks (Additional file 1: Fig. S8A) and are more likely to contain putative CpG 
islands and CTCF motifs (Additional file 1: Fig. S8B, C). We perform a motif enrichment 
analysis for ubiquitous and cell type-specific peaks and identify several TFs previously 
known to be active in the studied cell types (Additional file 1: Fig. S8D); for example, we 
identify HNF4A as enriched in proximal tubule peaks, SPI1 as enriched in myeloid cell 
peaks, and Jun as enriched in T cell peaks. Particularly in the Loeb et al. [27] data, we 
find stronger enrichment of motifs in ubiquitous peaks compared to cell type-specific 
peaks (Additional file 1: Fig. S8D).

To illustrate model performance at cell type-specific peaks, we present example loci 
from each dataset (Fig. 3E, F). At the NR2F1 locus, the multi-task model trained on the 
Loeb et al. [27] data accurately predicts accessibility at a ubiquitously accessible peak but 
fails to identify a peak in any cell type at a nearby cell type-specific peak (Fig. 3E). Simi-
larly, at the ERAP2 locus, the multi-task model trained on the Calderon et al. [28] data 
accurately predicts accessibility at a ubiquitously accessible peak, but predicts a small 
amount of accessibility in all cell types at the cell type-specific peaks nearby (Fig. 3F).

Increased capacity to learn cell type‑specific regulatory syntax improves cell type‑specific 

accessibility prediction

To provide insights to help guide future modeling improvements, we next characterize 
the effect of a number of common training decisions on cell type-specific accessibility 
prediction (Fig.  4A; Additional file  1: Fig. S9A). First, a multi-task architecture might 
cause models to learn shared rather than cell type-specific features, leading to higher 
performance in ubiquitous peaks than in cell type-specific peaks. Since learning shared 
features could cause over-correlated predictions across cell types, we compare correla-
tions across cell types for both predicted and experimentally measured peak heights. As 
expected, cell type-specific peaks exhibit low correlation in measured accessibility across 
cell types (Fig. 4B, in gray). However, the multi-task model’s predictions in cell type-spe-
cific regions are highly correlated between cell types (Fig. 4B, in dark blue). Ubiquitously 
accessible peaks exhibit high correlation in measured accessibility across cell types, with 
modest over-correlation in predicted accessibility across cell types (Additional file 1: Fig. 
S9B).

To determine whether the observed over-correlation in predicted versus experimen-
tally measured accessibility between cell types can be attributed to experimental meas-
urement noise, we also measure the correlation across individuals of experimental 
accessibility in the same cell type (Additional file 1: Fig. S10). We observe high corre-
lation between individuals within cell type-specific peaks (Additional file 1: Fig. S10A, 
in light gray; Loeb et al. [27] median Pearson R 0.72; Calderon et al. [28] median Pear-
son R 0.72), which accounts for both biological and experimental sources of variation. 
Thus, experimental noise does not explain the low correlation of measured accessibil-
ity between cell types at cell type-specific peaks. We conclude that over-correlation 
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between predictions for different cell types, which is most pronounced within cell type-
specific peaks, is a characteristic of these multi-task models.

We then train single-task models on each cell type individually, to test whether this 
over-correlation is caused by the multi-task architecture. Single-task training yields a 
small drop in genome-wide test set performance (Additional file 1: Fig. S11A, Additional 
file  1: Fig. S12A) but leads to a performance improvement in cell type-specific peaks 
(Fig. 4A). We also evaluate whether a transfer learning approach, in which a single-task 
model is first trained on a cell type with abundant high-quality data, and then fine-tuned 
on a cell type with lower quality data, improves performance for cell types with lower 
quality data (reasoning that this approach might retain beneficial aspects of both multi-
task and single-task models). However, this transfer learning approach leads to worse 

Fig. 4  Increased model capacity to learn cell type-specific regulatory syntax improves reference sequence 
prediction in cell type-specific peaks. A Reference accuracy of multi-task versus single-task models 
evaluated in cell type-specific peak regions. Single-task models and high capacity multi-task models tend to 
outperform baseline multi-task models in cell type-specific peaks. Reference accuracy of the same multi-task 
and single-task models in ubiquitous peaks is reported in Fig. S9A (Additional file 1). B In cell type-specific 
peaks, pairwise correlations of peak height between cell types are computed for experimental (dark gray) and 
model-predicted accessibility (dark and light blue). Model-predicted accessibility is more correlated between 
cell types than experimentally measured accessibility, and this overcorrelation is more pronounced in 
predictions from multi-task models than predictions from single-task models. The correlation in experimental 
and model-predicted accessibility between cell types in ubiquitous peaks is reported in Fig. S9B (Additional 
file 1). C High SAD score variants from all three tested model types (multi-task, high capacity multi-task, and 
single-task) are similarly enriched for trait heritability of tissue-matched traits. Using predictions from each 
model, we subset the variants in high and low cell type specificity peak regions based on the model’s SNP 
Accessibility Difference (SAD) scores. We use the median SAD score for all variants in a particular peak set 
(e.g., “Kidney high cell type specificity peaks”) as a threshold to subset to high SAD score variants. Enformer’s 
performance on this task for the same traits is shown in Fig. S19 (Additional file 1)
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performance in cell type-specific regions than single-task training, even using a rela-
tively sparse dataset (Additional file 1: Fig. S13). For this reason, we primarily compare 
single-task and multi-task models in subsequent evaluations. We find that single-task 
training reduces the spurious over-correlation between cell types observed for the multi-
task models (Fig. 4B, Additional file 1: Fig. S9B, in lighter shade), and generally reduces 
false positive peak predictions (Additional file 1: Fig. S14).

The performance improvements that we observe with single-task learning could be 
due to minimizing the effect of negative transfer across cell types or due to increased 
capacity to learn cell type-specific regulatory syntax. Therefore, we also train additional 
multi-task models with increased capacity (2, 4, and 8 times the number of parameters) 
compared to the original baseline multi-task model. We find that increasing model 
capacity has little to no effect on performance genome-wide (Additional file 1: Fig. S15A, 
B, in gray) or in ubiquitous peaks (Additional file 1: Fig. S9A,B, in hatched orange; Addi-
tional file 1: Fig. S15A, B, in orange) but does improve performance in cell type-specific 
peaks (Fig. 4A, B, in hatched blue; Additional file 1: Fig. S15A, B, in blue). In most cases, 
the performance of the highest capacity multi-task model is comparable to single-task 
performance, suggesting that the performance improvements from single-task learning 
are primarily due to increased capacity to learn cell type-specific regulatory syntax.

Differences in cell type-specific prediction between models are likely to be driven by 
differences in their ability to recognize cell type-specific TF motifs and to correctly asso-
ciate these motifs with accessibility in particular cell types. To assess this, we first per-
form a motif insertion analysis using the baseline multi-task, high-capacity multi-task, 
and single-task models (the “Methods” section). In both the Loeb et al. [27] and Calde-
ron et al. [28] datasets, we observe greater heterogeneity between cell types in model-
predicted TF activity for the single-task models as compared to the baseline multi-task 
model (Additional file  1: Fig. S16A,B). For example, in the Loeb et  al. [27] data, the 
single-task models―as well as, to a lesser extent, the high-capacity multi-task model―
identify SRF activity as restricted to stromal cells, consistent with previous reports 
[27] (Additional file 1: Fig. S16A). The baseline multi-task model fails to learn this TF 
as active in any cell type. In the Calderon et  al. [28] data, the single-task models and 
high-capacity multi-task model identify SPI1 as a myeloid-specific TF, while the baseline 
multi-task model instead predicts only weak SPI1 activity across cell types (Additional 
file 1: Fig. S16B). Similarly, the single-task models predict more specific TF activity for 
many FOS/JUN TFs in CD8 T cells, while the baseline multi-task model predicts these 
TFs to be broadly active. Both SPI1 and FOS/JUN TFs have previously been character-
ized to have cell type-specific activity in myeloid and T cells, respectively [28]. Second, 
we use TF-MoDISco [29] to identify the TF motifs that drive predictions in ubiquitous 
and cell type-specific peaks for the baseline multi-task, high-capacity multi-task, and 
single-task models. We compute the Jaccard similarity in the motifs identified by TF-
MoDISco across cell types and find that the motifs driving single-task and high-capacity 
multi-task model predictions tend to be more distinct across cell types, particularly in 
cell type-specific peaks (Additional file 1: Fig. S16C, D). Taken together, these observa-
tions suggest that some of the over-correlation between cell types that we observe for 
the baseline multi-task models may be due to the models learning a similar regulatory 
syntax for distinct cell types. However, we note that even single-task models still suffer 
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from over-correlated predictions between cell types (Fig. 4B; Additional file 1: Fig. S9B), 
suggesting that there is still a bias towards learning shared sequence features that is 
architecture agnostic.

For two example cell type-specific peaks, we examine the sequence features that con-
tribute to distinct predictions between different model types. In the Loeb et al. [27] data, 
we highlight a stromal cell-specific peak that is mispredicted by the baseline multi-task 
model to be a peak in additional cell types but is correctly predicted by the single-task 
models to only be accessible in stromal cells. In silico mutagenesis (ISM) of this peak 
reveals that a TEAD-like motif is contributing to the predictions of the baseline multi-
task model in both stromal and non-stromal cell types, while this TEAD-like motif has 
less importance in non-stromal cell types for the high-capacity multi-task and single-
task models (Additional file 1: Fig. S17A). Some of the difference in model predictions 
may also be due to differences in the scale of ISM scores observed across the entire 
region for different models (note that we compare ISM scores on the same scale for all 
models, since we generally observe that the models make predictions on similar scales 
for held-out reference sequences). Similarly, in the Calderon et al. [28] data, we highlight 
a dendritic cell-specific peak that is mispredicted by the baseline multi-task model to be 
a peak in additional cell types but is correctly predicted by the single-task models to only 
be accessible in dendritic cells. ISM of this peak reveals that a SPIB-like motif is weakly 
informing predictions of the baseline multi-task model in dendritic and non-dendritic 
cell types, while this SPIB-like motif is more strongly and specifically driving dendritic 
cell predictions for the high-capacity multi-task and single-task models (Additional 
file 1: Fig. S17B). Note that this pattern mirrors the differences in predicted TF activ-
ity for SPIB in the motif insertion analysis above (Additional file 1: Fig. S16B), where we 
observe stronger and more specific predicted SPIB activity in dendritic cells with high-
capacity multi-task and single-task models.

We also examine predictions from the high capacity multi-task and single-task models 
for the NR2F1 and ERAP2 loci where we previously observed incorrect cell type-specific 
predictions from the baseline multi-task models (Fig. 3E, F). We find that for the stro-
mal cell-specific peak at the NR2F1 locus, both the high capacity multi-task model and 
single-task models still fail to accurately capture its peak height in stromal cells (Addi-
tional file  1: Fig. S18A). For the cell type-specific peaks at the ERAP2 locus, the high 
capacity multi-task and single-task models reduce false positive predictions at some cell 
type-specific peaks but continue to demonstrate limited precision as well as some false 
negative predictions at other cell type-specific peaks (Additional file 1: Fig. S18B). Taken 
together, our observations in these and the above example loci reflect the general trend 
of modest improvement in cell type-specific peak reference accuracy from increasing 
model capacity to learn cell type-specific motifs, either through single-task learning or 
high-capacity multi-task models.

We next sought to evaluate whether increasing model capacity also affects variant 
effect accuracy, using two types of evaluations. First, we use allelic imbalance measure-
ments at heterozygous sites in the experimental ATAC-seq data to test the models’ ability 
to predict the higher accessibility allele. In both datasets, we do not observe consist-
ent improvements in chromatin accessibility allelic imbalance prediction by single-task 
models (Additional file  1: Fig. S11B, Additional file  1: Fig. S12B). Second, we compare 
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the models on the GWAS heritability benchmark, paralleling the analysis in Fig.  2D, 
using tissue-matched traits (creatinine for the Loeb et al. [27] data; asthma and eczema 
for the Calderon et al. [28] data). We find that high SAD score variants from single-task, 
high-capacity multi-task, and baseline multi-task models are all similarly enriched for 
trait heritability (Fig. 4C). Together, these results indicate that the higher capacity mod-
els tested here do not substantially improve variant effect prediction, even in cell type-
specific accessible regions. For reference, we also compare the heritability enrichments 
obtained with these tailored tissue-specific models to those obtained with Enformer for 
matched tissue tracks (Additional file 1: Fig. S19). For creatinine, high SAD score variants 
from the tissue-specific models have similar enrichment to high SAD score variants from 
Enformer (Additional file 1: Fig. S19A). However, for the immune-related traits, Enform-
er’s high SAD score variants are significantly more enriched for trait heritability than high 
SAD score variants from the tissue-specific models (Additional file 1: Fig. S19B). Differ-
ences in performance may be due to the higher capacity model architecture of Enformer 
versus the smaller Basset-style architecture of the tissue-specific models tested here or 
to Enformer’s training on a larger number of cell types, tissues, and assays (including 
CAGE-seq and ChIP-seq). One possible explanation for the difference between immune 
and kidney traits in the relative performance of Enformer is the makeup of different track 
types in the Enformer training data. In particular, immune cell types and tissue samples 
are heavily overrepresented, which may bias Enformer towards learning immune cell reg-
ulatory syntax. For other cell types, such as kidney, variant effect predictions from sig-
nificantly smaller models trained on limited data from the relevant cell types can perform 
similarly to Enformer.

Choice of training regions does not substantially impact cell type‑specific accessibility 

prediction

The second modeling choice that we explore is which regions of the genome to include 
in training. For the kidney and immune-specific single-task and multi-task models 
described above, we include all regions of the genome from the training set chromo-
somes, apart from assembly gaps and unmappable regions. Cell type-specific accessible 
regions make up less than 10% of this training set. To test whether the relative infre-
quency of these sequences in the training set contributes to poor performance, we 
evaluate five different training sets with varying proportions of cell type-specific acces-
sible regions (Table 1). For each training set, we train models using both multi-task and 
single-task learning and evaluate their performance in both cell type-specific and ubiq-
uitously accessible regions (Additional file 1: Fig. S11A, B, Additional file 1: Fig. S12A, 
B). In addition to evaluating the reference accuracy of each training decision, we also 
evaluate variant effect accuracy using the chromatin accessibility allelic imbalance data. 
We observe that for most choices of training set, single-task learning improves reference 
accuracy in cell type-specific accessible regions and has minimal effect in ubiquitously 
accessible regions. The choice of training set yields different results for the two data-
sets. For the Loeb et al. [27] kidney data, the training set with the highest proportion of 
cell type-specific accessible sequences yields the highest reference accuracy in cell type-
specific accessible regions. However, for the Calderon et al. [28] immune data, the train-
ing set that includes all genomic sequences yields the highest reference accuracy in cell 
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type-specific accessible regions. For variant effect accuracy, we do not observe consist-
ent trends for the training sets we evaluated, but we note that training on all genomic 
sequences performs as well or better than the other training choices in almost all cases. 
Although our ability to measure variant effect accuracy using allelic imbalance is limited 
by the small number of individuals assayed (and thus the number of heterozygous sites), 
based on these data we do not observe that a particular choice of training set consist-
ently improves performance in cell type-specific accessible regions.

Discussion
We have performed a systematic analysis of genomic deep learning models that pre-
dict chromatin accessibility from DNA sequence, focusing on accessible regions of the 
genome with varying degrees of cell type specificity. While most previous evaluations 
of genomic deep learning models have focused on genome-wide performance metrics, 
which may mask performance differences on small but biologically important subsets of 
the genome, here we evaluated performance independently in different genomic regions. 
We found that predictive performance varies dramatically across the genome, and is par-
ticularly poor in cell type-specific accessible regions, which are known to harbor a large 
fraction of disease heritability. This finding is consistent both for general purpose mod-
els such as Enformer and Sei, which are trained on large compendia of publicly avail-
able data, as well as models trained on smaller tissue-specific datasets. We performed 
additional variant-based evaluations using eQTL and GWAS data and found that eQTL 
variant effect prediction accuracy also decreases in cell type-specific accessible regions. 
Previous work has demonstrated that genomic deep learning models perform more 
poorly on distal eQTLs [7, 12]. Our results demonstrate that much of this effect may 
be explained by the increased cell type specificity of the regulatory elements harboring 
these distal eQTLs.

We also highlight the importance of the choice of performance metric in model evalua-
tions. The performance metric commonly used to evaluate genomic deep learning mod-
els is the concordance between experimental measurements and model predictions for 
input sequences from the reference genome; this “reference accuracy” metric does not 
directly measure a model’s ability to predict variant effects. Using multiple model types 
and training datasets, we observed that models with improved performance to predict 
chromatin accessibility using the reference genome often do not demonstrate improved 

Table 1  Description of evaluated training sets

Training set Genomic regions

1 All genomic sequences

2 Sequences overlapping any ATAC peak and an equal number of non-peak sequences (1:1 
peak to non-peak ratio)

3 Sequences overlapping any ATAC peak and an equal number of GC-matched non-peak 
sequences (1:1 peak to non-peak ratio)

4 Sequences overlapping any ATAC peak

5 Sequences overlapping non-ubiquitous ATAC peaks
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performance in variant effect prediction tasks. As many of the most important applica-
tions of genomic deep learning models are for variant effect prediction, these results, as 
well as a growing body of literature [10, 12–14], imply that an important direction for 
the field is to comprehensively evaluate models on their utility for variant interpretation 
tasks, independently of reference sequence performance.

Finally, we characterized the effect of a number of common training decisions on cell 
type-specific accessibility prediction to provide insight that may help guide future mode-
ling improvements. In one previous study, Maslova et al. [23] evaluated the choice of loss 
function on cell type-specific accessibility prediction. They found that using a Pearson 
correlation loss function, which directly emphasizes accessibility differences between 
cell types, improves cross-cell type predictions in cell type-specific peaks, as compared 
to a mean-squared error loss function. In this work, we evaluated models trained using 
multi-task and single-task learning, as well as different choices for training set compo-
sition. We found that when compared to baseline multi-task models, single-task mod-
els and higher capacity multi-task models improved reference sequence prediction in 
cell type-specific accessible regions. These results highlight the importance of careful 
evaluation on biologically relevant genomic regions and tasks in designing model archi-
tectures, as higher capacity models did not provide any meaningful improvement on 
standard genome-wide reference accuracy metrics.

Conclusions
In summary, we demonstrated that the performance of current genomic deep learning 
models varies dramatically across the genome and is particularly poor in cell type-spe-
cific accessible regions, which harbor a large fraction of the heritability of human dis-
eases. We characterized the effects of a number of common training decisions on cell 
type-specific accessibility prediction and identified single-task learning and high capac-
ity multi-task models as potential methods to improve reference sequence prediction in 
cell type-specific accessible regions. Overall, these evaluations provide a new perspec-
tive on the performance of current genomic deep learning models, and suggest paths to 
maximize performance in cell type-specific accessible regions.

Methods
Chromatin accessibility datasets

Four chromatin accessibility datasets were used throughout this study. Briefly, we 
describe each of these datasets and the additional data processing steps we performed.

Enformer data

We obtained processed training, validation, and test data used to train Enformer from 
Avsec et  al.  [7]. These data contained 684 chromatin accessibility profiles from the 
ENCODE [19] and Roadmap Epigenomics [20] consortia that had been processed in 
Kelley  [30] to summarize the read coverage for each profile in 128-bp bins along the 
genome. For each 128-bp bin in the test data, we called peaks on the read coverage val-
ues from each chromatin accessibility profile using a Poisson model parameterized by a 
global null lambda similar to the MACS2 approach [31] and applied a 0.01 FDR cutoff. 
All data were processed using the hg38 reference genome.
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Sei data

We obtained processed training, validation, and test data used to train Sei from Chen 
et  al.  [8]. These data contained 2372 chromatin accessibility profiles from the Cis-
trome, ENCODE, and Roadmap Epigenomics consortia [19, 20, 32]. In contrast to the 
Enformer data, which contains continuous read coverage values for each bin, the Sei 
dataset contains binary labels for each bin corresponding to whether the bin over-
lapped a peak in each of the chromatin accessibility profiles. The Sei data were pro-
cessed using 100-bp bins along the genome and using the hg38 reference genome.

Single‑cell kidney data

We obtained single-cell ATAC-sequencing data of primary human kidney tissue from 
three donors from Loeb et al. [27]. These data had been clustered by Loeb et al. [27] 
into 10 cell types, and pseudobulk ATAC data for each cell type had been generated. 
Peaks had also been grouped into disjoint clusters based on their accessibility profiles 
across cell types, giving the ubiquitous and cell type-specific peak clusters used in 
our analyses. The data also included allele-specific chromatin accessibility informa-
tion that we used in the allelic imbalance evaluations. All data were processed using 
the hg38 reference genome.

Bulk immune cell data

We obtained bulk ATAC-sequencing data of 25 primary human immune cell types, 
sorted by flow cytometry, from four blood donors from Calderon et al.  [28]. ATAC-
seq peaks had been grouped by Calderon et  al.  [28] into disjoint clusters based on 
their accessibility profiles across cell types, giving the ubiquitous and cell type-spe-
cific peak clusters used in our analyses. The data also included allele-specific chroma-
tin accessibility information that we used in the allelic imbalance evaluations. All data 
were processed using the hg19 reference genome.

Enformer predictions

The pretrained Enformer model was obtained from Avsec et al. [7]. To make predic-
tions for a sequence, we averaged predictions over the forward and reverse comple-
ment sequence and minor sequence shifts to the left and right (1 nucleotide in each 
direction).

Sei predictions

The pretrained Sei model was obtained from Chen et al. [8]. We used the 1_variant_
effect_prediction.py script in the Sei framework repository (https://​github.​com/​Funct​
ionLab/​sei-​frame​work) to make variant effect predictions for variants of interest.

Partitioned heritability analyses

To assess trait heritability enrichment in cell type-specific accessible regions within 
Enformer’s training data (684 accessibility tracks), we first obtained GWAS sum-
mary statistics for a set of UK Biobank traits that had previously been character-
ized to have heritability enrichment in the regions around tissue-specific genes [21]. 

https://github.com/FunctionLab/sei-framework
https://github.com/FunctionLab/sei-framework
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After excluding any traits that did not pass quality control thresholds (i.e., low sam-
ple size, low confidence) on the Neale lab server  (https://​neale​lab.​github.​io/​UKBB_​
ldsc/​h2_​brows​er.​html), we retained a set of seven traits. Next, we grouped Enformer’s 
684 accessibility tracks into 9 tissue categories mirroring the groupings in Finucane 
et al. [21]. For each tissue category, we defined a set of “tissue peaks” as all peaks that 
were present in at least 30% of the corresponding accessibility tracks. We then divided 
these “tissue peaks” into high and low cell type specificity halves based on how many 
of the 684 accessibility tracks each peak was present in. We used stratified LD score 
regression (LDSC) [16] to measure trait heritability enrichment in the annotations 
corresponding to high and low cell type specificity peaks for each tissue category.

To assess whether variants with larger model-predicted differences in accessibil-
ity are enriched for trait heritability, we further subset the variants within the annota-
tions described above (high and low cell type specificity peaks for each tissue category) 
based on Enformer’s variant effect predictions. Specifically, for each variant, we took 
the mean absolute SNP accessibility difference (SAD) score across all chromatin acces-
sibility tracks corresponding to the tissue category. We then divided the variants within 
each annotation (e.g., high cell type specificity Cardiovascular peaks) into two equally 
sized groups based on the magnitude of their mean absolute SAD score to create two 
new annotations (i.e., “Low SAD score in high cell type specificity Cardiovascular peaks” 
and “High SAD score in high cell type specificity Cardiovascular peaks”). We again used 
stratified LDSC to measure trait heritability in high SAD score variants.

All partitioned heritability analyses were performed using stratified LDSC conditioned 
on all baselineLD v2.2 annotations that do not correspond to promoter and enhancer 
marks (baselineLD_v2.2, https://​alkes​group.​broad​insti​tute.​org/​LDSCO​RE/) [33]. We do 
not condition on regulatory baseline annotations (i.e., promoter and enhancer marks) 
in our analyses to provide an unbiased estimate of heritability enrichment in ubiquitous 
versus cell type-specific peaks, as the ubiquitous peaks in our datasets are likely to have 
more overlap with the regulatory baseline annotations.

Fine‑mapped GTEx eQTL classification

We obtained GTEx v8 eQTLs fine-mapped using the SuSiE method [34, 35] from the 
Supplementary Data in Avsec et  al. [7]. Using these data, we evaluated Enformer and 
Sei on their ability to distinguish high posterior inclusion probability eQTLs (PIP > 0.9) 
from a matched negative set of low PIP eQTLs (PIP < 0.01). We used a similar meth-
odology as in Avsec et al. [7] to perform the classification; in particular, we used model 
predictions from all chromatin accessibility tasks as features (684 features for Enformer; 
2372 features for Sei) and trained separate random forest classifiers for each tissue using 
eight-fold cross-validation. We used the default hyperparameters of scikit-learn and set 
the maximum features considered per decision tree split to log2 of the total number of 
features.

Motif enrichment analysis

We assessed enrichment of TF motifs in cell type-specific and ubiquitous peaks in 
the Loeb et  al. [27] and Calderon et  al. [28] datasets using SEA [36], for all TF bind-
ing profiles in the JASPAR 2022 CORE vertebrates non-redundant collection [37]. We 

https://nealelab.github.io/UKBB_ldsc/h2_browser.html
https://nealelab.github.io/UKBB_ldsc/h2_browser.html
https://alkesgroup.broadinstitute.org/LDSCORE/
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used 50,000 randomly sampled 500 bp genomic sequences as background, or control, 
sequences when looking for motif enrichment.

We defined putative CpG island peaks as peaks with greater than 50% GC content 
and a ratio greater than 0.6 of observed CpG dinucleotides versus the expected number 
based on the number of Gs and Cs in the peak. These criteria were based on the CpG 
islands UCSC genome browser track [38].

CNN model architecture and training

We trained convolutional neural networks (CNNs) to map input DNA sequences (1344 
bp) to continuous measures of chromatin accessibility (normalized ATAC-seq read 
counts). Our architecture is based on an updated version of the Basset model [2], which 
consists of 8 convolutional layers followed by two fully connected layers. For high capac-
ity multi-task models, model capacity was increased by increasing the number of param-
eters in each layer. Specifications of the architecture of each model are provided in the 
supplementary data on Zenodo [39]. For all models, we modified the architecture to pre-
dict continuous―rather than binary―values, which has been shown to improve model 
generalizability and interpretability [11], and trained models to minimize the Poisson 
regression loss function. For all models, we used chromosomes 7, 14, and 15 for valida-
tion, chromosomes 4 and 5 for evaluation, and all other chromosomes for training. We 
used the Basenji repository [3] for data preprocessing, model training, and evaluation.

Evaluation of common training decisions

Using the model architecture and training scheme described above, we trained a suite 
of CNN models to evaluate the effect of common training decisions on cell type-specific 
accessibility prediction. These include single-task versus multi-task learning as well as 
increased capacity multi-task models. We also evaluated how training set composition 
impacts performance. A description of the 5 different training sets evaluated, which 
each have different compositions of peak versus non-peak sequences, is provided in 
Table 1. For each training decision, we trained three replicate models with different ran-
dom initializations.

Model‑based transcription factor activity scores

Inspired by the motif insertion approach in Yuan and Kelley [40], we computed model-
based transcription factor activity scores for the multi-task and single-task models 
for all TF binding profiles in the JASPAR 2022 CORE vertebrates non-redundant col-
lection [37]. We first obtained 1000 dinucleotide shuffled peak sequences from [40] 
as background sequences. For each TF and each background sequence, we sampled a 
motif sequence from the TF’s PWM and inserted it into the center of the background 
sequence. We made predictions for the background and motif-inserted sequences using 
each multi-task and single-task model and took the difference in predicted accessibil-
ity between the motif-inserted and background sequences―averaged over the 1000 
sequences―as a model’s predicted TF activity score.
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Model‑based TF motif discovery with TF‑MoDISco

We used TF-MoDISco [29] to identify TF motifs driving predictions in cell type-spe-
cific and ubiquitous peaks for the multi-task and single-task models. For a sampled 
set of sequences in the ubiquitous and cell type-specific peak clusters, we computed 
model attribution scores for each model variant (i.e., baseline multi-task, high capac-
ity multi-task, single-task) and cell type using gradient*input. We then ran TF-
MoDISco using the tfmodisco-lite implementation (https://​github.​com/​jmsch​rei/​
tfmod​isco-​lite) to identify seqlets with high attribution scores and their similarity to 
known TF motifs in the JASPAR 2022 CORE vertebrates non-redundant collection 
[37]. We considered all motif matches with a q-value < 0.05 when computing the Jac-
card similarity in motif matches between cell types.
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